
Automated Oracle Comparators for Testing Web Applications

Sara Sprenkle†, Lori Pollock‡, Holly Esquivel§ ∗, Barbara Hazelwood¶∗, Stacey Ecott‖ ∗
† Washington & Lee University, sprenkles@wlu.edu

‡ University of Delaware, pollock@cis.udel.edu
§ University of Wisconsin-Madison, hesquivel@wisc.edu

¶Cisco Systems, bahazelw@cisco.com
‖ athenahealth, Inc., secott@athenahealth.com

Abstract

Software developers need automated techniques to main-
tain the correctness of complex, evolving Web applications.
While there has been success in automating some of the test-
ing process for this domain, there exists little automated
support for verifying that the executed test cases produce
expected results. We assist in this tedious task by present-
ing a suite of automated oracle comparators for testing Web
applications. To effectively identify failures, each compara-
tor is specialized to particular characteristics of the possi-
bly nondeterministic Web applications’ output in the form of
HTML responses. We also describe combinations of com-
parators designed to achieve both high precision and recall
in failure detection and a tool for helping testers to ana-
lyze the output of multiple oracles in detail. We present re-
sults from an evaluation of the effectiveness and costs of the
oracle comparators. We also provide recommendations to
testers on applying effective oracle comparators based on
their application’s characteristics.

1 Introduction

With the prevalent use of Web applications, even partial
functionality loss can cost businesses millions of dollars per
hour [5, 19]. The critical need for reliable Web applica-
tions, coupled with their frequent modification, motivates
the development of automatic techniques to enable exten-
sive testing with a quick turnaround time. However, test au-
tomation goes beyond automatically creating and executing
test cases [11, 23, 24] and reducing test suite size [13, 21].
Test automation should also seek to automate the tedious
and error-prone task of interpreting the test results, that is,
automating the test oracle’s evaluation of the test case’s ac-

∗Author contributed while at the University of Delaware with support
from the CRA-W Distributed Mentor Project.

tual results as pass or no pass. In this paper, we focus on
the test oracle comparator problem: given a test case and
expected results, automatically determine whether the Web
application produces correct output.

A test oracle produces an expected result for a test in-
put and then uses a comparator to check the actual results
against the expected results [4]. Automated software test-
ing oracles have traditionally been difficult and expensive
to develop [3, 4, 20, 26]. Human oracles often evaluate the
correctness of the actual output. Some approaches to auto-
mated or partially automated oracles involve developing an
oracle from specifications, from simulations of the program
under test, or using a trusted implementation [4].

The major challenges to developing oracles for Web ap-
plications are the difficulty of (1) accurately modeling Web
applications and (2) observing all their outputs. First, while
some researchers propose using a model-based approach to
oracles [1, 6, 18, 25], accurate models of Web applications
must address the ability to navigate Web pages through a
browser (e.g., a user accesses pages through back and for-
ward buttons or by typing the URL directly); the inability to
statically determine control flow due to user input and loca-
tion; and the use of numerous technologies and languages.
Second, Web applications typically respond with dynam-
ically generated documents written in HTML (Hypertext
Markup Language)—the standard language for publishing
Web pages, regardless of the programming language(s) used
to implement the Web application—but may have additional
outputs, such as generated email messages, internal server
state, data state, or calls to external Web services. While
these additional outputs are difficult to monitor, faults of-
ten manifest themselves in HTML output, and the user—
often a customer or client—sees the HTML response [19].
Thus, we target our oracle comparators to the HTML out-
put from Web applications. Other Web application testing
approaches [9, 11] have also employed oracles that use the
HTML responses as the output of an executed test case.

In HTML, authors specify both the content and presen-

<title>hiperspace lab</title>
<style> a:hover{ color:#952C2C; text−decoration: none} ... </style>
<script language="Javascript">...</script>
</head>
<body>
<table border=0 cellspacing=0 width="580">
<tr> <td rowspace="2">
</td></tr>
...</table>
<!−− Sidebar Links −−>
...
 Alumni
...
</body>
</html> Close HTML tag

Attribute

Content

Style

<html>
<head>

Start HTML tag

<meta http−equiv="Content−Type" content="text/html; charset=iso−8859−1">
Content

Layout

Comment

Figure 1. Simplified Excerpt of HTML File

tation of their Web pages [15], as shown in Figure 1. Au-
thors use HTML elements to markup portions of the doc-
ument’s text in terms of the document’s structure (e.g., the
text’s purpose), presentation (e.g., the text’s appearance), or
hypertext (e.g., links to other documents or parts of the doc-
ument). HTML elements usually have a start tag with zero
or more attributes (name/value pairs) and may have an end
tag and content enclosed between tags.

An oracle comparator that naively detects every differ-
ence between the actual and expected HTML output [7]
could mistakenly report a fault when the difference lies in
real-time, dynamic information. Reporting such false pos-
itives can lead to wasted developer effort tracking down
nonexistent bugs. In contrast, an oracle comparator that fo-
cuses on specific internal details of behavior may miss re-
porting faults (false negatives), resulting in heavy penalties
such as loss of consumer confidence and business revenues.

Validating an HTML response by comparing it with the
expected HTML response is particularly difficult because
acceptable differences between expected and actual results
are not easily generalized and may depend on the applica-
tion or specific response. Further complicating the process
is that important tags may not be structurally tied to their
content (e.g., the label for an input field cannot be easily
mapped to the input tag), changes in whitespace typi-
cally do not matter with respect to what the user views,
and some components are case-insensitive while others are
not. Finally, real-time or nondeterministic behavior in the
Web application can occur, for example, when the behav-
ior depends on the current time or when items are pulled
randomly from a database and displayed in the Web page.

Our previous experimental studies compared replay
techniques using four basic oracle comparators [23] and
confirmed that some oracles provide high precision (i.e.,
their reported differences were indeed due to faults) for cer-
tain kinds of faults but undesirable recall (i.e., had some
false negatives and did not report all faulty behavior). Other

Response
Comparator

Pass/
No Pass

Set of
Differences

Pass?

Proc’d
Actual

Response

Proc’d
Expected

Response

Customized
HTML

Processor

HTTP
Request

Web App
Under Test

Gold
Standard

Actual
Response

Expected

Figure 2. Oracle Process

oracles revealed more failures (high recall) but suffered in
precision by reporting output differences that were not due
to faults. These prior results led us to the work reported in
this paper, investigating (1) how the various components of
an HTML document should be handled by an oracle com-
parator that seeks to have both high precision and high re-
call, (2) what changes to a document are important for re-
vealing faults, (3) when these changes are important, and (4)
how oracles targeted to specific changes can be combined to
create oracles that yield both high precision and recall. This
paper’s main contributions beyond the state of the art and
our previous work in testing Web applications are

• a suite of 22 automated oracle comparators special-
ized to particular characteristics of the possibly nonde-
terministic Web applications’ HTML output and care-
fully selected oracle combinations that improve upon
the individual comparators’ effectiveness,

• results and analysis from two experimental studies of
the effectiveness and costs of individual and combina-
tion oracle comparators, and

• recommendations to testers on choosing test oracle
comparators for testing their Web application.

The remainder of our paper is organized as follows: Sec-
tion 2 presents our suite of oracle comparators, while Sec-
tion 3 describes the comparators’ implementation and inte-
gration into a tool that helps testers analyze the output of
multiple comparators in detail. In Section 4, we describe
our evaluation methodology and present and analyze our re-
sults in Section 5. We present related work in Section 6 and
conclude with future work in Section 7.

2 HTML-based Oracle Comparators

We developed a suite of automated oracle comparators
that validate HTML responses, as shown in Figure 2. The
comparators take as input the actual HTML response (doc-
ument) generated by the Web application upon an HTTP
request1 and the expected HTML response from a previ-
ous, working version of the Web application (before a code
update) with the same HTTP request. Each comparator per-
forms customized processing on the HTML responses and a

1An HTTP request includes the type of request (typically GET or
POST), the path to the requested resource, and optional data, such as name-
value pairs for a form.

DocumentBase−CollapsedWS

DocumentBase

DB−W

DB

D
Document

Content

Content−CollapsedWS

Content−CollapsedWS−Dates

Tags

C

C−W

C−WD

T

Document−based

Content−based

Tags−Style−Layout

Tags

TagName−Closing

TagName−Style−Layout

Tags−Style Tags−Closing Tags

TagNames+Unordered A, Img

TagNames−Style+Unordered A, Img

TagName−Style−Layout+Unordered A, Img

TagNames+ImptAttrs−Style−Layout

TagName−Style

TagNames

TagNames−Style+Unordered Form Inputs−Select

TagNames−Style+Unordered Form Inputs

T−SL

T−S T−C

T

N+U

N−S+U

N−SL+U

N+I−SL

N+I

N

N−S

N−SL

N−C

N+F−Sel

N+F

Structure−based

N+I−S
TagNames+ImptAttrs−Style

TagNames+ImptAttrs

UnorderedLinks

FormsTagNames+ImptAttrs

TagNames

Tags

Figure 3. Partial Ordering of Implemented Oracle Comparators

comparison of the processed HTML responses. If there are
no differences between the processed responses, the com-
parator says the request passes. If the request did not pass,
the comparator outputs a set of differences used to reveal
potential faults in the current version. Execution of an ora-
cle comparator is repeated for each HTTP request in the test
case. If any request in the test case fails, the test case fails.
Since the comparators use the output of a previous, work-
ing version of the Web application as the gold standard [4],
they are consistent oracles [14], which are fast but will not
reveal faults that exist in the previous version.

The full suite of comparators that we implemented is pre-
sented in Figure 3 as a partial ordering based on the infor-
mation from the HTML document that each oracle uses. Or-
acle A is a child of oracle B in the partial ordering if oracle
A uses a subset of the information in the HTML document
used by oracle B. Many different oracle comparators could
be created based on various HTML characteristics; we have
focused on oracles that, in our experience, have the most
potential to provide high precision and recall in reporting
differences that indicate faults.

A naive automatic comparator, which we call the Docu-
ment comparator, identifies all the differences between the
actual and expected HTML documents as a whole [21], es-
sentially using the utility diff. Document will reveal any
failure that appears in the HTML. However, Document is
susceptible to false positives from changes in either the doc-
ument’s content (dynamic behavior, such as changes in the
date or time) or its structure (i.e., display or appearance of
the document).

The family of Document-based oracles examines the
full document but ignores elements in which differences
do not greatly affect the user or are best handled by other
testing techniques. First, we can ignore HTML com-
ments. Second, since meta elements contain informa-
tion about the document, such as keywords for search en-
gines, that do not affect the user’s experience with the Web
page, we can safely ignore meta elements. Furthermore,

since we do not focus on techniques for testing client-
side scripting, we can ignore programming elements, such
as script (e.g., for JavaScript), noscript, applet,
and object. Elements, such as noframes, are spe-
cial directives for older browsers that cannot handle that
functionality. We call the comparator that uses the entire
document but ignores comments, meta, programming, and
special-directive elements the DocumentBase comparator
because it is the ancestor of all other implemented ora-
cle comparators. Our final document-based comparator
DocumentBase-CollapsedWhiteSpace collapses whites-
pace because browsers collapse whitespace.

Beyond the Document-based oracles, there are two main
classes of oracle comparators: content-based and structure-
based. We developed three Content-based comparators
that ignore structure, i.e., the HTML tags. The Content
oracle [23] does not falsely indicate failures for HTML
documents with simple changes to the UI, e.g., changes
in the page layout (tables versus CSS) or display (font
color), which do not affect the application’s behavior. How-
ever, Content will falsely suggest application failures upon
changes in the generated dynamic output, such as changes
in the current date. Besides missing faults not manifested
in the HTML response, Content will not reveal faults in
the HTML tags, such as omitted form input tags. The
two refinements to the Content comparator are Content-
CollapsedWhiteSpace because browsers collapse whites-
pace and Content-CollapsedWS-Dates because displayed
dates may indicate the date/time that some event occurred,
and the displayed dates will not match when the test cases to
produce the expected and actual results were not executed
at the same time.

The Structure-based oracles target only the HTML tags
of the actual and expected output [23]. Faulty behavior may
manifest itself in tag-based content (such as forms) or may
affect the structure of a page (e.g., missing rows in a ta-
ble). This comparator class will incorrectly suggest failures
in pages that have slight changes in the UI that do not affect

the behavior of the application. For example, the compara-
tor will flag changes in presentation from paragraph (p) to
line break (br) tags. The comparator will miss faults that
manifest themselves in the response’s content.

Because HTML is not well-structured and browsers are
robust, there is variability in the tag changes that indicate
a fault. The following is a list of observations about tag
properties (as shown in Figure 1) that a tester may want an
oracle comparator to ignore:

P1. closing tags: Since the browser closes some tags im-
plicitly when other tags start, a page that contains a dif-
ference in closing tags still may be rendered the same.

P2. layout tags (e.g., div, span, table) or attributes (e.g.,
align, width): Since layout mostly affects appearance
and the style directives may be in a separate CSS file,
differences in layout are less severe failures that a hu-
man may need to verify in multiple browsers.

P3. style in tags (e.g., b, pre) or attributes (e.g., bgcolor):
Style mostly affects appearance, which is a less severe
failure, and humans will need to verify the page’s ap-
pearance in multiple browsers.

P4. script references in attributes: Since we do not verify
the scripts, changes to references are not meaningful
for an oracle comparator.

P5. ordering of images and links: When applications dy-
namically generate pages containing images or links,
changes to the links or images or their order may not
matter—only which images or the number of links may
be significant.

P6. ordering of form input: Dynamically generated forms
may change the order of input tags or options, but if the
form contains the same inputs and options, it is correct.

P7. selection in forms: A change to the default selected or
checked option in a form may not indicate a fault, as
long as the user can select the appropriate option.

Based on these observations, we created several classes
of Structure-based comparators: Tags, Tag Names, Tag-
Names+ImptAttrs, UnorderedLinks, and Forms. Tags
examines all HTML tags, Tag Names addresses P2-P7 and
examines only the names of the HTML tags, and Tag-
Names+ImptAttrs (P2-P4, P7) focuses on the names and
the important attributes of each HTML tag. We designated
the required attributes from the HTML specification [15] as
important attributes and used our intuition to add other im-
portant attributes, such as the name, type, and value for in-
put tags. When appropriate, we assigned a missing attribute
its default value, such as “text” for the input’s type. We also
designed specialized comparators that handle links/images
and forms. Both specialized comparators first examine
the documents’ tag names for differences to identify major
failures. The UnorderedLinks class of comparators (P5)

compares an alphabetized list of anchor (links) and image
tags with their important attributes (href, name, and tar-
get and src, respectively). The Forms class of compara-
tors (P6) compares an alphabetized list of input tags and
option tags (grouped by the select tags) with their impor-
tant attributes (type, name, and value and name, respec-
tively). The Forms comparator includes the selected
and checked attributes, while Forms-Select (P7) ignores
them. For each class, we can include or ignore closing (P1),
layout-based (P2), or style-based (P3) tags.

Expected Tradeoffs. We expect that, in terms of false
positives and false negatives, the oracle comparators will
follow the partial ordering: comparators at the top of the
hierarchy will have higher recall, reporting the fewest false
negatives, but with lower precision, reporting the most false
positives. The amount of information that an oracle exam-
ines is a double-edged sword: the more information, the
more potential to reveal faults or mistake irrelevant differ-
ences as failures. In general, a comparator’s cost matters
less than its effectiveness. Our comparators are essentially
equivalent in terms of space costs: they all require the same
actual and expected HTML responses. Oracles, such as
Forms and UnorderedLinks, require more processing of
the responses, which will increase the execution cost.

3 Implementation and Tool Support

We implemented our oracle comparators primarily using
Perl’s HTML::Parser class and the utility diff. We in-
tegrated our comparators into a tool we developed that helps
testers evaluate test suite results in detail [22]. Our tool pro-
vides a means for managing and analyzing large test suites
for Web applications, with the goal of identifying the test
cases and corresponding results associated with potential
faults. When a user navigates to a request, the tool automat-
ically executes each oracle on the responses and identifies
which comparators report a failure. The tool is especially
useful for comparing results from multiple comparators—to
evaluate them for false positives, false negatives, and their
limitations. Except for Forms and UnorderedLinks, which
required minor tweaking, our comparators did not require
changes to integrate them into the tool.

4 Experimental Methodology

We designed our experimental study to answer the fun-
damental question: How effective is each oracle compara-
tor at detecting failures?2 To thoroughly answer this ques-
tion, we sought to answer the following research questions:

1. How many failures does each oracle correctly identify?

2We do not evaluate the detection of unmet time/space-constraint fail-
ures.

Apps Classes Methods Statements NCLOC
Masplas 9 42 441 999
Book 11 385 5250 7791
CPM 75 172 6966 8947
DSpace 274 1453 27136 49513

Table 1. Subject Application Characteristics

2. How many failures does it miss (false negatives)?

3. How many responses are incorrectly identified as fail-
ures (false positives)?

4. What types of faults does each oracle reveal?
5. What are the costs of each oracle comparator in terms

of its requirements for time and space?

4.1 Independent and Dependent Variables

The independent variable is the HTML oracle com-
parator. We evaluated all 22 comparators described in Sec-
tion 2. The dependent variables are the comparators’ accu-
racy (measured in terms of precision, recall, false positives,
and false negatives) and their time and space costs.

Precision is the ratio of the number of HTML responses
correctly identified as exhibiting failures to the total number
of responses reported as failures, while recall is the ratio of
the number of HTML responses correctly identified as con-
taining failures to the expected number of responses con-
taining failures. Higher precision means fewer false posi-
tives; higher recall means fewer false negatives.

4.2 Subject Applications and Test Suites

We used four subject applications of varying sizes (1K-
50K non-commented lines of code), technologies, and rep-
resentative Web application activities: a conference website
(Masplas); an e-commerce bookstore (Book) [12]; a course
project manager (CPM); and a customized digital library
(DSpace) [10]. Table 1 summarizes the applications’ code
characteristics. We generated test suites by deploying each
subject application, collecting user accesses to each appli-
cation, and then converting the user accesses into our test
suite of user sessions [21], i.e., test cases.

Masplas is a Web application in which users can regis-
ter for a workshop, upload abstracts and papers, and view
a schedule, proceedings, and other related information.
Masplas is implemented in Java and JSP with a MySQL
database. We collected user accesses during the submission
and registration periods for MASPLAS 2005.

Book allows users to register, login, search for books by
keyword, rate books, add books to a shopping cart, modify
personal information, and logout. Book uses JSPs and a
MySQL database. To collect user accesses for Book, we
requested volunteer users via email to local newsgroups and
advertisements in the University’s classifieds Web page.

With CPM, course instructors and teaching assistants
can manage group work in a course, including recording
grades and coordinating demonstration times. CPM is writ-
ten using Java and JSPs that access a filestore backend. We
collected user accesses from instructors, teaching assistants,
and students using CPM during five academic semesters
from 2004-05 at the University of Delaware.

DSpace is a customized digital publications library
based on an open-source digital repository system [10].
DSpace automatically generates sorted publications pages
from a database that research group members maintain
through a Web application interface. A user can create
dynamic views of publications by searching with various
criteria and can download publications in various formats.
DSpace is written in Java and JSP and uses a PostgreSQL
database. We collected user accesses after publicizing our
digital library in August 2005 through May 2006.

Table 2 shows characteristics of the test suites for each
application. We show both the number of requests and
the number of HTML responses because some DSpace re-
sponses are the publication itself in various formats, and
therefore a simple diff of the publications—rather than
an HTML comparator—can validate the response. The test
suites do not completely cover the application code because
users do not access some error and administrative code and
code for alternative configurations.

4.3 Methodology

We performed two experiments—one to analyze the ef-
fect of nondeterministic application behavior on the oracle
comparators and one to analyze the effectiveness of the ora-
cle comparators in the presence of seeded faults in the sub-
ject applications—within the experimental framework de-
scribed in our previous work [23]. The results of the first
study allowed for easier identification of false positives in
the second experiment. During each experiment, we also
measured each comparator’s execution time.

Nondeterminism/Real-Time Behavior Effect. This ex-
periment’s goal was to identify the applications’ nondeter-
ministic and real-time behavior and analyze its effect on
the comparators’ effectiveness. To examine possible non-
determinism between different runs of the same test suite,
we executed each test suite nine times over several months
on the same clean (unaltered) version of the application.
Since application behavior may depend on the current date
or time, we wanted to expose those differences—as well
as the applications’ nondeterministic behavior—by execut-
ing the test suite on different days, months, and even years
(2006, 2007). We then ran each comparator pairwise on
the responses from the nine executions of each test suite,
totaling 36 outputs for each comparator per application3.

3We chose nine executions and 36 suite-level outputs by the comparator

Test Input Test Output
Apps # Test Cases # Requests % Stmt Coverage # HTML Responses Avg HTML Response Size
Masplas 169 1103 90.5% 1103 3.8 KB
Book 125 3564 56.8% 3564 10.7 KB
CPM 890 12352 78.4% 12352 2.0 KB
DSpace (Exp 1/Exp 2) 1800/75 22129/3183 65.6%/51.6% 17892/3023 8.6 KB/12.5 KB

Table 2. Test Suites and Responses

Categories of Exposed Faults # HTML Pages Exposing Each Fault
Seeded Exposed

Apps Faults Faults Logic Data Form Appearance Median Mean Std Dev
Masplas 28 22 17 4 2 2 35.5 54.9 55.9
Book 39 36 17 11 4 6 595 521.2 629.3
CPM 135 96 75 27 19 6 25 202.6 516
DSpace 50 20 19 2 2 1 104 282.6 347.4
Total 252 174 128 44 27 15 N/A N/A N/A

Table 3. Seeded and Exposed Faults

Because the application does not contain faults during this
experiment, any failures that an oracle comparator reports
are false positives.

Failure Detection Effectiveness. We analyzed each or-
acle comparator’s effectiveness at revealing faults. To cre-
ate faulty versions of each subject application, graduate and
undergraduate students familiar with JSP, Java, and HTML
manually seeded faults into each subject application. We
also seeded naturally occurring faults that were discovered
by users during application deployment into Masplas, CPM,
and DSpace. In general, four types of faults were seeded—
data store (faults that exercise application code interacting
with the data store), logic (application code logic errors
in the data and control flow), form (e.g., modifications to
name-value pairs and form actions), and appearance (faults
that change the way the page appears). Since these cate-
gories are not mutually exclusive, a fault can be classified
into multiple categories. Table 3 reports the number and
types of seeded and exposed faults. Since some seeded
faults were not exposed—either the test suite did not exe-
cute the seeded faults or the faults did not manifest in the
HTML responses, we report the number of seeded and ex-
posed faults separately and only analyze the comparator re-
sults for exposed faults.

We replayed the test suite with state [23], where ap-
plication state is restored before replaying every test case
in the suite on the fault-seeded versions of each subject
application. By replaying with state, test suite execution
on a faulty version will match the clean execution more
closely, and faults that manifest themselves in the applica-
tion’s state will not propagate in the state for subsequent
test cases to expose. If we allowed faulty state to propa-
gate, the responses would diverge from the clean responses
more, and failures would become trivial to detect. Replay-
ing with state reduces the number of responses that may
display a failure, making it more difficult for comparators to

to obtain a good sample size for indicating nondeterminism.

detect failures and easier to differentiate between the com-
parators. We then executed each comparator using the test
suite’s responses from the clean (the expected results) and
fault-seeded versions (actual results) of the application. Us-
ing our tool, we manually determined the expected pass/no
pass results for the ideal oracle by checking if each response
exhibited a failure; Table 3 summarizes the pages that the
manual oracle determined were no pass (i.e., exposed the
fault). Finally, we compared the expected oracle results
with each comparator’s results to measure the comparator’s
correct answers, false positives, and false negatives.

4.4 Threats to Validity

Several factors may affect the interpretation of the results
of this study. Since we performed our study with four ap-
plications, a study with additional applications may be nec-
essary to generalize the results; however, we chose subjects
with different technologies, implementers, and application
and usage characteristics to help reduce the threat to gen-
eralizing our results. We believe that our oracle compara-
tors are general and will handle most Web applications and
their HTML output; however, we designed our oracle com-
parators with knowledge of how our subject applications
behave. Since HTML is not well-structured, the choice of
HTML parser affects the behavior of the comparators; an or-
acle implemented using a different parser or language may
yield slightly different results. Furthermore, since browsers
may parse and display HTML differently, a comparator may
report a page as containing a failure, but the page may dis-
play and function correctly in other browsers. We include
faults that emulate some of these problems. Since we used
the same HTML parser to implement each oracle, we do
not believe any of these implementation differences signifi-
cantly affect our experiments’ validity.

Each application’s test suite was generated from user ac-
cesses to the deployed application. The test cases do not

completely exercise the applications or expose all seeded
faults, nondeterministic behavior, or real-time behavior.
However, our test cases do exercise a large portion of each
application and expose interesting application behavior.

Manually seeded faults may be more difficult to expose
than naturally occurring faults [2]. Although we tried to
model the seeded faults as closely as possible to naturally
occurring faults—even including naturally occurring faults
from previous deployments, some of the seeded faults may
not represent natural faults. Because the faults may not be
realistic, we may bias the results to a comparator because it
does or does not detect those types of faults. Since we only
consider the number of HTML pages containing manifes-
tations of the fault detected/missed by the oracles and not
the severity or detectability of the faults detected/missed,
the conclusions of our experiment could be different if the
results were weighted by fault severity or detectability. We
also do not analyze sources of false positives beyond non-
determinism or real-time behavior.

Since our experiments ran for several days or weeks, the
comparator timings were slowed down by other processes,
such as network activity and daily backups, but these pro-
cesses should affect all comparator timings equally.

5 Results and Analysis

We present the experimental results and analysis for each
experiment in this section. For each graph, the box repre-
sents 50% of the data and spans the width of the inner quar-
tile range (IQR), with each whisker extending 1.5 ∗ IQR
beyond the top and bottom of the box. The center horizon-
tal line within each box denotes the median, + represents
the mean, and ◦ represents an outlier. We abbreviate the
comparator names as shown in Figure 3.

5.1 Nondeterminism/Real-Time Behavior Effect

Figure 4 shows the distributions of the oracle compara-
tors’ normalized false positives (answering question 3). A
point in the distribution is the normalized false-positive re-
sults from executing a test suite on the clean application
twice and applying a comparator on the HTML responses.
Recall that any failure (difference in expected and actual
processed responses) reported by an oracle is a false posi-
tive because the application is the clean version. To normal-
ize the results so that we can compare across applications,
we divide a given comparator’s reported number of failures
by the number of failures reported by Document. Since
Masplas and Book exhibited only deterministic behavior,
no comparator had false positives, and, thus, we do not in-
clude them in the results. For each comparator in Figure 4,
CPM is the light gray bar on the left and DSpace is on the
right in dark gray.

On average, Document reported 90.5 differences in
CPM’s HTML responses between test suite executions out
of 12,352 responses, with a standard deviation of 26.69.
The sources of differences were dependence on the current
date, the order that a hashtable of a form’s hidden name-
value pairs was printed out, and tie-breaking when more
than one demo had the same modified date. As the time
between executions increased, the number of differences in
responses increased due to time dependence in one servlet.

For DSpace, Document reported an average of 1183 dif-
ferences in HTML responses between test suite executions
out of 17892 HTML responses with a standard deviation of
419. The difference in when the suite executed did not have
as much of an effect on DSpace, except when the suite ex-
ecuted in different years because users could select to view
publications from an additional year (2007). Most of the
nondeterministic behavior came from tie-breaking the or-
der of publications with the same publication date or the
order of the associated documents (such as the paper and
presentation slides).

As expected, the comparators’ false positives follow the
partial ordering: the higher the comparator is in the hier-
archy, the more reported false positives. The Document-
based comparators are most susceptible to reporting false
positives because they consider the entire document, while
the other comparators only consider subsets of the docu-
ment. In CPM, the TagNames and UnorderedLinks com-
parators reported no failures, and Tags+ImptAttrs reported
less than 5% of the responses with differences as failures.
All comparators reported some failures in DSpace because,
for some responses, DSpace randomly displays between 3
and 5 publications from a collection. None of our compara-
tors can handle such randomness.

Since some nondeterminism only manifests itself in ei-
ther the response’s structure or content, the Tags and Con-
tent-based oracles’ performance varied greatly. In CPM,
Tags had the same false positives as Document, while in
DSpace, Content had nearly as many false positives as
Document. The Content-based oracles had false positives
in DSpace for a publication’s upload time and changes in
publication or document orders and in CPM for changes in
the demo order. Ignoring dates (C-WD) greatly reduced
failures reported for DSpace. Forms had many false posi-
tives in CPM because it reported changes in a form’s default
selected value as failures; Forms-Select did not. Remov-
ing style tags reduced the number of failures reported for
DSpace because of how DSpace interleaves style tags in the
publications.

5.2 Failure Detection Effectiveness

We analyzed the results of the comparators’ failure de-
tection effectiveness by individual application, by applica-

 0

 20

 40

 60

 80

 100

N+F-SelN+FN-SL+UN-S+UN+UN-SLN-SN-CNN+I-SLN+I-SN+IT-SLT-ST-CTC-WDC-WCDB-WDBD

N
or

m
al

iz
ed

 F
al

se
 P

os
iti

ve
s

Document Content Tags Tags+Impt Attrs TagNames UnorderedLinks Forms

CPM
DSpace

Figure 4. Effect of Nondeterminism/Real-Time Behavior on Comparators

tion behavior (deterministic or nondeterministic), across all
applications, and by fault category and analyzed their mean
effectiveness, as measured by the harmonic mean of preci-
sion and recall. However, due to space constraints, we only
show the comparators’ effectiveness results in terms of pre-
cision (light gray, left) and recall (dark gray, right) for all
faults across all applications in Figure 5 to answer questions
1-4. A point in Figure 5’s distribution is the comparator’s
precision or recall for a seeded fault. Ideally, a comparator
will have consistently high precision and high recall.
Deterministic Applications. As expected, all compara-
tors had consistently high precision because for determin-
istic behavior, a difference usually indicates a fault. Only
Document and DocumentBase had false positives, which
were whitespace changes as a side effect of a fault that
commented out JSP code. The Document-based compara-
tors had the best recall with high consistency for all fault
types because they identified failures in both the document’s
structure and content. Across all faults, the Document-
based comparators had the best mean effectiveness.
Nondeterministic Applications. Document-based com-
parators have the lowest precision and the highest recall for
the nondeterministic applications. Forms-Select, the Tag-
Names comparators, and the UnorderedLinks compara-
tors have near-perfect precision consistently, which differs
from the previous experiment because, in that experiment,
test suites were executed over a longer period of time. Over-
all, Forms-Select has the best mean effectiveness (.86),
followed by Tags+ImptAttrs and Tags+ImptAttrs-Style
(both .80).
Form Faults. Surprisingly, the Tags comparators had the
best mean effectiveness for form faults. However, Forms-
Select had equivalent mean precision to Tags. Forms-
Select has the best overall effectiveness for the nondeter-
ministic applications. As expected, Content, TagNames,
and UnorderedLinks-based oracles only detected a few
form failures.
Appearance Faults. As expected, content-based compara-
tors and structure-based comparators that ignored attributes
and style and layout tags had the most difficulty detect-
ing failures from appearance faults. The Document-based
comparators and the Tags comparators consistently exposed

nearly all responses with faulty appearance behavior.
Since logic and data faults frequently overlap and are the

majority of the seeded faults, thus following the trends in
Figure 5, we do not include a separate detailed analysis.

5.3 Costs

Since each comparator requires the actual and expected
HTML responses (the sizes of which are in Figure 2), we
focus on execution time to answer question 5. At the ex-
tremes, Document is the fastest comparator on average,
while the UnorderedLinks comparators are the slowest.
The differences between their execution times is relatively
small. As expected, the sizes of the HTML responses af-
fects the comparator’s execution time; the per-response ex-
ecution time of the comparators is longer on Book and
DSpace than on Masplas and CPM. Due to space con-
straints, we do not show the comparators’ execution costs;
however, on our largest test suite (DSpace with 17,892 pairs
of HTML responses to compare, totaling 150 MB per suite),
the slowest comparator, UnorderedLinks, executed in 14
minutes on average, whereas replaying the suite takes about
90 minutes.

5.4 Analysis

Similarity of Oracles. If the results from a set of com-
parators are significantly similar, testers can safely choose
one representative from the set. We measured similarity be-
tween two comparators as 1 − % difference, where % dif-
ference is

of responses that oracles differed in pass results

of responses that Document reported as no pass

We divided by Document’s reported no-pass outputs rather
than the total number of responses because the majority of
responses from the faulty versions were the same as the re-
sponses from the clean version. We examined the compara-
tors’ output similarity by subject application and in aggre-
gate. Their similarity varied slightly with the application,
but the majority of the results were as we expected. The
Tags, TagNames, UnorderedLinks, and Forms compara-
tor classes produced the same results over 95% of the time,

 0

 0.2

 0.4

 0.6

 0.8

 1

D DB DB-W C C-W C-WD T T-C T-S T-SL N+I N+I-S N+I-SL N N-C N-S N-SL N+U N-S+U N-SL+U N+F N+F-Sel

P
re

ci
si

on
/R

ec
al

l

Document Content Tags Tags+Impt Attrs TagNames UnorderedLinks Forms

Precision
Recall

Figure 5. Comparators’ Precision and Recall in Failure Detection

Oracle Average F-Measure
Combination Oracle1 Oracle 2 O1 ∪ O2
N+I ∪ C-WD .83 .79 .91
N+I-S ∪ C-WD .83 .79 .91
N+I-SL ∪ C-WD .79 .79 .91
N+F-Sel ∪ C .83 .75 .87
N+F-Sel ∪ N+I .83 .83 .84
N+I ∪ N+U .83 .78 .84
N+I ∪ N-SL+U .83 .74 .84

Table 4. Oracle Combinations’ Effectiveness

and the Document-based comparators produced the same
results over 90% of the time. The Tags+ImptAttrs and
Content comparators were surprisingly similar (99%) since
they examine mutually exclusive parts of the response.
Combining Comparators. Since there are tradeoffs be-
tween oracle comparators’ precision and recall, we inves-
tigated whether we could create a more effective oracle by
combining oracles. Rather than combining all pairs of or-
acles, we chose to combine oracles that were complemen-
tary in terms of the partial ordering based on information
used from the HTML response (as illustrated in Figure 3)
and dissimilar in pass/no pass output, and we used our intu-
ition about which combinations would prove most effective
at achieving both high precision and high recall.

We combined two comparators by either unioning or in-
tersecting their pass/no pass results. By unioning two com-
parators, we improve recall (reduce the number of false neg-
atives), while the number of false positives could increase
or decrease. If instead we intersect comparators’ results,
we reduce the number of false positives because both com-
parators must agree that the response contains a failure,
thus improving precision, but also reduce the number of re-
sponses recognized as exhibiting faulty behavior when only
one comparator detects the behavior, which decreases re-
call. The combined oracle’s execution cost is the total cost
of executing the constituent comparators.

Table 4 shows the best oracle combinations in terms
of the average f-measure (the harmonic mean of preci-
sion and recall) across all applications. The union of
Content-CollapsedWS-Dates (C-WD) with variants of
TagNames+ImptAttrs (N+I) yields the best comparator
for all applications. For deterministic applications, Docu-
ment-based oracle comparators still perform best because

they report few false positives while detecting most faulty
behavior, but the Content-CollapsedWS-Dates unioned
with variants of TagNames+ImptAttrs is the next best.
As expected, the intersection combinations (not shown) im-
proved precision at the expense of recall.
Recommendations. Testers should first execute their test
suite several times on the clean version of the application
to (1) expose the responses that have nondeterministic and
real-time application behavior and (2) identify the compara-
tors with the fewest false positives so that the tester can
then use these comparators as a baseline when analyzing
the failure detection results. Even if the application has
nondeterministic behavior, some responses may be deter-
ministic. The tester should apply appropriate comparators
based on the response’s behavior. If the response is deter-
ministic, the tester should use one of the Document-based
comparators. If the response has nondeterministic behav-
ior, she should use the combined Content-CollapsedWS-
Dates and TagNames+ImptAttrs comparator, which has
the highest mean effectiveness without a significant increase
in execution time.

A tester may want to use a more precise oracle in early
testing stages to expose severe bugs without sifting through
many false positives. If a tester is most concerned about the
comparator reporting the fewest false negatives, she should
use one of the Document-based comparators. If false pos-
itives are a major concern, the tester should use Forms-
Select, which has the highest recall of the comparators with
perfect precision. Depending on the types of faults the tester
is looking for, he can choose to include or ignore tags and
attributes that affect style and layout.

6 Related Work

Oracles are a difficult and important research prob-
lem [3, 14]. Researchers have worked on pseudo ora-
cles [26], automating oracles [17, 18, 20], and creating
specialized oracles for specific domains using model-based
techniques [1, 6, 8, 9, 17, 18, 25]. Our comparators are auto-
mated, consistent pseudo oracles (focused on a subset of the
Web applications’ output—HTML responses) that do not
require a specialized model. Other groups have mentioned

using HTML-based oracles [9, 11] but provided few details
on the comparator or experimental investigation into the ac-
curacy of their oracles in the context of nondeterministic
behavior. Since many Web applications have a database
backend, we could use a state validator, such as the one in
AGENDA [8], to validate the application’s database state.
However, Web applications may use other state, such as files
or internal server state. Using the HTTPUnit [16] frame-
work, testers manually create oracles for each generated
Web response. We assume developers use HTTPUnit for
unit testing, but they need more general oracles for system,
integration, and regression testing. One of testing’s greatest
challenges is interpreting the voluminous test results [14];
to our knowledge, we developed the only tool that aids Web
application testers in analyzing and evaluating test results
of multiple automated comparators.

7 Conclusions and Future Work

We developed a suite of 22 HTML-based automated or-
acle comparators for testing Web applications and evalu-
ated the comparators and combinations of comparators in
their fault-detection effectiveness. We found that the best
comparator depends on the application’s behavior and the
fault. In general, unioning Content-CollapsedWS-Dates
and TagNames+ImptAttrs was the most effective com-
parator. We also made recommendations for selecting the
comparator with the best failure-detection precision and re-
call for a given application under various circumstances.

There are several directions for future work. Since there
are many permutations of what HTML features are impor-
tant (more than our 22 implemented comparators), we want
to develop a fully customized comparator so that a tester
can choose which features to ignore or include based on
her knowledge of the application. We also want to continue
investigating comparator combinations by combining more
than two comparators or using different operations to com-
bine the comparators to find the most effective comparator.

References

[1] A. Andrews, J. Offutt, and R. Alexander. Testing web ap-
plications by modeling with FSMs. Software Systems and
Modeling, 4(2), Apr. 2005.

[2] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In Int’l Conf. on
Software Engineering, 2005.

[3] L. Baresi and M. Young. Test oracles. Technical Report
CIS-TR01-02, University of Oregon, 2001.

[4] R. Binder. Testing Object-Oriented Systems. Addison Wes-
ley, 2000.

[5] M. Blumenstyk. Web application development-
bridging the gap between QA and development.
http://www.stickyminds.com, 2002.

[6] J. Callahan, F. Schneider, and S. Easterbrook. Automated
software testing using model-checking. In 1996 SPIN Work-
shop, Aug. 1996.

[7] S. Chawathe and H. Garcia-Molina. Meaningful change de-
tection in structured data. In Int’l Conf. on Management of
Data, May 1997.

[8] D. Chays, Y. Deng, P. Frankl, S. Dan, F. Vokolos, and
E. Weyuker. An AGENDA for testing relational database
applications. Software Testing, Verification and Reliability,
14:17–44, Mar. 2004.

[9] G. DiLucca, A. Fasolino, F. Faralli, and U. D. Carlini. Test-
ing web applications. In Int’l Conf. on Software Mainte-
nance, Oct. 2002.

[10] DSpace Federation. http://www.dspace.org, 2007.
[11] S. Elbaum, G. Rothermel, S. Karre, and M. Fischer II.

Leveraging user session data to support web application
testing. IEEE Transactions on Software Engineering,
31(3):187–202, May 2005.

[12] Open source web applications with source code.
http://www.gotocode.com, 2003.

[13] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Transactions on
Software Engineering Methodology, 2(3), 1993.

[14] D. Hoffman. A taxonomy for test oracles. Quality Week
’98, http://www.softwarequalitymethods.com, 1998.

[15] HTML 4.01 Specification. http://www.w3.org/TR/html4/,
Dec. 1999.

[16] HttpUnit. http://httpunit.sourceforge.net, 2007.
[17] A. Memon, I. Banerjee, and A. Nagarajan. What test oracle

should I use for effective GUI testing? In Int’l Conf. on
Automated Software Engineering, Oct. 2003.

[18] A. M. Memon, M. E. Pollack, and M. L. Soffa. Automated
test oracles for GUIs. In Int’l Symp. on Foundations of Soft-
ware Engineering, Nov. 2000.

[19] S. Pertet and P. Narsimhan. Causes of failures in web ap-
plications. Technical Report CMU-PDL-05-109, Carnegie
Mellon University, Dec. 2005.

[20] D. Richardson. TAOS: testing with analysis and oracle sup-
port. In Int’l Symp. on Software Testing and Analysis, 1994.

[21] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock. A scal-
able approach to user-session based testing of web applica-
tions through concept analysis. In Int’l Conf. on Automated
Software Engineering, Sep. 2004.

[22] S. Sprenkle, H. Esquivel, B. Hazelwood, and L. Pollock.
WebVizOr: A visualization tool for analyzing test results of
web applications. Technical Report 206-335, University of
Delaware, 2007.

[23] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Au-
tomated replay and fault detection for web applications. In
Int’l Conf. on Automated Software Engineering, Nov. 2005.

[24] S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. A case
study of automatically creating test suites from web applica-
tion field data. In Workshop on Testing, Analysis, and Verifi-
cation of Web Services and Applications, July 2006.

[25] S. D. Stoller. Model-checking multi-threaded distributed
Java programs. Int’l Journal on Software Tools for Tech-
nology Transfer, 4(1), Oct. 2002.

[26] E. Weyuker. On testing non-testable programs. The Com-
puter Journal, 25(4), 1982.

