
A Comparison of Online and Dynamic Impact Analysis Algorithms

Ben Breech, Mike Tegtmeyer and Lori Pollock
Department of Computer and Information Sciences

University of Delaware, Newark, DE 19716
{breech, tegtmeye, pollock}@cis.udel.edu

Abstract

Impact analysis is the process of determining the effect,
or impact, of a change to a software system. Dynamic im-
pact analysis uses data obtained from executing a program
to perform analysis after program termination for determin-
ing impacts more in line with how a program is used. Online
impact analysis has the same goal, but is performed con-
currently with program execution. While some of the trade-
offs between dynamic algorithms have been studied, no such
study has been performed for online algorithms. In this pa-
per, we present such a study by comparing two online algo-
rithms and two previously published dynamic algorithms in
terms of their space overhead, time for computation, com-
puted impact sets, and scalability. Our results indicate that
performing impact analysis online can be more scalable
than the dynamic counterparts.

1. Introduction

Software change impact analysis has the goal of deter-
mining the potential effects (or impacts) on a software sys-
tem resulting from a program change [4]. This knowledge is
important for software maintenance as the analysis, which
can be applied either before or after changes are made to the
software system, can provide a valuable guide to the soft-
ware engineer. Applying impact analysis before a change is
made allows a software engineer to determine what com-
ponents may be affected by the change and gauge the cost
of the change. After a change is made, impact analysis can
be used to guide regression test efforts by reducing the test
cases to be run to those cases that traverse the change.

Many impact analyses (such as [5, 18, 23]) rely upon
static techniques such as slicing and call graph traversals,
which take into account all possible program inputs and be-
haviors. These conservative analyses can cause the results
(“impact sets”) to be overly large with respect to how the
program is actually being used.

Recent work has focused on dynamic impact analy-
sis, which addresses these concerns by analyzing informa-
tion obtained from the program during particular execu-
tions [6, 13, 14, 16, 17]. The resulting impact analysis is
not conservative due to the reliance upon program execu-
tion, which can lead to different results for different inputs,
for the same proposed change. However, the dynamic im-
pact analysis provides results that more accurately reflect
how a program is actually being used which can decrease
the amount of time a software engineer has to spend retest-
ing different components.

Law and Rothermel developed PathImpact [14],
which utilizes whole path profiling [12] to obtain a com-
pressed representation of the function execution trace
of a program. The program’s trace representation is
then analyzed, after the program has finished execut-
ing, to obtain the impact sets. Relative to static tech-
niques, PathImpact can provide more precise impact
sets for a given set of execution profiles at the cost of hav-
ing to wait for the compression to take place and storage of
the compressed trace. These drawbacks may make the tech-
nique infeasible for collecting information from the field
because, as noted in [16], “(1) the size of execution traces
generated during execution can easily approach thou-
sands of megabytes, and (2) algorithms that compress the
traces to a reasonable size can be computationally expen-
sive and cannot be straightforwardly used on-line, while
the execution traces are produced.”

CoverageImpact is a dynamic impact analysis al-
gorithm, which was put forth by Orso et al. [16]. Their
approach is to gather function coverage information from
a particular execution of the program, perform static slic-
ing, and merge the results together to obtain the impact
sets. The instrumentation is very lightweight and can be
gathered quickly without adding large overhead to the ex-
ecution of the program. However, the impact sets pro-
duced may lack precision. Recently, Orso et al. [17] per-
formed an experimental study that examined the trade-
offs between PathImpact and CoverageImpact in
terms of precision and overhead required to use them. They



found that PathImpact, while usually more precise than
CoverageImpact, may be too impractical due to large
temporal overhead.

In this paper, we present online dynamic impact analysis
algorithms and compare them with their dynamic counter-
parts. By online, we mean that the impact analysis operates
concurrently with the execution of the program being ana-
lyzed. No post program execution phase is required. Two of
the online algorithms we present utilize dynamic compil-
ers to analyze the program as it is executing. The cost paid
for this analysis is that the program executes for a longer pe-
riod of time than it otherwise would.

In this paper, we empirically compare four different al-
gorithms; two of them dynamic and two online, in terms of
temporal and spatial overhead, and their scalability. All of
the algorithms work at the relatively coarse level of func-
tions. This may cause conservative overestimation of im-
pacts due to lack of detailed information, but the algorithms
provide useful results, and show more promise for scalabil-
ity to larger programs. We are interested in how the algo-
rithms scale with increasing program size, how they gener-
ally perform for a variety of applications, and what types of
program characteristics may make one algorithm more use-
ful than others. An algorithmic analysis can be used to gain
some insight into the tradeoffs involved in using these algo-
rithms, but experimental studies must be performed to pro-
vide a better sense of the tradeoffs in practice.

This paper is organized as follows; sections 2 and 3 pro-
vide an overview of the dynamic and online impact analysis
algorithms, respectively, targeted by this study. Section 4
presents an analytical comparison of the algorithms. Sec-
tion 5 describes the experimental study and results, while
sections 6 and 7 provide related work and conclusions, re-
spectively.

2. Dynamic Impact Analysis

In this section, we discuss two dynamic impact analysis
algorithms, PathImpact [14] and CoverageImpact
[16]. By dynamic, we mean that the algorithms obtain data
from an execution of the program and then perform analy-
sis after the program has finished (“off-line”).

2.1. Path-based Impact Analyses

PathImpact (PI) is a dynamic impact analysis algo-
rithm, proposed by Law and Rothermel [13, 14], that uses
the execution trace of a program’s functions to calculate the
impact sets. These traces are obtained by instrumenting the
source (or binary) prior to execution. As execution traces
can become quite large and inconvenient (or impossible) to
store, PI makes use of the SEQUITUR [15] compression
algorithm, which is an online (i.e., can be run as the pro-

gram is executing), linear compression algorithm that builds
a context free grammar for a given input string. Larus [12]
demonstrated how to use SEQUITUR to build a DAG rep-
resentation of execution traces of a program.

Once SEQUITUR is finished, PI scans the DAG rep-
resentation to calculate the impact of a proposed function
change. Included in the impact set for a procedure p is “any
procedure that is called after p, and any procedure which is
on the call stack after p returns” [14]. PI starts at the first
invocation of p and then moves forward through the trace,
identifying functions called after p, until the end-of-trace
symbol is found. PI then moves backward to identify func-
tions that p could impact through its return.

A

B

Main

H

D

E

G

F

C

Trace: Main G r A C F C r r D r E r D r r r x

Figure 1. Example call graph

Consider the example call graph and execution trace
given in figure 1. To calculate the impact set for G, PI first
adds G and then scans forward for the end-of-trace sym-
bol, x. Functions A, C, F, D and E would be added. PI
then scans backward to find functions that G could possi-
bly return into. This scan adds Main into the set giving a fi-
nal impact set for G as {Main, G, A, C, F, D, E}.
Note if no data dependencies exist between G and the later
functions, A, C, F, D and E, then extra impacts are re-
ported where none exist. PI, however, will not miss impacts
and, thus, is safe relative to the execution profiles used. Ap-
plying PI to E, we obtain {Main, E, D, A, C}. F and
G are not added here because E cannot return into them.

2.2. Coverage-based Impact Analysis

CoverageImpact (CI) is a dynamic impact analy-
sis algorithm developed Orso et al. [16]. Rather than an-
alyzing an entire trace, CI analyzes function coverage in-
formation (i.e., what functions were called during execu-
tion) combined with slicing information to calculate the im-
pact sets. The coverage information can be obtained through
lightweight instrumentation of either source or binary.

To calculate the impact on a function m, a static for-
ward slice is first computed for all the variable definitions



contained in m. The set of all functions found in the slice
is then intersected with the set of all functions called dur-
ing a particular execution involving m. The impact of m for
that execution is the resulting set. CI is thus a hybrid ap-
proach that utilizes dynamic information to make a static
technique more sensitive to a particular execution profile.

For the example given in figure 1, the function coverage
information would be {Main, G, A, C, F, D, E}.
To calculate the impact for function G, we first compute the
functions in a static forward slice starting from all the vari-
ables in G. Let us assume that all the functions in the exam-
ple are included in this slice. The intersection of the slice
functions and covered functions gives us an impact for G
of {Main, G, A, C, F, D, E}, which, for this ex-
ample, is the same as the set calculated using PI. Note,
however, that if there are no data dependencies between
G and the later functions, A, C, F, D and E, then they
would not be included in the impact set of G. We can do
the same calculation for E and, assuming the slice func-
tions are Main, A, B, C, D, E and F, we would ob-
tain {Main, A, C, F, D, E} as the impact set for E.
Note that, in this example, CI added an item to the impact
set that PI would not include, because CI only examines
coverage information and not relative ordering of function
executions.

A modification to CI, as described in [17], approximates
slicing on program code by computing reachability on the
interprocedural control flow graph representation of the pro-
gram. This modification, which will be used throughout the
rest of the paper, is easier to implement and promises more
scalability than slicing, but results in reduced precision.

3. Online Impact Analyses

Online impact analysis performs all analysis as the pro-
gram is executing. This is an important difference from the
dynamic counterparts, which collect data as the program ex-
ecutes, but process that data after the program is finished.
This difference suggests that the online algorithms may be
more scalable. As is the case with dynamic impact analysis,
the online algorithms may not be as conservative as static
techniques because of their reliance on a particular program
input. We present two classes of online algorithms; the first
makes use of program instrumentation and the second uses
a dynamic compiler to perform the analysis.

3.1. Using Instrumentation

Figure 2 presents the algorithm forPathImpact Allin1
(PI Allin1), which has motivation identical to that of
PI in that the impact of function f is any function that f

can return into as well as any function that is called af-
ter f . In contrast to PI, PI Allin1 calculates the im-

pact set of every function executed using only one pass
through a trace. Furthermore, PI Allin1 does not need
to scan through a trace, making it ideal for online analy-
sis.

Algorithm: PathImpact Allin1
Input: Function calls and returns of program P
Output: Impact sets of all functions in P

Let M be a matrix of impacts, initially empty
/*Mij = 1 if function j ∈ impact set of function i.*/

Let BackFuncCnt be an array of integers, initially empty
/*BackFuncCnt[i] = # times function i is currently
on the call stack */

Begin executing program P
While not program exit, DO

When function f is called, DO
IF first execution of f , THEN

Add one row and one column to M , labeled f
Set all entries of Mf to 1
FOR ALL functions i in BackFuncCnt, DO

If BackFuncCnt[i] == 0, then Mfi = 0
Add one element to BackFuncCnt array
BackFuncCnt[f ] = 0

FOR ALL rows i in M , DO
Mif = 1

BackFuncCnt[f ]++
Push f onto the call stack

When function return occurs, DO
Let f be function on top of call stack
Pop call stack
BackFuncCnt[f ]−−

End executing program

Figure 2. PathImpact Allin1 algorithm

For the example in Figure 1, PI Allin1 starts by ini-
tializing a matrix and an array to be empty. The matrix,
an array of bit vectors, grows as each function is seen for
the first time. The interpretation is that Mij = 1 if func-
tion j is in the impact set of function i. BackFuncCnt
is an array of integers that grows as each function is seen
for the first time. BackFuncCnt[i] gives the number of
times function i appears on the call stack at the moment.
If BackFuncCnt[i] = 0, then i has returned. This enables
PI Allin1 to discover which functions are not currently
executing, and, therefore, which functions cannot be im-
pacted by the return of the currently executing function.

When function main starts executing, the matrix is re-
sized to a 1 x 1 matrix, initialized to 1 (i.e., a change to
main would impact itself), and BackFuncCnt[main] is
set to 1. G then starts executing so the matrix is resized again
with the new elements set to 1, and BackFuncCnt[G] = 1.
When finished executing, G is popped off the call stack, and
its entry in BackFuncCnt is decremented. The situation
after G returns is shown in figure 3(a). Now A starts execut-



ing; the matrix is resized with new elements initialized to
1. Since G is no longer executing, BackFuncCnt[G] = 0,
and we set MAG = 0 (i.e., the return from A cannot im-
pact G). The final matrix for the example is shown in Fig-
ure 3(b). When the program terminates, the impacts for a
given function can be found simply by traversing the ap-
propriate row in the matrix. In this case, we find the impact
for G to be {Main, G, A, C, F, D, E}, the same as
PI. For E, we find {Main, A, C, D, E}.

m impact(m)
Main G

Main 1 1
G 1 1
BackFuncCnt:[Main]=1
BackFuncCnt:[G]=0

(a) After G returns

m impact(m)
Main G A C F D E

Main 1 1 1 1 1 1 1
G 1 1 1 1 1 1 1
A 1 0 1 1 1 1 1
C 1 0 1 1 1 1 1
F 1 0 1 1 1 1 1
D 1 0 1 1 0 1 1
E 1 0 1 1 0 1 1

(b) At program exit

Figure 3. PI Allin1 example

To implement PI Allin1, a program is instrumented
to generate a call trace, as is done for PI. However, rather
than sending the trace to SEQUITUR for compression, the
trace is sent, through a Unix named pipe, to an analysis pro-
gram that implements the PI Allin1 algorithm. The ben-
efit of this approach is that the impacts of all functions can
be calculated without ever compressing or storing the trace.
The drawback is that significant overhead can be incurred
through the use of the pipe. However, the overhead is not
likely to be as much as using SEQUITUR to compress the
trace.

3.2. Using a Dynamic Compiler

A downside to using instrumentation is that significant
overhead can be incurred either through using a compres-
sion algorithm, such as SEQUITUR, or through using a
Unix pipe. These overheads are not directly caused by the
algorithm, but rather by ancillary features.

A different approach is to use a dynamic compiler [3, 7,
9]. These systems were originally developed to perform dy-
namic optimization of programs using information obtained
during execution. A side effect is that these systems can also

be used to modify or analyze a program’s instructions dur-
ing execution for other purposes. This allows impact anal-
ysis to be performed during program execution without in-
curring the overheads mentioned above, and without requir-
ing the program to be instrumented beforehand. Naturally,
overhead is incurred, but the overhead comes solely from
the impact analysis and not any external factors such as
compression algorithm or operating system features.
PI Allin1 can be easily adapted to a dynamic com-

piler, as it does not require the entire trace before executing.
The algorithm can be applied by examining calls and re-
turns during program execution. More details about adapt-
ing impact analysis algorithms to a dynamic compiler can
be found in [6].
OnOpt [6] is another online impact analysis, that is more

optimistic than PI Allin1. By optimistic, we mean that
OnOpt assumes impacts travel only along dynamic call
paths. The impact for a function f is taken to be all func-
tions that are on the call stack when f begins executing
along with any function that is called either directly or in-
directly by f . This is different from PI and PI Allin1
which assume that any function called after f executes
could possibly be impacted even if they were not directly,
or transitively, called by f . This optimistic approach can
cause OnOpt to potentially miss some impacts, but may be
more useful for programs where global variables are not fre-
quently used (such as object-oriented programs).

Algorithm: OnlineOptimistc
Input: Function calls and returns of program P
Output: Impact sets of all functions in P

Begin executing program P
While not program exit, DO

When function f is called, DO
If first execution of f , impact(f ) = {} //init
FORALL functions s on the call stack,

impact(s) = impact(s) + {f} // forward
impact(f ) = impact(f ) + {s} // backward

Push f onto the call stack

When function return occurs, DO
Let f be function on top of call stack
Pop call stack

End executing program

Figure 4. OnOpt impact analysis algorithm

The complete algorithm for OnOpt is given in figure 4.
For the example call graph and trace in figure 1, OnOpt
would report the impact set for G as {M, G} because those
are the only functions on the call stack during the execution
of G. Note that potential impacts may be missed here be-
cause data dependencies are not examined. For E, OnOpt
gives the set {M, A, C, E}.



3.3. Impact Analysis as Software Evolves

An important topic for software engineering is the evo-
lution of a software system and the test suite that accompa-
nies the system. Each of the algorithms discussed here as-
sociates extra information with each test case, which is then
merged together to find the impacts of the entire test suite.
PI concatenates the call traces of the different test cases to-
gether, with each trace being identified by a unique key. The
DAG formed from all the call traces can then be traversed to
find the impact sets [13]. CI stores function coverage infor-
mation related to each test case. When computing the im-
pact of function m, the coverage information from all test
cases that traversed m are unioned together. CI uses the re-
sulting coverage information to calculate the impact sets.
The online algorithms associate an impact file, which con-
tains the impact sets of all functions in the program, with
each test case. These sets are unioned together to find the fi-
nal impact sets.

The extra information associated with each test case is
updated as the program or test suite changes. If we remove
or change a component of the system, we would re-execute
all test cases that traverse that component. Adding a new
component requires re-executing all test cases that traverse
functions that call the new component. For test suite mod-
ifications, removing a test case requires removing the as-
sociated extra information. Modifying a test case requires
re-executing that test case. Adding a new test case requires
executing it to obtain the extra information needed by each
algorithm.

In summary, all of the approaches can accommodate evo-
lution of the software system and its associated test suite.
We note, however, that the extra information required for
impact analysis may not necessarily be easy to obtain or to
store (see sections 4 and 5).

4. Analytic Comparison

Table 1 gives a summary of each algorithm in terms of
the phases of program execution. We should also note that
for CI, the static slicing could be performed either before
or after the program execution. Comparing the algorithmic
complexity of these algorithms provides some insight into
the tradeoffs involved in using them. Let F be the number
of functions in the application that are to be analyzed for
potential impacts. T is the size of the call trace generated
by those F functions. A is the maximum number of activa-
tion records that could appear on the stack at any one time
(i.e., maximum depth of the call tree), and L is the num-
ber of lines in the program.

For PI, the program must first be instrumented and then
executed. During execution, the call trace is gathered and
SEQUITUR is used to compress the trace and form the

DAG. We will neglect the time needed to collect the trace as
it is much smaller than the time SEQUITUR needs to run.
SEQUITUR itself is linear in the size of the call trace, O(T ),
in both time and space to generate the grammar [15]. The
generated grammar, which can be stored as a DAG, is, at
worst, O(T ) in size, and, at best, O(log T ).

Once the program and SEQUITUR are finished, PI can
then run to calculate the impact of a given function by scan-
ning forward and backward in the DAG. This process can
take O(T ) time to complete. The algorithm, as presented in
[14], only calculates the impact for one function at a time.
It could, therefore, take up to O(F ∗ T ) time to find the im-
pacts for all functions.
CI requires very little overhead to gather the coverage

information. All that is required is a bit vector for the F

functions. Once the program is finished, CI can then calcu-
late the impact for a given function by intersecting the set
of covered functions with the set of functions from static
slicing. Approximating static slicing with an interprocedu-
ral control flow graph traversal means the algorithm will
take, for one function, time proportional to the number of
nodes traversed which, at worst, is on the order of the num-
ber of lines in the program, O(L). The worst case total time
to compute the sets for all functions would, therefore, be
O(F ∗L). The time required for generating the control flow
graph will also be O(L) [2], which may not be insignifi-
cant. The graphs themselves will take O(L) space.
OnOpt first requires generation of the address map,

which is negligible as it only scans the symbol table stored
in the binary. This mapping, with size of O(F ), is re-
quired because OnOpt works on the instruction stream
level, which contains only addresses. The mapping makes
the final results human readable. Binaries may contain ref-
erences to more functions than are actually defined in a pro-
gram, in particular, library functions. These can be added or
removed from the address map as desired. Only functions
found in the address map are included in the analysis.
OnOpt performs impact analysis for all functions dur-

ing execution of the program. At every call, OnOpt looks
up the address in the address map and performs the algo-
rithm given in figure 4, which could take O(A) time. The
map is implemented as a hash table, so the lookup could,
potentially, be O(F ). Total worst case time would therefore
be O(T ∗ (A + F )). In practice, the hashing is efficient and
can be done in constant time. Furthermore, programs that
are not heavily recursive tend to put very few calls on the
stack so A can be treated as a small constant. OnOpt there-
fore requires O(T ) time to gather the impact information
for all F functions. We stress that this is not necessarily the
case for heavily recursive functions. See the discussion con-
cerning 130.li in section 5.5.

In terms of space overhead, OnOpt requires memory for
the impact sets themselves, the address map and the call



Phases of Program Execution
Algorithm Before Execution During Execution After Execution

PI (PathImpact) Instrument for call trace Run SEQUITUR to produce the DAG Analyze DAG for impact of 1 func
CI (CoverageImpact) Instrument for function coverage Obtain coverage information Static slicing and intersection
PI Allin1 (w/ inst.) Instrument for call trace Perform online impact analysis
PI Allin1 (under DynamoRIO) Obtain address map Perform online impact analysis
OnOpt (OnlineOpt) Obtain address map Perform online impact analysis

Table 1. Algorithm comparison by phases

stack. The map takes O(F ) space while the stack requires
O(A) space. Both can be neglected compared to the space
needed for the impact sets, which, at worst is O(F 2) assum-
ing the pathological case of all functions being in the impact
set of all other functions.
PI Allin1 requires space for the matrix,

BackFuncCnt, and call stack. The matrix requires
O(F 2) bits, and the BackFuncCnt O(F ) integers. The
call stack requires O(A) space. The online version re-
quires an additional O(F ) space for the address map. At
every function call, PI Allin1 performs at most F bit op-
erations. Thus, the time requirements are O(T ∗ F ).

In summary, we can expect CI to add the least amount of
temporal overhead to the execution of a program. We also
expect CI to, on average, add more functions to each im-
pact set than either PI or PI Allin1 because CI does not
keep track of the call order among the functions.

Due to its optimistic nature, OnOpt is expected to de-
liver the smallest sized impact sets of all the algorithms.
As discussed earlier, this may mean some impacts are
missed. We also note that heavily recursive programs may
cause OnOpt to perform badly, whereas the other functions
should not be affected.

In terms of time, PI, PI Allin1 and OnOpt all scale
approximately linearly with the number of function calls
made. Thus, empirical experiments are needed to observe
the behavior in practice.

5. Experimental Study

5.1. Experiment Definition and Context

The objective of our empirical study was to gain insight
into the tradeoffs involved in using the various impact anal-
ysis algorithms in practice. This requires evaluating the spa-
tial and temporal overheads, scalability, and the sets gener-
ated by each algorithm experimentally, in addition to the an-
alytical comparison in section 4.

We chose several programs from the SPEC [20] appli-
cation suite as subjects of analysis. These applications are
small to medium sized real world applications, whose in-
clusion in this work is relevant because they generate large
traces which allows us to examine scalability concerns. We
have also included the space program from the Euro-

pean Space Agency. The applications, their descriptions, the
number of uncommented, non-blank lines of code and the
number of functions in the program are listed in table 2.
All the applications considered are C programs. However,
all the impact analysis algorithms discussed here can be ap-
plied to programs in any language so long as appropriate in-
frastructure is available.

The applications were run for a set of test cases that had
already been provided. Space was run on 1,000 randomly
generated test cases.

Program Description Source LOC funcs

008.espresso Boolean function minimizer 9,844 363
026.compress Compression program 1,043 19
099.go Plays the game of go 25,080 374
126.gcc GNU C compiler (2.5.3) 131,811 2,015
130.li Lisp interpreter 4,888 366
132.ijpeg JPEG compressor 15,925 476
147.vortex Object Oriented database 40,242 925
space ESA ADL Interpreter 6,230 136

Table 2. Subjects of Analysis

5.1.1. Research Questions The research questions
we sought to answer through our empirical study fol-
low:

1. How does each algorithm, in practice, scale in terms of
program execution time and space requirements?

2. How do the sets computed by each algorithm compare?

5.2. Variable Selection

The independent variable in our experiment is the im-
pact analysis algorithm applied. In all, we implemented
six different impact analyses; PI and CI are our imple-
mentations of PathImpact and CoverageImpact,
respectively, OnOpt is the OnlineOptimistic al-
gorithm, and three versions of PI Allin1 which dif-
fer in their inputs were studied. The three versions of
PI Allin1 are PI Allin1, which expects an uncom-
pressed trace, PI Allin1 pipe which obtains input
through a Unix named pipe, and OnPI Allin1, the on-
line version with a dynamic compiler. Each of the algo-



rithms were run on each subject using the available test in-
puts. The dependent variables were the time overhead,
measured as the difference in running times of the pro-
gram with and without the analyses being performed,
space overhead, measured in terms of disk storage re-
quired, and the computed impact sets.

5.3. Setup

We implemented each of the impact analysis algo-
rithms and executed them on each subject application with
the available test inputs. Where applicable, we used Dy-
namoRIO [7] as the dynamic compiler, which allows users
to write a client module to inspect running code. As the pro-
gram is run, DynamoRIO creates blocks of instructions that
are given to the module, which can then inspect or mod-
ify the instructions. Once the module is finished, the in-
structions are given to the CPU for execution.

A DynamoRIO module was written for CI to calcu-
late function coverage. The control flow graphs were gen-
erated using the CodeSurfer application from GrammaT-
ech Inc. (http://www.grammatech.com). We imple-
mented CI to use this control flow graph and function cov-
erage information.

For PI, we obtained a call trace by instrumenting the
source code using SUIF [21]. The trace was compressed us-
ing SEQUITUR to gather timing and overhead information
necessary for PI to run. Our implementation of PI follows
the algorithm given in [14], except that it uses an uncom-
pressed call trace. This has the effect of speeding up the al-
gorithm since it does not incur overhead to parse the DAG.
PI Allin1 itself operates on an uncompressed trace.

PI Allin1 pipe uses a Unix named pipe to get the
trace from the executing program. This version requires
no storage or compression of the trace. The last version,
OnPI Allin1, is a DynamoRIO module. Finally, we im-
plemented a DynamoRIO module for the optimistic algo-
rithm, OnOpt.

It should be noted that the source code is not strictly
required for any of the algorithms. Binary instrumentation
tools, such as Vulcan [19] and Dyninst [8], easily allow bi-
naries to be instrumented to gather the information required
by CI and PI. The online algorithms require a dynamic
compiler or a JIT, both of which are easy to obtain.

The subject programs and impact analyses were run on
an Intel Pentium 4 2.0 GHz machine with 512 MB of mem-
ory running Linux. Timing information was obtained using
the time utility. Timing overheads were calculated by run-
ning the program twice, once with the instrumentation or
online module activated and once without.

Each program was run with multiple test inputs. We only
report the largest test case, in terms of how many applica-
tion function calls were made.

No algorithm was allowed to run for more than two
hours. This affects SEQUITUR more than anything else as
the generated execution traces could grow to gigabytes in
length. The justification for this limit is that the programs
under study are small to medium sized applications that run
for a few minutes. Waiting hours for impact analysis results
seems unreasonable.

5.4. Threats to Validity

Threats to internal validity concern our ability to draw
conclusions about the different techniques and what we ob-
serve during their use. The primary issue here is the imple-
mentations used. Algorithms that we did not devise were
implemented using their published descriptions. We made
some modifications to speed up execution in an effort to be
as fair as possible. For example, we used the uncompressed
call trace for PI so that the implementation did not have to
spend time parsing the DAG. For CI, we approximated slic-
ing by performing reachability on the interprocedural con-
trol flow graph. Nonetheless, there may be other modifica-
tions that we did not consider, and were not published, that
could possibly affect timing and scalability.

Threats to construct validity relate to the appropriateness
of the measures. To gain an insight into the scalability of
the different techniques, we measure time and disk space
usage, but memory utilization, which is more difficult to re-
liably measure due to sensitivity of a particular implemen-
tation, may also be an important factor to consider in choos-
ing an appropriate impact analysis algorithm.

Threats to external validity involve generalization of our
results. We have chosen C applications that vary in size
from 1,000 lines of code to 131,000 lines. The results of
our study may not necessarily generalize to other programs.
However, the applications in our study are not toy programs
and they span a variety of real world applications.

5.5. Data and Analysis

Table 3 gives the total time needed to run each algo-
rithm on the applications for the input set that produces the
largest trace. For the online algorithms, this is the overhead
incurred during the execution of the program. For the dy-
namic algorithms, CI and PI, this is the execution over-
head combined with the post execution analysis. The break-
down between these two phases is also shown.

In two cases, 130.li and 147.vortex, the applications gen-
erated a trace larger than 15 GB, which was beyond the
available disk space on the machine, which meant the algo-
rithms requiring the trace, PI and PI Allin1, could not
be run. In the case of 126.gcc, instrumentation could not be
added due to problems encountered using SUIF. Interpro-
cedural control flow graphs also could not be generated for



CI PI PI Allin1 PI Allin1 pipe OnPI Allin1 OnOpt
Exec. Post Total Exec. Post Total
Over. Exec. Over. Exec.

008.espresso 1s 16s 17s 2m 46s 1h 14m 1h 16m 20s 24s 4s 2s
026.compress < 1s < 1s < 1s 7s 15s 22s 2s 1s 2s 1s
099.go 2m 1.2s 2m 1s > 2h > 2h > 2h 24m 27m 4m 12s 10m
126.gcc NA NA NA NA NA NA NA NA 24s 40s
130.li 3m 10s 3m 10s > 2h NA NA NA > 2h 14m > 2h
132.ijpeg 6s 3s 9s 31m > 2h > 2h 3m 42s 4m 30s 27s 1m 8s
147.vortex 3m 5m 8m > 2h NA NA NA > 2h 14m 55m
space < 1s 1s 1s < 1s < 1s < 1s <1s < 1s 1s < 1s

Table 3. Timing comparisons

this application. Note that, despite these problems in obtain-
ing traces, and graphs, OnPI Allin1 always succeeded in
obtaining results.

Table 4 shows the disk space requirements for our im-
plementations of the dynamic algorithms. CI requires space
for storing the interprocedural control flow graphs (CFGs)
while PI requires space for storing the DAG. For refer-
ence, the size of the uncompressed trace is also listed, but
we stress that this is not needed for PI as the compres-
sion can be done online. The uncompressed traces can grow
quite large with two of the programs exceeding the 15 GB
filesystem size. In cases where SEQUITUR was able to fin-
ish within 2 hours, it did an excellent job of compressing
the traces down to more manageable sizes.

Table 4 also provides a sense of scalability in the bench-
marks. In all the algorithms, except CI, the time required
was related to the number of function calls made during pro-
gram execution, not the number of lines of code. This be-
comes evident in the case of space, which had 6,000 lines of
code, but generates a call trace of only 2KB. 130.li, which
has few lines of code, generates a much larger call trace.
It is the size of generated traces that determines scalabil-
ity, and not necessarily the number of lines of code.

As expected, and can be seen in table 3, CI adds very
little execution overhead. The overhead for PI, which is
almost entirely due to SEQUITUR, is quite high and un-
able to complete within 2 hours for several of the applica-
tions. These findings are generally consistent with the tim-
ing overhead reported in [17], which examined smaller ap-
plications.

Regardless of the execution overhead, PI does not scale
well to larger applications, as can be seen in table 3. The
post execution time listed in that table is solely due to run-
ning the analysis programs. In the case of 099.go, which
generated a call trace of 3.5 GB, PI could not complete
within 2 hours. PI could not be run on 130.li and 147.vor-
tex because the generated traces were larger than the avail-
able disk space (15GB). On the basis of the experience with
099.go, we feel it is likely that PI would not have com-
pleted within 2 hours on these 2 applications either.
CI appears to scale very well to larger programs. CI’s

time, unlike the other algorithms, is based on the number of
functions and not how many function calls are made during
program execution, which is very noticeable in table 3.

The execution time for the online algorithms are also
given in table 3. In general, PI Allin1 performed bet-
ter than PI Allin1 pipe. Since both perform the same
algorithm, the differences in times are due to the overhead
from using a Unix named pipe. Note that an advantage of
using the pipes is that PI Allin1 pipe could still be
used, even though a trace could not be obtained due to disk
space limitations, as was the case for 130.li and 147.vortex.
In these cases, however, the overhead from the pipe caused
PI Allin1 pipe to run longer than 2 hours.
OnPI Allin1, the version of PI Allin1 that runs

under DynamoRIO, performed well for all the applications,
especially the larger programs. This provides an important
motivation for using dynamic compilers; results can be ob-
tained in a much more scalable fashion than other online
techniques such as using named pipes. Overhead is solely
incurred by the algorithm and not external factors such as
reading disk files, or pipes.

Finally, OnOpt, the optimistic algorithm running under
DynamoRIO, also seems to perform well in most cases,
though not nearly as well as OnPI Allin1. OnOpt per-
formed poorly for 130.li, a lisp interpreter, which is ex-
pected as 130.li is heavily recursive causing OnOpt to
spend too much time scanning the call stack.

Trace Sz. DAG Sz. CFG Sz.

008.espresso 58MB 331KB 2.3 MB
026.compress 2.8MB 475B 124 KB
099.go 3.5GB NA 2.8 MB
130.li >15GB NA 1.6 MB
132.ijpeg 672MB 1.2 MB 2.5 MB
147.vortex >15GB NA 7.6 MB
space 2.2KB 396B 844 KB

Table 4. Disk space requirements

We performed a close examination of the impact sets for
008.espresso, which was the largest program that all anal-



ysis algorithms were able to process. Out of the 363 func-
tions found in the program, the test case covered 186 of the
functions.

For all of the functions, PI, and all the PI Allin1 al-
gorithms computed the same impact sets. We expect this to
be true in the general case, although PI and PI Allin1
may differ in the event of abnormal program termination
or exceptions. For 172 functions, CI reported, on average,
30 more functions in their impact sets than PI computed.
This is an example of the imprecision that is possible with
CI. For 10 functions, CI did compute sets that were smaller
than the corresponding sets computed by PI, but upon fur-
ther investigation, we found that the difference was due to
one function that was called solely through function point-
ers. The implementation of CI could not resolve the call,
and thus missed the impact. PI and PI Allin1 were able
to disambiguate the call from the runtime information.

As expected, OnOpt reported much fewer elements in
each set due to its optimistic approach. OnOpt computed
smaller sets for all functions, except for main. On average
the sets were smaller by 128 functions. However, the opti-
mistic approach may be missing impacts.

In answer to our research questions, we find that
OnPI Allin1 scales the best as programs increase the
number of function calls made, while maintaining preci-
sion. PI, as currently described, takes too long to perform
the analysis. It is also clear that CI adds more func-
tions to the impact sets, and thus, tends to be less pre-
cise than the PI algorithms. OnOpt, which is expensive
when the program being studied is heavily recursive, pro-
duces the smallest impact sets, but may also be missing
impacts.

Finally, table 5 gives a brief summary of the qualitative
aspects of each algorithm discussed. Most of the values in
the table were discussed earlier in this paper. We note that
the values for ‘potentially missed impacts’ are speculative.
It is not immediately clear how each algorithm would re-
spond in the presence of exceptions.

6. Related Work

Impact analysis can be performed on a software system
using various approaches. The most common automated
techniques, other than the ones we studied, are transitive
closure on call graphs [5], static slicing [22, 24], and dy-
namic slicing [1, 11]. All these techniques have advantages
and disadvantages. Namely, transitive closure on call graphs
might be inexpensive, but it can be highly inaccurate. Static
slicing can perform safe analysis, but may yield impact sets
that are too large to be used in practice. Dynamic slicing can
produce impact sets of reasonable size, related to specific
execution profiles, but it does not guarantee safety. Simi-
lar to static slicing, dynamic slicing is computationally ex-

pensive (thus not scalable) relative to call graph based ap-
proaches due to the data and control dependence level of
analysis.

To our knowledge, this is one of the first uses of a sys-
tem like DynamoRIO to involve online analysis for soft-
ware engineering applications. DynamoRIO has been used
previously for adaptive optimization and dynamic monitor-
ing for security enforcement. Bruening et al. [7] provide an
interface for constructing addons to the DynamoRIO sys-
tem that can be used to manipulate programs by perform-
ing actions such as optimization, instrumentation, profiling,
dynamic translation, etc. Kiriansky et al. [10] have imple-
mented a form of control flow monitoring that they call pro-
gram shepherding, for enforcing security policies.

7. Conclusions and Future Work

We have described a comparative study of several dy-
namic and online impact analysis algorithms. The dynamic
algorithms, PI and CI, collect data during program exe-
cution and then process that data after the program is fin-
ished. In contrast, the online algorithms, PI Allin1, and
OnOpt, perform all analysis as the program is executing.
Our results indicate that performing impact analysis online,
using a dynamic compiler, scales better than current dy-
namic impact analysis algorithms. In particular, we find the
online version of PI Allin1, which has the same motiva-
tion as PI and produces the same sets under normal pro-
gram termination, to perform the best, while still being safe
relative to the program’s execution.

Based on the added scalability of online dynamic im-
pact analysis, we plan to investigate ways to increase the
precision of online analyses by exploiting the analyses al-
ready made available by dynamic compilers for dynamic
optimization. We are also exploring other program analy-
ses for software engineering that may benefit from exploit-
ing dynamic compilation technology.

References

[1] H. Agrawal and J. Horgan. Dynamic program slicing. In
Programming Language Design and Implementation, June
1990.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Princi-
ples, Techniques and Tools. Addison-Wesley, 1986.

[3] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapeño JVM. In Object Ori-
ented Programming, Systems, Languages and Applications,
2000.

[4] R. Arnold and S. A. Bohner. Impact analysis - towards a
framework for comparison. In International Conference on
Software Maintanence, 1993.

[5] S. Bohner and R. Arnold. Software Change Impact Analysis.
IEEE Computer Society Press, 1996.



CI PI PI Allin1 OnPI Allin1 OnOpt
(w/ inst.)

instrumentation needed function coverage function entry/exit function entry/exit none none
infrastructure required instrumentation, instrumentation instrumentation dynamic compiler dynamic compiler

CFG generator string compression
static analysis required ICFG slicing or none none none none

reachability
analysis time low high (SEQUITUR) high (due to using pipe) medium medium to high
spatial overhead low to medium (CFG) high (DAG) low low (address map) low (address map)
potentially missed impacts exceptions, exceptions exceptions exceptions exceptions,

function pointers global variables

Table 5. Algorithm summary

[6] B. Breech, A. Danalis, S. Shindo, and L. Pollock. Online im-
pact analysis via dynamic compilation technology. Interna-
tional Conference on Software Maintanence, 2004.

[7] D. Bruening, T. Garnett, and S. Amarasinghe. An infras-
tructure for adaptive dynamic optimization. In International
Symposium on Code Generation and Optimization, 2003.

[8] B. Buck and J. K. Hollingsworth. An API fro runtime code
patching. Journal of Supercomputing Applications and High
Performance Computing, 2000.

[9] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and
J. A. Fisher. DELI: a new run-time control point. MICRO,
2002.

[10] V. Kiriansky, D. Bruening, , and S. Amarasinghe. Secure ex-
ecution via program shepherding. In USENIX Security Sym-
posium, 2002.

[11] B. Korel and J. Laski. Dynamic program slicing. Informa-
tion Processing Letters, 29, 1988.

[12] J. R. Larus. Whole program paths. In Programming Lan-
guage Design and Implementation, 1999.

[13] J. Law and G. Rothermel. Incremental dynamic impact anal-
ysis for evolving software systems. International Symposium
on Software Reliability Engineering, 2003.

[14] J. Law and G. Rothermel. Whole program path-based dy-
namic impact analysis. In International Conference on Soft-
ware Engineering, 2003.

[15] C. G. Nevill-Manning and I. H. Witten. Linear-time, incre-
mental hierarchy inference for compression. In Data Com-
pression Conference, 1997.

[16] A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging
field data for impact analysis and regression testing. Foun-
dations of Software Engineering, 2003.

[17] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. J.
Harrold. An empirical comparison of dynamic impact anal-
ysis algorithms. International Conference on Software Engi-
neering, 2004.

[18] B. G. Ryder and F. Tip. Change impact analysis for object-
oriented programs. PASTE, 2001.

[19] A. Srivastava, A. Edwards, and H. Vo. Vulcan: Binaray trans-
formation in a distributed environment. Technical report, Mi-
crosoft Research, 2001.

[20] Standard Performance Evaluation Corporation. SPEC
benchmarks. http://www.spec.org.

[21] SUIF Group. The SUIF compiler system.
http://suif.stanford.edu.

[22] F. Tip. A survey of program slicing techniques. Journal of
Programming Languages, 2, 1995.

[23] R. J. Turver and M. Munro. Early impact analysis technique
for software maintenance. Journal of Software Maintenance:
Research and Practice, 6(1), 1994.

[24] M. Weiser. Program slicing. In International Conference on
Software Engineering, 1981.


