
Asking and Answering Questions
during a Programming Change Task

Jonathan Sillito, Member, IEEE,

Gail C. Murphy, Member, IEEE, and Kris De Volder

Abstract—Little is known about the specific kinds of questions programmers ask when evolving a code base and how well existing

tools support those questions. To better support the activity of programming, answers are needed to three broad research questions:

1) What does a programmer need to know about a code base when evolving a software system? 2) How does a programmer go about

finding that information? 3) How well do existing tools support programmers in answering those questions? We undertook two

qualitative studies of programmers performing change tasks to provide answers to these questions. In this paper, we report on an

analysis of the data from these two user studies. This paper makes three key contributions. The first contribution is a catalog of

44 types of questions programmers ask during software evolution tasks. The second contribution is a description of the observed

behavior around answering those questions. The third contribution is a description of how existing deployed and proposed tools do,

and do not, support answering programmers’ questions.

Index Terms—Change tasks, software evolution, empirical study, development environments, programming tools, program

comprehension.

Ç

1 INTRODUCTION

LITTLE is known about the specific kinds of questions
programmers ask when evolving a code base and how

well existing and proposed tools support those questions.
Some previous work has focused on developing models of
program comprehension, which are descriptions of the
cognitive processes a programmer uses to build an under-
standing of a software system (e.g., [50], [34]). Other work
has focused on how programmers perform change tasks,
including how programmers use tools in that context (e.g.,
[13], [54]). These previous efforts do not consider in detail
what a programmer needs to know about a code base when
performing a change task, how the programmer finds that
information, nor how well tools support those activities.

To address this gap, we undertook two qualitative
studies. In each of these studies, we observed programmers
making source changes to medium (20 KLOC) to large-
sized (over 1 million LOC) code bases. To structure our
data collection and the analysis of our data, we used a
grounded theory approach [16], [63]. Based on our analysis of
the data from these user studies, as well as an analysis of
the support that current programming tools provide for
these activities, this research makes three key contributions.
The first contribution is a catalog of 44 types of questions

programmers ask, organized into four categories based on
the kind and scope of information needed to answer a
question. The second contribution is a description of the
behavior we observed around answering those questions.
The third contribution is a description of how well tools
support a programmer in answering questions. Based on
these results, we discuss the support that is missing from
existing programming tools.

Section 2 of this paper compares the work presented in
this paper to previous efforts in the area of program
comprehension and empirical studies of how programmers
manage change tasks. Section 3 describes the two studies
we performed. Section 4 presents the 44 types of questions
organized around four top-level categories and a descrip-
tion of the behavior we observed around answering
questions. Section 5 considers the support existing research
and industry tools provide for those activities. In Section 6,
we discuss gaps in tool support. In Section 7, we discuss the
limits of our results. We conclude with a summary in
Section 8.

2 RELATED WORK

In this section, we discuss three categories of related work.
The first is the area of program comprehension, in
particular efforts to use theories about program compre-
hension to inform tool design (see Section 2.1). The second
covers work involving the analysis of programmers’
questions (see Section 2.2). The third category includes
empirical studies that have looked at how programmers
use tools and generally how they carry out change tasks
and other programming activities (see Section 2.3). Our
review of these studies includes a discussion of studies that
use similar research methods. We leave a discussion of the
tool support available for various programming activities to

434 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

. J. Sillito is with the Department of Computer Science, University of
Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4 Canada.
E-mail: sillito@ucalgary.ca.

. G.C. Murphy and K. De Volder are with the Department of Computer
Science, University of British Columbia, ICICS/CS Building, 201-2366
Main Mall, Vancouver, BC, V6T 1Z4 Canada.
E-mail: {murphy, kdvolder}@cs.ubc.ca.

Manuscript received 11 May 2007; revised 24 Nov. 2007; accepted 27 Mar.
2008; published online 21 Apr. 2008.
Recommended for acceptance by M. Young and P. Devanbu.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSESI-2007-05-0161.
Digital Object Identifier no. 10.1109/TSE.2008.26.

0098-5589/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

Section 5, in which we analyze the support a wide range of
research and industry tools provide for answering the
questions we found that programmers ask.

2.1 Program Comprehension

Work in the area of program comprehension has focused
on proposing cognitive models that describe the cognitive
processes and information structures programmers use to
form a mental model, which is a programmer’s mental
representation of the program being maintained.

Theories by Brooks [5], Koenemann and Robertson [34],
and Soloway and Ehrlich [56] suggest program compre-
hension occurs in a predominantly top-down manner.
Brooks’ model, for example, proposes that programmers
comprehend a system by reconstructing knowledge about
the domain of the program and by working to map that
knowledge to the source code. According to the bottom-up
theory, programmers first read individual statements in the
code and then mentally group those statements into higher-
level abstractions (capturing control-flow or data-flow, for
example). These abstractions are in turn aggregated until
this recursive process produces a sufficiently high-level
understanding of the program. Two theories that propose a
bottom-up approach are Pennington’s model [45] and
Shneiderman and Mayer’s cognitive framework [51].

Other researchers have proposed theories suggesting that
programmers combine strategies. For example, Littman et al.
noted that programmers use either a systematic strategy or an
as-needed strategy [38]. Letovsky’s knowledge-based under-
standing model proposes that programmers work “oppor-
tunistically,” using both bottom-up and top-down strategies
[36], [35]. Von Mayrhauser and Vans propose a model that
they call the integrated metamodel that combines four
components: the top-down model, the program model, the
situation model, and a knowledge base [68].

In contrast, our work has not focused on proposing new
models of program comprehension nor have we attempted
to validate any of these existing models. Instead, we aim to
complement this work by filling in important details that
are often abstracted away by theories of comprehension. To
accomplish this goal, we have thoroughly analyzed
empirical information collected as programmers performed
software evolution tasks. We have also analyzed program-
mers’ behavior around discovering that information along
with the role that tools play in the answering process.

Work in the area of program comprehension has also
striven to inform the design of programming tools to
support various program understanding processes.
Von Mayrhauser and Vans, for instance, have documented
the tasks and subtasks programmers need to perform as
part of understanding a system and have developed an
associated list of information needs and tool capabilities to
support those information needs. Similarly, based on a
number of program comprehension models, Storey et al.
present a hierarchy of cognitive issues or design elements
to be considered during the design of a software explora-
tion or visualization tool [60].

Walenstein takes a different approach to bridging the
gap between cognitive models and tool design [70], [69].
His goal is a more solid theoretical grounding for the

design of programming tools based on program compre-
hension theories, as well as other cognitive theories.
Walenstein’s theory of cognitive support describes the mental
assistance tools can provide. Walenstein claims that such a
theory can be used to rationalize tool features in terms of
their support for cognition. Example principles on which
support might be based include redistribution (moving
cognitive resources to external artifacts) and perceptual
substitution (transforming a task into a variant that is
cognitively easier).

Our work takes a different approach to influencing the
design of tools. Rather than beginning with models of
cognition or other cognitive theories, we begin with
observations about how programmers manage a change
task and from those observations we build an under-
standing of the associated activities. In particular, we aim to
use qualitative studies to fill in details around the specific
questions programmers ask and how they use tools to
answer those questions. We believe these details provide an
important connection between program comprehension
theories and programming tool research and design.

2.2 Analysis of Programmer’s Questions

The work most similar to ours has investigated the
questions programmers ask or the information they need
to perform their work. Johnson and Erdem extracted and
analyzed questions posted to Usenet newsgroups [29].
These questions were classified as goal oriented (requested
help to achieve task-specific goals), symptom oriented (why
something is going wrong), and system oriented (requested
information for identifying system objects or functions).
Herbsleb and Kuwana have empirically studied questions
asked by software designers during real design meetings in
three organizations [23]. They determined the types of
questions asked, as well as how frequently they were
asked. Our work is similar but targets a different part of the
development process, namely, the question programmers
ask while performing a change task to a system.

Letovsky presents observations of programmer activ-
ities, which he calls inquiries, and documents five kinds of
conjectures programmers make (why, how, what, whether,
and discrepancy) [36], [37]. Erdos and Sneed suggest, based
on their personal experience, that seven questions need to
be answered for a programmer to maintain a program that
is only partially understood. These questions include where
is a particular subroutine/procedure invoked and what are the
arguments and results of a given function [12]. Building on the
Usenet study by Johnson and Erdem [29], Erdem et al. have
developed a model of the questions that programmers ask
[11]. In their model, a question is represented based on its
topic, the question type, and the relation type. We
contribute to this body of knowledge by developing a
more comprehensive list of questions, including questions
at a higher level than those captured in this work.

Ko et al. conducted a study about the information needs
of collocated software teams [31]. They identified 21 ques-
tions asked by programmers, in seven categories:

1. writing code,
2. submitting a change,
3. triaging bugs,

SILLITO ET AL.: ASKING AND ANSWERING QUESTIONS DURING A PROGRAMMING CHANGE TASK 435

4. reproducing a failure,
5. understanding execution behavior,
6. reasoning about design, and
7. maintaining awareness.

Questions in the first category are about how to use and
coordinate particular functions and data structures and
map naturally to questions our participants asked. Ques-
tions in the second, third, and seventh categories deal with
team issues or activities not considered in our study. The
five questions in the fourth and fifth categories, such as In
what situations does this failure occur?, relate to a large
number of more specific questions identified in our work.
Questions in category six (reasoning about design) were
less prevalent in our studies. The study by Ko et al. focused
on a wider range of activities and a broader context than
our studies, resulting in a different range of questions. Our
results provide a more detailed picture of what program-
mers need to understand specifically as they perform a
change task.

2.3 Empirical Studies of Change Tasks

Other work has studied the situation of programmers
performing change tasks from a number of different
perspectives. Many of these efforts have explored the use
of programming tools. For example, Storey et al. carried out
a user study focused on how program understanding tools
enhance or change the way that programmers understand
programs [62]. In their study, 30 participants used various
research tools to solve program understanding tasks on a
small system. Based on their results, Storey et al. suggest
that tools should support multiple strategies (top-down
and bottom-up, for example) and should aim to reduce
cognitive overhead during program exploration. In contrast
to our work, Storey et al.’s work did not attempt to analyze
specifically what programmers need to understand.

More similar to our studies are efforts that qualitatively
examine the work practices of programmers. For example,
Flor and Hutchins used distributed cognition to study a
single pair of programmers performing a straightforward
change task [13]. We use a similar study setup but with a
larger participant pool and a more involved set of change
tasks, with the goal of more broadly understanding the
challenges programmers encounter. As another example,
Singer et al. studied the daily activities of software
engineers [54]. We focus more closely on the activities
directly involved in performing a change task, producing a
complementary study at a finer scale of analysis.

Four recent studies have focused on the use of current
development environments (as do our studies). Robillard
et al. characterize how programmers who are successful at
maintenance tasks typically navigate a code base [48].
Deline et al. report on a formative observational study also
focusing on navigation [9]. Our study differs from these in
more broadly considering the process of asking and
answering questions, rather than focusing exclusively on
navigation. Ko et al. report on a study in which Java
programmers used the Eclipse1 development environment
to work on five maintenance tasks on a small program [33].

Their intent was to gather design requirements for a
maintenance-oriented development environment. Our
study differs in focusing on a more realistic situation
involving larger code bases and more involved tasks. Our
analysis differs in that we aim specifically to understand
what questions programmers ask and how they answer
those questions. De Alwis and Murphy report on a field
study about how programmers experience disorientation
when using the Eclipse Java integrated development
environment (IDE) [1]. They analyzed their data using the
theory of visual momentum [74], identifying three factors
that may lead to disorientation: the absence of connecting
navigation context during program exploration, thrashing
between displays to view necessary pieces of code, and the
pursuit of sometimes unrelated subtasks. In contrast, our
analysis has not employed the theory of visual momentum
and has focused on questions and answers rather than
disorientation.

3 RESEARCH APPROACH

To investigate the detailed questions that arise during the
programming activity associated with a software evolution
task, we undertook two studies [53], [52]. Study one was
conducted in a laboratory setting with nine participants
working on a code base that was new to them. The goal of
this study was to observe programmers performing
significant change tasks using state-of-the-practice devel-
opment tools. Specifically, these tasks were selected to
require participants to make changes to several different
source files. Study two was conducted in an industrial
setting with 16 participants working on a code base for
which they had responsibility. These two studies have
allowed us to observe programmers in situations that vary
along several dimensions, including the programming tools
used, the type of change task, the system, paired versus
individual programming, and the level of prior knowledge
of the code base. The range of differences between sessions
and between studies limits our ability to directly compare
the differences and similarities along particular dimen-
sions; however, the differences have increased our ability to
generate an extensive set of questions programmers ask.
Details of each study are presented in Sections 3.1 and 3.2.

To structure our data collection and the analysis of our
data, we used a grounded theory approach, which is an
emergent process intended to support the production of a
theory that “fits” or “works” to explain a situation of
interest [16], [63]. Grounded theory analysis revolves
around various coding procedures that aim to identify,
develop, and relate the concepts. As categories emerge,
further selective sampling can be performed to gather more
information, often with a focus on exploring variation
within those categories. The aim here is to build rather than
test theory and the specific result of this process is a
theoretical understanding of the situation of interest that is
grounded in the data collected.

3.1 Study One: Laboratory-Based Investigation

We designed study one to be as realistic as possible.
Specifically, we used participants with development experi-
ence, real change tasks, and a nontrivial code base. We refer to

436 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

1. http://www.eclipse.org, verified March 2008.

the nine participants (N1. . . N9) as newcomers as they were
working on code that was new to them. All nine participants
are male and were computer science graduate students with
varying amounts of previous development experience,
including experience with the Java programming language.
Participants N1, N2, and N3 had five or more years of
professional development experience. Participants N4, N5,
and N6 had between two and five years of professional
development experience. Participants N7, N8, and N9 had no
professional development experience but did have one or
more years of programming experience in the context of
academic research projects. All participants had at least one
year of experience using Eclipse for Java development. Each
participant participated in two or three sessions (see Table 1).

The study involved 12 sessions (1.1. . . 1.12). In each
session, two participants performed an assigned task as a
pair working side by side at one computer. We chose to
study pairs of programmers because we believed that the
discussion between the pair as they worked on the change
task would allow us to learn what information they were
looking for and why particular actions were being taken
during the task, similar to earlier efforts (e.g., [13] and [41]).
Following the terminology of Williams et al. [73], we use
the term “driver” for the participant assigned to control the
mouse and keyboard and “observer” for the participant
working with the driver. In most sessions, the least
experienced programmer was asked to be the driver. This
choice was intended to encourage the more experienced
programmer to be explicit about their intentions. None of
the participants had significant previous experience work-
ing in pairs. The pairings are summarized in Table 1.

In each session, the programming pair was given
45 minutes to work on a change task using the Eclipse
Java development environment (version 3.0.1), a widely
used IDE that we consider representative of the state-of-
the-practice. Participants were stopped after the 45 minutes
elapsed, regardless of how much progress had been made.
No effort was made to quantify how much of the task had
been completed. The experimenter (the first author of this
paper), who was present during each session, then briefly
interviewed the participants about their experience. The
interviews were informal and focused on the challenges
faced by the pair, their strategy, how they felt about their

progress, and what they would expect to do if they were
continuing with the task. During each session, an audio
recording was made of the discussion between the pair of
participants, a video of the screen was captured, and a log
of various Eclipse navigation and section events was made.

Table 2 describes the change tasks assigned to partici-
pants. The tasks were all enhancements or bug fixes to the
ArgoUML2 code base (versions 0.9, 0.13, and 0.16). ArgoUML
is an open source UML modeling tool implemented in Java. It
is comprised of roughly 60 KLOC. The tasks were complex,
completed tasks chosen from ArgoUML’s issue-tracking
system. Table 2 also gives an estimate of the number of files
that would need to be modified to successfully perform the
change task. This number is based on the revision history
from the ArgoUML project and should only be considered
approximate because there are likely to be multiple ways to
complete a change and multiple smaller changes are
sometimes committed at the same time. However, these
estimates illustrate that these tasks were based on complex
nonlocal changes. During the study, participants worked
with a version of the code base that predated the task
completion by the ArgoUML team.

The ArgoUML code base is not extensively documented;
however, there is some API documentation (in Javadoc3

format) available for the project source code, as well as for
several dependent libraries. During the study, the doc-
umentation for the most task relevant libraries was made
available to our participants.

We did not expect that the participants would be able to
complete the task in the time allotted, but we believed they
would be able to make significant progress. Participants
were asked to accomplish as much as possible on the given
task but to not be concerned if they could not complete the
task. In four of the sessions, 1.4, 1.7, 1.11, and 1.12, the pair
of participants were asked to continue working on a task
that one of them had commenced in a previous session,
allowing us to gather data about later stages of work on a
task. For example, session 1.4 involved participants N6 and
N4 continuing on with the work that participant N6 began
in session 1.2. Table 1 shows the assignment of tasks to
sessions.

SILLITO ET AL.: ASKING AND ANSWERING QUESTIONS DURING A PROGRAMMING CHANGE TASK 437

2. http://argouml.tigris.org, verified March 2008.
3. http://java.sun.com/j2se/javadoc/.

TABLE 1
Session Number, Driver, Observer, and Assigned Task

for Each Session in Study One

TABLE 2
Tasks from Study One Along with an Estimate of the Number

of Files Needed to be Changed to Perform The Task

Numbers refer to IDs in the ArgoUML issue tracking system.

3.2 Study Two: Industry-Based Investigation

Study two involved 16 programmers (E1. . . E16) in an
industrial setting. We observed individual programmers,
rather than pairs, because that was the normal work
situation of the participants. Each of the sessions (num-
bered 2.1 to 2.15) is summarized in Table 3. One session
from this study was exceptional in that two participants (E6
and E7) worked together because that was how the pair
were accustomed to working. Three of the 16 participants
(E9, E11, and E16) are female. All participants were
professional programmers employed by the same large
technology company. Several of the participants worked in
the same groups within that company (E1 and E2; E6 and
E7; E3, E4, and E5; E14 and E15) and, as a result, worked on
similar code bases. In this study, the participants worked
with code on which they had experience, though the
amount of experience varied significantly (from a just few
months to eight years). In addition to project source code,
our participants also had access to all of the project
documentation they would normally use.

Participants were observed as they worked on a change
task to a software system for which they had responsibility.
The systems were implemented in a range of languages and
the participants used the tools that they would normally
use. For example, participant E1 worked on a C++ [64] and
Tcl [14] code base using tools such as Emacs [57] and DDD
(a front end to GDB4), while E3 worked on a C# [21] and
XSLT [66] code base using Microsoft Visual Studio.5

The tasks were selected by the participants. Each
participant was asked, in advance of the session, to select a
task that would be “involved, not a simple local fix.” In each
session, the programmer was asked to describe the task he or
she had selected and then to spend about 30 minutes working

on that task. Each participant was asked to think aloud while
working on the task [67]. No think-aloud training or practice
period was provided for participants. After each session, the
experimenter (the first author of this paper) interviewed the
participant (or participants) about their experience. The
interviews were informal and focused on the challenges
faced and their use of tools. An audio recording and field
notes were made during each session, including during the
interview portion.

4 QUESTIONS IN CONTEXT

Our analysis focused on discovering the questions pro-
grammers had asked about the system and exploring
similarities, connections, and differences among those
questions. The analysis began with the first author of the
paper coding the audio data to produce a list of specific
questions asked by our participants. We only included
questions targeting the code base in our analysis, which
meant that some questions were excluded. For example,
questions about how to approach the task and how a
particular tool worked were not included. As a research
group, we discussed the list of identified questions, finding
that many of the questions asked were roughly the same,
except for minor situational differences. We then developed
generic versions of the questions that slightly abstract from
the specifics of a particular situation and code base. For
example, N4 asked the question “how does [MAssociation]
relate to [FigAssociation]?” which can be stated more
generically as how are these types or objects related? (see
question 22).

Taking this further, we compared the generic questions
and found that many of the similarities and differences could
be understood in terms of the amount and type of
information required to answer a given question. This
observation became the foundation for our categorization

438 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

4. http://sourceware.org/gdb/documentation/, verified March 2008.
5. http://msdn2.microsoft.com/en-us/vstudio/, verified March 2008.

TABLE 3
Session Number, Participant(s), the Approximate Amount of Experience a Participant Had with the Code Base,
the Programming Language(s) for the Target System, and the Primary Tools for Each Session of Study Two

of the questions. If we consider a code base as a graph of
entities (methods and fields, for example) and relationships
between those entities (references and calls, for example),
answering any given question requires considering some
subgraph of the code base. The properties of the subgraph are
the basis for our categorization, as illustrated in Fig. 1.
Questions in the first category are about discovering a focus
point in the graph. Questions in the second category are
about a given entity and other entities directly related to it
(i.e., questions that build on an entity). Questions in the third
category are about understanding a number of entities and
relationships together (i.e., questions about understanding a
subgraph). Questions in the final category are over such
connected groups: how they relate to each other or to the rest
of the system (i.e., questions over groups of subgraphs).

Although other categorizations of these questions are
possible, we present this categorization because it high-
lights the types and scope of information needed to answer
the given questions, which is relevant to the design of
supporting tools. This categorization also captures some
intuitive sense of the various levels of questions asked and
it helps explain various kinds of relationships between
questions such as a question-subquestion relationship.

The levels suggested by our categories bear some
resemblance to the hierarchy of information implied by
various cognitive models (see Section 2.1). However, the
order in which we present the categories is not representa-
tive of how the questions were necessarily asked and it is
not our intention to suggest that our data supports a
particular model such as the bottom-up model (e.g., [50]).
However, at times, questions in the first category (finding
focus points) were precursors to questions in the second
category (expanding focus points), though these activities
were not necessarily at the beginning of the session.
Generally, we observed that participants often jumped
around between various activities or explorations, at times
leaving questions only partially answered (“figure that out

later” [E8]), sometimes forgetting what they had learned
(“did we look at MAssociation? What was that?” [N4]),
sometimes abandoning an exploration path and beginning
again (“I guess we’re on the wrong track there. Where is the
earliest place we know that we can set a break point?” [N2]), and
sometimes returning to previous questions (“I am still kind
of curious. . . ” [N1]).

The four Sections (4.1, 4.2, 4.3, and 4.4) present the
44 different types of questions our participants asked,
organized by category. These sections also present observa-
tions about how our participants used programming tools
in answering their questions.

4.1 Finding Focus Points

One category of questions asked by our participants, the
newcomers from the first study in particular, focused on
finding points in the code that were relevant to the task.
The participants in the first study naturally began a session
knowing little or nothing about the code and, often, they
were interested in finding any “starting point” [N9]. For
example, N3 and N5 began session 1.5 by discussing “where
do we start?” [N5]. Such questions were asked at the
beginning of sessions but also as participants began to
explore a new part of the system or generally needed a new
focus point. These are perhaps similar to what Wilde and
Casey call “places to start looking” [72].

These questions were at times about finding methods or
types that correspond to domain concepts: “I want to try and
find the extends relationship [i.e., a concept from the domain of
UML editors]” [N5] and “my idea is to see if we can find a
representation of this transition” [N1]. In other times, there
were questions about finding code corresponding to
UI elements or the text in an error message: “what object
refers to this actual [UI text]?” [N7] and “do a search for spline”
[N3] (where spline was the text in a tool tip). We observed
five types of questions asked in this category. Each question
is followed by a list of the sessions in which we observed it
being asked:

1. Which type represents this domain concept or this UI
element or action? (1.1, 1.2, 1.3, 1.5, 1.6, 1.7, 1.8, 1.9)

2. Where in the code is the text in this error message or
UI element? (1.1, 1.5, 1.9)

3. Where is there any code involved in the implemen-
tation of this behavior? (1.1, 1.2, 1.3, 1.5, 1.6, 1.10,
1.11, 2.11, 2.13)

4. Is there a precedent or exemplar for this? (1.1, 1.10,
1.12, 2.4, 2.6, 2.14, 2.15)

5. Is there an entity named something like this in that
unit (project, package, or class, say)? (1.1, 1.2, 1.4,
1.5, 1.6, 1.10, 2.9)

To answer these questions, our participants often used
text-based searches or Eclipse’s Open Type Tool, which
allows programmers to find types (classes or interfaces) by
specifying a name or part of a name. Other questions, like
question 5, were less amenable to text-based searches
because the participants often had only a general idea of the
sort of name for which they were looking. Instead,
scrolling/scanning through code or overviews was used.
At times, the number of search results or candidates

SILLITO ET AL.: ASKING AND ANSWERING QUESTIONS DURING A PROGRAMMING CHANGE TASK 439

Fig. 1. An overview of the four categories of questions asked by our

participants. Each is illustrated by a diagram depicting source code

entities along with connections between those entities.

otherwise identified was quite large and a fundamental
question that needed to be answered was what is relevant?

In several sessions, the debugger was used to help
answer questions of relevancy. Participants set break points
in candidate locations (without necessarily first looking
closely at the code) and ran the application to see which, if
any, of those break points were encountered during the
execution of a given feature. If none were encountered, this
process was repeated with new candidate points. N6
explained his use of the debugger: “I thought maybe these
classes are not even relevant, even though they look like they
should be. So I get confidence in my hypothesis, just that I am on
the right track” [N6].

4.2 Expanding Focus Points

A second category of questions was about expanding a
given entity believed to be related to the task, often by
exploring relationships. For example, after finding a
method relevant to the task, N3 asked the following
sequence of questions: “what class is this [in]?”; “what does
it inherit from?”; “now where are these NavPerspective’s [a type]
used?"; and then “what [container] are they put into?”. With
these kinds of questions, the participants aimed to learn
more about a given entity and to find more information
relevant to the task.

Sometimes we observed a series of questions about the
same entity, forming a star pattern, as depicted in Fig. 2a
(showing source code entities and connections between
entities). At other times, we observed a series of questions
where each subsequent question started from an entity
discovered as an answer to a previous question, forming a
linear pattern, as depicted in Fig. 2b.

Some questions in this category were questions about
types, including questions about the static structure of
types: “are there any sibling classes?” [N3] or “what is the type
of this object?” [E16]. We observed six such questions:

6. What are the parts of this type? (1.2, 1.5, 1.6, 1.7, 1.8,
1.10, 1.11, 2.15)

7. Which types is this type a part of? (1.2, 1.5)
8. Where does this type fit in the type hierarchy? (1.1,

1.2, 1.3, 1.5, 1.6, 1.12)
9. Does this type have any siblings in the type

hierarchy? (1.5, 1.11)
10. Where is this field declared in the type hierarchy?

(1.5, 1.7)
11. Who implements this interface or these abstract

methods? (1.2, 1.5, 1.6, 1.7, 1.10)

Other questions in this category focused on discovering
entities and relationships that capture incoming connections

to a given entity, such as “let’s see who sends this” [N1]; “so
where does that method get called, can you look for references?”

[N2]; “who is using the factory?” [N4]; and “now I look to see
where this gets set” [E15]:

12. Where is this method called or type referenced? (1.1,
1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.10, 1.11, 1.12, 2.1, 2.4)

13. When during the execution is this method called?
(1.2, 1.4, 1.5, 2.15)

14. Where are instances of this class created? (1.2, 1.3,
1.5, 1.7, 1.8, 1.10)

15. Where is this variable or data structure being
accessed? (1.4, 1.5, 1.6, 1.7, 1.12, 2.1, 2.8, 2.14)

16. What data can we access from this object? (1.8, 2.15)

Questions 12 and 13 are similar in that both are about a call
to a particular method. The distinction is that, with question
12, the participant is asking with respect to the static
structure, whereas, with question 13, the participant is asking
with respect to a particular execution of the system.

Finally, there were also questions around outgoing
connections from a given entity, many of which were
aimed at learning about the behavior of that entity,
including questions about callees and argument types (“I

wonder what [this argument] is?” [N1]):

17. What does the declaration or definition of this look
like? (1.2, 1.5, 1.8, 1.10, 1.11, 2.1, 2.2, 2.11, 2.13, 2.15)

18. What are the arguments to this function? (1.3, 1.4,
1.5, 1.7, 1.8, 1.10, 1.11, 1.12)

19. What are the values of these arguments at runtime?
(1.4, 1.9, 1.12, 2.15)

20. What data is being modified in this code? (1.6, 1.11)

Many questions in this category could be answered
directly with the tools available. For example, the question
“how it is that I reach it”[N6] (see question 13) was answered
using the call stack viewer in the debugger. Others could
only be approximated with the available tools. For example,
the question “what classes have MEvents as fields?” [N3] (see
question 7) could be approximated by a references search.
In cases like these and also for questions about connections
involving polymorphism, inheritance events, and reflection
(“they are making it so convoluted, with all the reflection”[N6]),
the results were more noisy and more difficult to interpret.
In some cases, participants were able to switch tools or
otherwise refine their use of tools to get a more precise
answer. For example, “maybe I can filter this a bit more, so we

get less records” [E9].

4.3 Understanding a Subgraph

A third category of questions was about building an
understanding of concepts in the code that involved
multiple relationships and entities. Answering these ques-
tions required the right details, as well as an understanding
of the overall structure of the relevant subgraph: “we really

have to get a good understanding of the whole” [N3]. This need
is expressed in a comment by participant N6 that exposes a
desire to understand the results of several searches
together: “I was starting to forget who was calling what,
especially because there is only one search panel at a time that I

can see” [N6].

440 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

Fig. 2. A depiction of two observed patterns of questions: (a) multiple

questions about the same entity and (b) a series of questions where

each subsequent question is about a newly discovered entity.

To see the distinction between this category and the one
just described in Section 4.2, consider questions 6 (What are
the parts of this type?) and 7 (Which types is this type a part of?)
from the previous category and question 22 (How are these
types or objects related?) included as part of the category
described in this section. Questions 6 and 7 are about direct
relationships to a particular source code entity, while
question 22 is similar but requires considering a subgraph
of the system together.

Some questions in this category were aimed at under-
standing certain behavior (“we could trace through how it does
it’s work” [N1]) and the structure of specific parts of the
code base (“I thought it would tell me something about the
structure of the model” [N6]). Some of the questions around
these issues aimed at understanding “why” things were the
way they were and what the logic was behind a given
decomposition (“why they’re doing that” [E14]).

21. How are instances of these types created and
assembled? (1.1, 1.2, 1.4, 1.7, 1.9, 1.10, 1.11, 1.12)

22. How are these types or objects related? (whole-part)
(1.2, 1.10)

23. How is this feature or concern (object ownership, UI
control, etc.) implemented? (1.1, 1.2, 1.4, 1.7, 1.11,
1.12, 2.1, 2.13)

24. What in this structure distinguishes these cases?
(1.2, 1.12, 2.8)

25. What is the behavior that these types provide
together and how is it distributed over the types?
(1.1, 1.2, 1.3, 1.4, 1.6, 1.11, 2.11)

26. What is the “correct” way to use or access this data
structure? (1.8, 2.3, 2.15)

27. How does this data structure look at runtime? (1.8,
1.9, 1.10, 2.15)

Other questions in this category were about data and
control flow. Note that these are not questions such as what
calls this method but instead were about the flow of control
or data involving multiple calls and entities such as “how do
I get this value to here?” [E15].

28. How can data be passed to (or accessed at) this point
in the code? (1.5, 1.6, 1.8, 1.12, 2.14)

29. How is control getting (from here to) here? (1.3, 1.4)
30. Why is not control reaching this point in the code?

(1.4, 1.9, 1.10, 1.12, 2.1, 2.10)
31. Which execution path is being taken in this case?

(1.2, 1.3, 1.7, 1.9, 1.12, 2.2, 2.9)
32. Under what circumstances is this method called or

exception thrown? (1.3, 1.4, 1.5, 1.9)
33. What parts of this data structure are accessed in this

code? (1.6, 1.8, 1.12)

At times, an answer to a question in this category was
pursued by asking a number of other lower-level questions.
For example, answering question 14 (Where are instances of
this class created?) may provide information relevant to
answering question 21 (How are instances of these types
created and assembled?). We observed that, during this
process, participants often revisited entities, repeating
questions such as “I forgot what we figured out from that”
[N3] and “I want to have another look at this guy” [N8]. Using
lower level questions in this way meant that higher level

questions were answered in pieces (perhaps using a
number of different tools) and we observed that a
participant seeing or discovering relevant entities and
relationships individually was not always sufficient to
mentally build an answer to the questions in this category;
one participant noted “it gets very hard to think in your head
how that works” [E14]. For example, losing track of the
temporal ordering of method calls and of structural
relationships that they had already investigated was a
source of confusion for the participants in session 1.10:
“why is the name already set?” [N2] and “why is the namespace
null?” [N2].

4.4 Questions over Groups of Subgraphs

The fourth category of questions we observed in our
studies includes questions over related groups of sub-
graphs. The questions already described in Section 4.3
involved understanding a subgraph, while the questions in
this category involve understanding the relationships
between multiple subgraphs or understanding the interac-
tion between a subgraph and the rest of the system. For
example, question 29 (How is control getting (from here to)
here?) in the previous category is about understanding a
particular flow through a number of methods, whereas
question 34 presented in this category is about how two
related control-flows vary.

Questions around comparing or contrasting groups of
subgraphs included questions such as “what do these things
have that are different than each other?” [N1] and “I am
jumping between the source and the header trying to compare
what was moved out” [E2]. For example, participant N6 was
interested in learning about differences between four
different types: “I looked at what was different between those
four classes, and at first, I tried looking at the implementation
[i.e., the source code for the classes], but I thought, what might be
more interesting is to see the call event called from some place the
other ones are not” [N6].

Several participants in the second study used split
Emacs windows (E2 and E14), multiple monitors (E12), or
multiple windows (E16), which seemed to help with
answering these questions around making comparisons:
“so I can look at both files, edit both of them without having to
click from window to window” [E14] and “using two monitors I
can look at this source code, as well as the engine code itself
without having to swap windows” [E12]. With these arrange-
ments, more (though not all) of the information that they
were comparing could be seen side by side. We also
observed questions about how two subgraphs were
connected; for example, question 37 was asked after
participants had discovered various user interface types
and various model types and needed to understand the
connection between these two groups.

34. How does the system behavior vary over these types
or cases? (1.3, 1.4, 2.14)

35. What are the differences between these files or
types? (1.2, 2.1, 2.2, 2.13, 2.15)

36. What is the difference between these similar parts of
the code (e.g., between sets of methods)? (1.7, 1.8,
1.11, 2.6, 2.11, 2.14, 2.15)

SILLITO ET AL.: ASKING AND ANSWERING QUESTIONS DURING A PROGRAMMING CHANGE TASK 441

37. What is the mapping between these UI types and
these model types? (1.1, 1.2, 1.5, 1.7)

Given an understanding of a number of structures, our
participants asked questions around how to change those
structures (see questions 38 and 39, below). Specific examples
include “as long as we can figure out how to fit into the existing
framework, we should be OK” [N3] and “how to sort of decouple it
and add sort of another layer of choice?” [N6].

They also asked questions around determining the
impact of their (proposed) changes, including asking
questions around understanding how the structures of
interest were connected with the rest of the system: “there’s
a lot of the interactions between the different modules that aren’t
exactly understood” [E10] and “I find it hard to see what are all
the things that are acting on the bits of code we are looking at”
[N9]. One participant was guided in making changes by the
question “what’s the minimal impact to the source code I [can]
have?” [E12]. Question 41 below was asked by participants
trying to determine whether or not their changes were
correct:

38. Where should this branch be inserted or how should
this case be handled? (1.4, 1.5, 1.6, 1.8, 1.9, 2.11, 2.15)

39. Where in the UI should this functionality be added?
(1.1, 1.5, 1.7, 2.1, 2.6)

40. To move this feature into this code, what else needs
to be moved? (2.7, 2.13)

41. How can we know that this object has been created
and initialized correctly? (1.10, 1.12)

42. What will be (or has been) the direct impact of this
change? (1.5, 1.7, 1.8, 1.10, 1.11, 1.12, 2.1, 2.2, 2.4, 2.6,
2.7, 2.8, 2.12, 2.15)

43. What will the total impact of this change be? (2.1,
2.2, 2.3, 2.4, 2.5, 2.9, 2.10, 2.11)

44. Will this completely solve the problem or provide
the enhancement? (1.1, 1.9, 1.11, 2.12, 2.14)

The process of answering questions in this category
involved multiple supporting questions and multiple tools.
Working in this way, while producing a significant volume
of results, does not necessarily result in an answer to the
original question posed. For example, participant E16 used
several different tools (GDB, diff,6 grep,7 and VI8). These
tools were in three different windows, arranged as in Fig. 3.
She explained her arrangement in this way: “I [have] one
where I am running the program, one where I am actually looking

at the code, and one where I am just searching for other things.”
By the end of the session, participant E16 still had not been
able to answer her higher level question and decided she
needed to begin the process again, making different choices
about what lower level questions to ask, and how to use the
available tools to answer those questions.

4.5 Question Frequencies

Our study design and data analysis focused on identifying
the range of questions that programmers’ ask about a code
base. It is natural to also question how often various
questions arise. We present frequency data of the questions
we observed in Table 4. The figure shows the number of
times distinct questions of each type were asked in each
session, along with totals for each study. For example,
concrete questions corresponding to question 19 (What are
the values of these arguments at runtime?) were asked once in
each of sessions 1.4, 1.12, and 2.15, and twice in session 1.9.
If a specific question is asked repeatedly in a session, it is
counted only once in Table 4.

Various trends are visible in this frequency data. For
example, the data illustrates that questions in the first three
categories occurred more frequently during the first study
than the second. On the other hand, questions in the fourth
category (questions 34 to 44) occurred more frequently
during the second study than the first. One explanation for
the differences is that participants in the first study were
newcomers to the code on which they were working, while
participants in the second study were working with code
with which they had experience. Another contributing
factor may be that working with a pair (as the participants
in study one did) encourages a participant to articulate
more of his or her questions.

Any observations drawn from this frequency data must
be treated by case. The sessions from which the data is
drawn are limited in duration and varied in important
ways. These and other limitations are discussed further in
Section 7.

5 ANALYSIS OF TOOL SUPPORT FOR ANSWERING

QUESTIONS

Our two user studies provided some insights into how
programmers use tools to support the process of answering
the questions we observed. To build a more complete
understanding of the state-of-the-art in tool support for
answering the questions and of where tool support is
lacking, we have analyzed the ability of a wider range of
tools (both industry and research tools) and techniques to
support a programmer in answering each of the questions.

Our analysis consisted of analyzing the literature on
programming tools and techniques for exploring source
code. For each question our participants asked, we tried to
identify a tool with support for answering that question
and we qualitatively evaluated the level of support
provided. This discussion is not intended to be a
comprehensive survey of applicable tools or techniques.
Our goal has not been to identify all tools or techniques
applicable to each question but rather to determine whether
or not one exists to address each question. We rate the level
of support provided by the best available tool we found as

442 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

6. http://www.gnu.org/software/diffutils/manual, verified March
2008.

7. http://www.gnu.org/software/grep/doc/, verified March 2008.
8. http://www.vim.org/, verified March 2008.

Fig. 3. Participant E16’s arrangement of windows and associated tools.

Also shown are the types of questions asked in each window.

full or partial. For a tool to be considered as providing full
support for a given question, it has to allow a programmer
to directly answer the question; otherwise, we rate the level
of support as partial. This discussion is organized around
the four categories of questions. Tables 5, 6, 7, and 8
summarize the techniques and tools applicable to answer-
ing each question and the level of support provided by
those techniques and tools.

5.1 Answering Questions Around Finding Focus
Points

Questions 1 (Which type represents this domain concept or this
UI element or action?), 2 (Where in the code is the text in this
error message or UI element?), and 5 (Is there an entity named
something like this in that unit (project, package or class, say)?)
all require finding a name or some text in the source code.
Simple lexical search tools such as grep are often helpful in
answering these questions. For instance, a programmer
who uses grep to answer question 1 may form a hypothesis
about possible names for types representing a given
concept, formulate an appropriate regular expression, and
then perform a search. IDEs often provide more focused
support such as Eclipse’s Open Type tool, which uses static
structural analysis to limit the search to type names.

Question 5 can also be supported by source code editors

and various overview tools. These are particularly helpful

in situations where a hypothesis about the name to locate is

SILLITO ET AL.: ASKING AND ANSWERING QUESTIONS DURING A PROGRAMMING CHANGE TASK 443

TABLE 4
The Number of Times Distinct Questions of Each Type That Were Asked in Each Session

TABLE 5
A Summary of the Techniques and Tools Applicable to

Answering Each of the Questions from the First Category

difficult to form. As one example, this difficulty was
encountered in session 1.6, where the participants were
looking “for a move or a set destination or something like that”
[N2]. These participants scrolled and scanned through the
source code in an editor and then used Eclipse’s Outline
View to try to find a relevant entity.

Answering question 3 (Where is there any code involved in
the implementation of this behavior?) is about finding any
point in the code relevant to a particular portion of a task.
Several of our participants first used lexical or structural
search tools to generate candidate types or methods. The
participants then used additional searchers or debugging
techniques to check the hypothesis that a given candidate
was part of the behavior of interest (“get confidence in my
hypothesis” [N6]). This multistep process was not always
straightforward and at times included several failed
attempts. Software reconnaissance is a test-based technique
that uses a comparison of traces of different test cases to
help locate relevant code and in some cases could reduce
the exploration effort involved in answering question 3.
RECON2 and RECON3 are examples of tools providing
support for this technique [25].

Answering question 4 (Is there a precedent or exemplar for
this?) requires identifying points in a code base that provide
information about how to write certain types of code in the
context of that code base. Lexical search or structural

cross-referencing tools that allow programmers to elicit
relationships between source code entities can also help
[65], [58]. For instance, in the second study, when E15 was
looking for examples of the use of a particular API, he used
grep to find candidate locations in the code. In session 1.10,
the participants (N2 and N8) looked for an example using
Eclipse’s cross-reference search tools. To make use of that
example, they first copied and pasted it (“should we just copy
the code and see what happens?” [N8]) and then made changes
as needed. One challenge we observed for programmers in
finding exemplars was in formulating a query that
sufficiently captures the situation. In particular, there are
cases when searching for a reference to one type or method
produces many irrelevant results. Several research tools
aim to address this problem, including CodeFinder [22],
which supports queries over an example-based program-
ming environment, and Strathcona [24], which automati-
cally creates queries based on structural context.

In summary, answering these questions generally in-
volves performing searches based on a hypothesis of what
identifiers or other text were used, possibly based on
information from the domain or the user interface of the
system. Generally speaking, answering questions in this
category is well supported, with all questions having at
least partial support. The challenges that do exist in
answering these questions stem from difficulties in for-
mulating queries or in the volume of information returned

444 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

TABLE 6
A Summary of the Techniques and Tools Applicable to

Answering Each of the Questions from the Second Category

TABLE 7
A Summary of the Techniques and Tools Applicable to

Answering Each of the Questions from the Third Category

by various tools, much of which is irrelevant to the
intended question.

5.2 Answering Questions Around Expanding a
Focus Point

Questions 6 (What are the parts of this type?) and 16 (What
data can we access from this object?) both require considering
methods and fields of a given type. Source code editors or
structural overview tools can help. For participants in the
first study, Eclipse’s Outline View provided such an
overview. The participant in session 2.15 used vi (and to
some extent GDB) to support answering these questions. In
our two studies, we observed some situations where
getting at the essential structure to answer these questions
was not straightforward due to the volume of information
presented by the various views. We observed participants
carefully reading source code to answer question 20 (What
data is being modified in this code?), which requires consider-
ing a block of code and determining (some of) its effects.
Baniassad and Murphy [2] and Jackson [26] demonstrate
that data-flow analysis techniques can be used to produce a
list of effects that may allow a programmer to answer such
questions more directly, though likely some additional
investigation would be required.

Questions 7 (Which types is this type a part of?), 12 (Where
is this method called or type referenced?), 14 (Where are instances
of this class created?), and 15 (Where is this variable or data
structure being accessed?) consider a type, method, or
variable and ask about connections to it. For the most part,

these can be answered relatively directly by tools using

static structural analysis. We have observed that such tools

are less helpful when Java reflection or other indirection

obscured the control flow. Also, we have observed that, in

some situations, answering a question such as 15 may

require tools to analyze the data flow. In these cases, a tool

based on slicing [71], [20], [76] or chopping [27] techniques

for identifying code that impacts the value of a variable

may help with answering the questions.
Questions 17 (What does the declaration or definition of this

look like?) and 18 (What are the arguments to this function?)

also involve following relationships between entities and

can be similarly supported by static analysis techniques.

For example, IDEs such as Eclipse and Visual Studio used

in our studies support navigating to the declaration of a

given type or variable. We observed that this feature was

frequently used by our participants. Several participants

(E1, E2, and E14) in the second study used a tool called

ctags,9 which is based on lexical analysis, to support this

kind of navigation.
Questions 8 (Where does this type fit in the type hierarchy?),

9 (Does this type have any siblings in the type hierarchy?), 10

(Where is this field declared in the type hierarchy?), and 11 (Who

implements this interface or these abstract methods?) all

consider aspects of the type hierarchy of an object-oriented

system. Static structural analysis techniques can be used to

elicit the necessary information and various tools exist for

displaying it. For example, Eclipse provides a Type

Hierarchy View, one of the more frequently used tools by

participants in study one.
Questions 13 (When during the execution is this method

called?) and 19 (What are the values of these arguments at

runtime?) consider the dynamic properties of a system,

generally in the context of a particular point in an

execution, as opposed to a questions such as 15 (Where is

this variable or data structure being accessed?) that asks

generally for the possible callers of a method or referencers

of a type. These more specific questions can be answered

using debugging tools that provide the ability to set a

breakpoint. When the breakpoint is reached during execu-

tion, the call stack (to answer question 13) and the values of

variables (to answer question 19) can be inspected. For

example, we observed participant E16 use GDB to answer

several instances of both of these questions.
In summary, answering questions from category two

generally involves considering information about different

types of relationships between source code entities. In most

cases, eliciting this information is relatively well supported

by static analysis-based tools such as those that have been

available for many years (e.g., see [18], [44]). For other

cases, debugging tools, overview tools, or data-flow

techniques provide some support. Where there were

challenges, they stemmed from various forms of indirection

or the volume of information presented by the various

tools. Despite this, answering these questions is relatively

well supported by today’s tools, as summarized in Table 6.

SILLITO ET AL.: ASKING AND ANSWERING QUESTIONS DURING A PROGRAMMING CHANGE TASK 445

9. http://ctags.sourceforge.net/ctags.html, verified March 2008.

TABLE 8
A Summary of the Techniques and Tools Applicable to

Answering Each of the Questions from the Fourth Category

5.3 Answering Questions Around Understanding a
Subgraph

Question 23 (How is this feature or concern (object ownership,
UI control, etc.) implemented?) requires identifying what
methods or types are involved in the implementation of a
given concept, as well as understanding the relationships
between them. This question is directly the aim of feature
location techniques such as software reconnaissance (see
Section 5.1) and the dependency graph method [8], which is
a systematic approach involving asking a series of lower
level questions to produce information toward answering a
higher level question. Eisenbarth and Koschke combines
dynamic and static analysis information to identify
computation units that contribute to a feature [10]. These
techniques provide information that can support a pro-
grammer in building an understanding of how a particular
feature is implemented.

Answering questions 30 (Why is not control reaching this
point in the code?) and 31 (Which execution path is being taken
in this case?) requires understanding aspects of the dynamic
control flow or data flow in a particular context. Debugging
tools, including capture and replay tools (e.g., [59]), provide
helpful information though the exploration effort can still
be significant. An interrogative debugging tool by Ko and
Myers called Whyline aims to help programmers both ask
and answer these kinds of questions using a program
slicing technique [32].

We observed that considering dynamic information
about data flow and about control flow can aid in
answering questions 27 (How does this data structure look at
runtime?), 28 (How can data be passed to (or accessed at) this
point in the code?), and 32 (Under what circumstances is this
method called or exception thrown?). Our participants made
frequent use of the debugger (GDB or the Eclipse Debug
perspective) in this effort. However, answering these
questions was challenging and involved a number of
investigations around lower level questions. There have
been several efforts to support the visualization of data
structures and control flow at runtime [46], including the
Amethyst (later called Pascal Genie) debugging tool [43],
and BALSA (later called Zeus) [6], [7]. The information
provided by these tools is similar to the information now
provided by IDE’s debugging tools.

Answering questions 21 (How are instances of these types
created and assembled?), 22 (How are these types or objects
related? (whole part)), 24 (What in this structure distinguishes
these cases?), 25 (What is the behavior that these types provide
together, and how is it distributed over the types?), and 26 (What
is the “correct” way to use or access this data structure?)
requires understanding a range of static and dynamic
information. As described previously, to answer these
questions, our participants used a number of tools to
answer several supporting questions. In the process of
attempting to understand the subgraph, participants often
revisited entities believed to be relevant. Various code
browsing tools (e.g., Lemma [40], FEAT [49], and JQuery
[28]) have been developed to make the navigation or
revisiting aspect of this process more direct. These
browsing tools, as well as various general visualization
tools (e.g., SHriMP [61]), provide support for bringing

information together and, as a result, may provide some
minimal support for answering questions such as 22, 24,
and 25. However, the process still revolves around lower
level questions and no direct support is provided to
identifying relevant information.

Questions 29 (How is control getting (from here to) here?),
33 (What parts of this data structure are accessed in this code?),
and 37 (What is the mapping between these UI types and these
model types?) all consider two different sets of entities or
points in the code and ask about the connections between
them. For example, question 29 is about understanding the
control-flow between two methods. A tool such as the Call
Hierarchy Viewer provided in Eclipse can be used to
produce information toward answering these questions,
but the branching factor is high and we observed that our
participants rarely used this viewer beyond two or three
calls. The Relo tool [55] mentioned above supports a feature
called Autobrowsing that models a simple directed ex-
ploration activity between two or more selected entities,
which in some simple situations may help answer these
questions about understanding connections.

In summary, tool support for answering questions in
this category is limited. We found that, often, to answer
these lower level questions, possibly less refined versions of
these questions (i.e., ones with better tools support) must be
asked, resulting in noisier result sets and the need to
mentally put together answers. It is possible that visualiza-
tion tools may make integrating this information easier.

5.4 Answering Questions About Groups of
Subgraphs

Questions 34 (How does the system behavior vary over these
types or cases?), 35 (What are the differences between these files
or types?), and 36 (What is the difference between these similar
parts of the code (e.g., between sets of methods)?) are about
making comparisons between behavior, types, or methods.
Generally, making comparisons is difficult, especially
comparing behavior as needed for answering question 34.
For questions 35 and 36, the diff tool provides partial
support. For these questions, in some cases, it might also be
possible to apply a code clone detector such as CCFinder
[30] to determine a measure of similarity. However, in the
cases we observed, the differences were sufficiently large
that these tools would be of limited help.

Question 37 (What is the mapping between these UI types
and these model types?) is an example of a question asked
when a programmer develops a (partial) understanding of
two related groups of entities and wants to understand the
connection between those such as the control-flow between
them. Question 40 (To move this feature into this code what else
needs to be moved?) asks about how a subgraph is connected
to the rest of the system. Baniassad and Murphy have
developed a technique and a tool, called conceptual
module querying, which supports queries about relation-
ships between groups of source code lines, which, in some
situations, may help with identifying these connections [2].

Questions 42 (What will be (or has been) the direct impact of
this change?), 43 (What will be the total impact of this change?),
and 44 (Will this completely solve the problem or provide the
enhancement?) are about the impact of (planned) changes to

446 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

a system. In situations where an extensive test suite is
available, testing allows programmers to determine both if
their changes had the desired effect and whether there were
any unintended effects [3]. In our studies, comprehensive
test suites were not typically available and several of the
participants from study two were writing code for an
environment that made some types of testing difficult.
Various impact analysis techniques and tools such as Fyson
and Boldyreff’s ripple propagation graph approach [15]
and the Chianti test-based tool [47] are intended to help
programmers identify the parts of a system impacted by a
change. These techniques generate candidates for the
programmer to investigate and thus constitute partial
support for understanding the impact of changes made.

Questions 38 (Where should this branch be inserted or how
should this case be handled?), 39 (Where in the UI should this
functionality be added?), and 41 (How can we know that this
object has been created and initialized correctly?), as well as
several questions discussed previously, such as 26 (What is
the “correct” way to use or access this data structure?), require
understanding a code base at a relatively abstract level.
Building this level of understanding based on source code
details is difficult and tool support is limited.

Tools or techniques exist that aim to support program-
mers in recovering a code base’s design or architecture
through clustering [39], constraint satisfaction [75], or
visualization [42]. These techniques aim to support pro-
grammers in developing an understanding of the decom-
position of a system or its macrostructure and may provide
some support for answering questions 26, 38, 39, and 41 to
the extent that the answers to these questions can be found
along that structure.

Another approach to supporting programmers in ab-
stracting information stems from research around solving
the concept assignment problem, which is a generalization of
the feature location problem discussed above [4]. Tool
support for this is limited, though several research tools
exist, including DESIRE [4], HB-CAS [17], and PAT [19].
These tools are limited to working with contiguous regions
of code and may help with some aspects of understanding
code at a higher level. However, many questions in this
category (and the previous category) require understand-
ing arbitrary subgraphs, including understanding why
things are the way they are and how to use or change
things in a way that is consistent with the current code
base. Despite some tool support, we believe that develop-
ing this level of understanding remains difficult.

6 THE GAP

Table 9 summarizes the level of tool support for answering
each category of question asked by our participants. We
found that questions in the first two categories could all be
answered relatively directly using today’s tools. The ques-
tions in categories three and four required programmers to
consider and combine information about multiple points in
the source code and were not well supported by tools.

In the studies we conducted, we observed that, when
direct tool support was not available for answering a
question, programmers resorted to reformulating their

initial question as one or more questions that did have
tool support available. The process of breaking questions
down into ones that were fully (or partially) supported by
the available tools was described as “trying to take my
questions and filter those down to something meaningful where I
could take a next step” [N4]. Participant E16 described her
(unsuccessful) process of asking a series of questions to
answer her higher level question as a path, “you go down a
path to try to find out some information, and it leads to a dead
end and you got to start all over again.”

Working to answer questions without full tool support
resulted in challenges such as dealing with result sets that
were noisy when considered in the context of the questions
being asked by the participant. In addition to providing
information about which questions (or categories of
questions) can or cannot be answered directly with today’s
programming tools, our results also suggest more general
limitations with current industry and research tools.
Specifically, we believe that programmers need better or
more comprehensive support in three related areas:
1) support for more refined or precise questions, 2) support
for maintaining context, and 3) support for piecing
information together.

6.1 Support for More Refined or Precise Questions

We observed that some questions can be seen as more refined
versions of other questions. For example, question 13 (When
during the execution is this method called?) is more refined than
question 12 (Where is this method called or type referenced?) and
question 33 (What parts of this data structure are accessed in this
code?) is a more refined version of question 15 (Where is this
variable or data structure being accessed?). A programmer’s
questions also often have an explicit or implicit scope. In
question 31 (Which execution path is being taken in this case?),
this is explicit. Question 33 (What parts of this data structure are
accessed in this code?) asks about changes to a data structure
within a certain section of code.

Programmers are often limited in how precise or refined
their questions can be. For example, in session 1.11,
participant N2 wanted to learn about the properties of an
object in a particular iteration of a large loop; getting a
handle on this object (in the debugger, for instance) proved
difficult. Because tools typically provided only limited
support for defining the scope over which to operate,
programmers end up asking questions more globally than
they intend and, so, the result sets presented will include
many irrelevant items. Determining which entities are
relevant requires additional exploration.

SILLITO ET AL.: ASKING AND ANSWERING QUESTIONS DURING A PROGRAMMING CHANGE TASK 447

TABLE 9
The Number of Questions with

Full or Partial Support by Category

6.2 Support for Maintaining Context

Most tools are designed to answer a specific kind of

question targeting a particular type of artifact and most

tools treat questions as if they were asked in isolation.

However, in our studies, we have observed that, often, a

particular question is part of a larger process involving

multiple questions. For example, answering a question may

involve gathering information from a code base written in

two different languages, each with support from a different

set of programming tools. Even when multiple questions

are asked using the same tool, the results are presented by

that tool in isolation as largely undifferentiated and

unconnected lists. Some tools that we have shown to

partially help answer higher level questions, such as impact

analysis tools, simply produce a list of candidate entities to

consider; investigating those can be nontrivial and gen-

erally requires using other tools. We believe that there are

missed opportunities for tools to make use of the larger

context to help programmers more effectively scope their

questions and to determine what is relevant to their higher

level questions.

6.3 Support for Piecing Information Together

Many tools only support questions involving individual

entities and just one type of relationship, though many of

the questions asked by our participants go beyond what

can be directly asked under these limitations. For example,

questions about subgraphs or groups of subgraphs, such as

question 30 (Why isn’t control reaching this point in the code?),

require considering multiple entities and relationships. In

these situations, as we have discussed, programmers map

their questions to multiple tools that they believe will

produce information to help answer their question.
At times, we observed that getting accurate answers to a

number of questions supported by tools did not necessarily

lead to an accurate answer to the original question the

participant had in mind. For example, early in session 1.4,

one of the participants expressed a desire to “figure out why

one works and one doesn’t” [N4] or, in other words, to

compare how the system’s handling of one type compared

with its handling of a second type. The approach of the pair

was to do two series of references searches, one starting

from each type under investigation (“now who calls this

method?” [N6]). Results were compared by toggling

between search result sets at each step until the sets first

diverged (“this one only has those two” [N6]). This point of

divergence was taken as an answer to the original higher

level question, but, in fact, it was only a partial answer and

missed the most important difference. In cases like these,

the burden is on the programmer to assemble the

information needed to answer their intended question,

which can be difficult: “it gets very hard to think in your head

how that works” [E14] and “I cannot keep track of all of these

similar named things” [N2]. Tool support is missing for

bringing information together, as well as support for

building toward an answer.

7 LIMITATIONS

The studies that we conducted have allowed us to observe
programmers in situations that vary along several dimen-
sions, including the programming tools used, the type of
change task, and the level of prior knowledge of the code
base. This research approach has allowed us to explore and
report on a broad sample of the questions programmers
ask, along with behaviors around answering those ques-
tions. This focus on breadth also has several limitations.

The use of pairs in our first study likely impacted the
change process we observed. We chose this approach to
encourage a verbalization of thought processes and to gain
insight into the intent of actions performed. An alternative
approach to getting similar kinds of information is to have
single participants think aloud [67], which was the
approach taken in our second study. Although the
questions asked in the context of a pair working together
may well be different than in the context of an individual
working alone, each represents a realistic programming
situation.

Our results need to be interpreted relative to the types of
tasks used. In the first study, we chose change tasks that
could not be completed within the allotted time. We chose
complex tasks to stress realism and to stress the investiga-
tion of nonlocal unfamiliar code, a common task faced by
newcomers to a system and by programmers working on
changes that escape the immediate area of the code for
which they have responsibility. In the second study, tasks
were selected by participants and thus varied significantly.
This approach has allowed us to explore a range of realistic
tasks. However, not all questions apply to all tasks or to all
stages of working on a task and, clearly, our studies do not
cover all types of tasks.

In addition to being influenced by the task at hand, the
questions asked and the process of answering the questions
are influenced by the tools available and by individual
differences among the participants themselves. Given a
completely different set of tools or participants, our data
could be quite different. This fact needs to be considered
when interpreting our results or when generalizing them.
This limitation is mitigated by three factors. First, our
studies cover a range of tools in use today, as well as a
range of programmers with different backgrounds and
levels of experience. Second, many of the questions we
observed programmers asking were independent of the
questions that could be answered directly using the tools
provided by the environment. Third, we have performed
an analysis of tool support for answering questions that
covered a wide range of tools.

As mentioned above, the sessions in our two studies
varied along several dimensions and we have not analyzed
how the questions asked and the answering behavior
varied along those dimensions. For example, we have not
carefully compared newcomers to a code base with
programmers working with code with which they have
prior experience nor have we looked for a correlation
between the questions asked and the type of tools used. We
also have made no effort to rank the questions we observed
being asked by some measure of importance and the
frequency data we provide in Table 4 is insufficient for

448 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

ranking the questions as it does not consider factors such as
the time taken to answer a question. Such a ranking would
be valuable for prioritizing future research, as well as
efforts around building tools to support answering parti-
cular questions, but would require a study set up with
more controls on the dimensions along which the sessions
are allowed to vary.

In both of the studies that we have performed, we
observed participants working for only a relatively short
period of time (45 minutes for study one and 30 minutes for
study two) on tasks that typically required much more time
to complete. Similarly, we have not systematically mea-
sured how successful our participants were with the task. A
follow-up study in which participants were asked to work
on a change task to completion would be helpful in at least
two ways. First, it would support an analysis of the
questions asked at different stages of working on a task.
Second, differences in the questions asked and the behavior
around answering those questions could be analyzed to
determine which approaches tended to be more successful
over the course of a task.

Our analysis of the level of tool support for answering
questions (presented in Section 5) is limited in two
important ways. First, it is possible that we have over-
looked a particular research tool applicable to answering
one of the questions our participants asked. This limitation
means that it is possible that one or more questions have
more support than noted in our analysis. Second, as many
of the tools that we considered have been evaluated in only
limited ways (or not at all in some cases), at times it was
difficult to determine the level of support a tool may
provide for answering a given question. We believe that
these limitations had a small effect on particular details of
our analysis and that the overall trends we report hold.

8 SUMMARY

To better understand what a programmer needs to know
about a code base when performing a change task, how a
programmer goes about finding that information, and how
well today’s programming tools help in that process, we
have collected and analyzed data from two observational
studies. Our first study was carried out in a laboratory
setting and the second study was carried out in an
industrial work setting. Through these studies we have
been able to observe a range of programmers working on a
range of change tasks using a range of programming tools.
Analyzing the data collected from these two studies
involved developing generic versions of the questions our
participants asked, which slightly abstract from the
specifics of a particular situation and code base and
analyzing the behavior we observed the participants using
to answer those questions. Based on this analysis, we have
developed a catalog of 44 types of questions programmers
ask and we have categorized those questions into four
categories based on the kind and scope of information
needed to answer a question.

To understand the degree to which existing tools
support answering each type of question, we have analyzed
a range of programming tools and techniques for exploring

source code information. For each question, our analysis

aimed to identify a tool with support for answering that

question and to qualitatively evaluate the level of support

provided. Based on this analysis, we have identified

support that is missing from existing programming tools.

Specifically, we found that programmers need better tool

support for asking more refined or precise questions,

maintaining context, and piecing information together.

We also found that tools often target the questions and

activities of programmers too narrowly. There is a

difference between an environment that provides multiple

tools to answer a range of questions and actually support-

ing a programmer in the process of understanding what

they need to know about a software system.

ACKNOWLEDGMENTS

The authors are grateful to the participants from their two

studies, to Eleanor Wynn for her help with the second

study, and to the reviewers for their valuable suggestions.

This research was funded by the Natural Sciences and

Engineering Research Council of Canada (NSERC), IBM,

and Intel.

REFERENCES

[1] B. De Alwis and G.C. Murphy, “Using Visual Momentum to
Explain Disorientation in the Eclipse IDE,” Proc. IEEE Symp.
Visual Languages and Human Centric Computing, pp. 51-54, 2006.

[2] E. Baniassad and G. Murphy, “Conceptual Module Querying for
Software Engineering,” Proc. Int’l Conf. Software Eng., pp. 64-73,
1998.

[3] V.R. Basili and R.W. Selby, “Comparing the Effectiveness of
Software Testing Strategies,” IEEE Trans. Software Eng., vol. 13,
no. 12, pp. 1278-1296, Dec. 1987.

[4] T.J. Biggerstaff, B.G. Mitbander, and D.E. Webster, “Program
Understanding and the Concept Assignment Problem,” Comm.
ACM, vol. 37, no. 5, pp. 72-82, 1994.

[5] R. Brooks, “Towards a Theory of the Comprehension of Computer
Programs,” Int’l J. Man-Machine Studies, vol. 18, no. 6, pp. 543-554,
1983.

[6] M.H. Brown, Algorithm Animation. MIT Press, 1988.
[7] M.H. Brown, “Zeus: A System for Algorithm Animation and

Multi-View Editing,” Proc. IEEE Workshop Visual Languages, pp. 4-
9, 1991.

[8] K. Chen and V. Rajlich, “Case Study of Feature Location Using
Dependence Graph,” Proc. 10th Int’l Workshop Program Comprehen-
sion, pp. 241-249, 2000.

[9] R. DeLine, A. Khella, M. Czerwinski, and G. Robertson, “Towards
Understanding Programs through Wear-Based Filtering,” Proc.
ACM Symp. Software Visualization, pp. 183-192, 2005.

[10] T. Eisenbarth and R. Koschke, “Locating Features in Source
Code,” IEEE Trans. Software Eng., vol. 29, no. 3, pp. 210-224, Mar.
2003.

[11] A. Erdem, W.L. Johnson, and S. Marsella, “Task Oriented
Software Understanding,” Proc. Automated Software Eng.,
pp. 230-239, 1998.

[12] K. Erdos and H.M. Sneed, “Partial Comprehension of Complex
Programs (Enough to Perform Maintenance),” Proc. Sixth Int’l
Workshop Program Comprehension, pp. 98-105, 1998.

[13] N.V. Flor and E.L. Hutchins, “Analyzing Distributed Cognition in
Software Teams: A Case Study of Team Programming during
Perfective Software Maintenance,” Proc. Fourth Workshop Empirical
Studies of Programmers, pp. 36-64, 1991.

[14] C. Flynt, Tcl/Tk: A Developer’s Guide, second ed. Morgan
Kaufmann, 2003.

[15] M.J. Fyson and C. Boldyreff, “Using Application Understanding
to Support Impact Analysis,” J. Software Maintenance Research and
Practice, vol. 10, no. 2, pp. 93-110, Dec. 1998.

SILLITO ET AL.: ASKING AND ANSWERING QUESTIONS DURING A PROGRAMMING CHANGE TASK 449

[16] B.G. Glaser and A.L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine Publishing, 1967.

[17] N. Gold, “Hypothesis-Based Concept Assignment to Support
Software Maintenance,” Proc. IEEE Int’l Conf. Software Mainte-
nance, pp. 545-548, 2001.

[18] A. Goldberg, Smalltalk-80: The Interactive Programming Environ-
ment. Addison-Wesley, 1984.

[19] M.T. Harandi and J.Q. Ning, “Knowledge-Based Program
Analysis,” IEEE Software, vol. 7, no. 1, pp. 74-81, Jan. 1990.

[20] M. Harman, N. Gold, R. Hierons, and D. Binkley, “Code
Extraction Algorithms which Unify Slicing and Concept Assign-
ment,” Proc. IEEE Working Conf. Reverse Eng., pp. 11-21, 2002.

[21] A. Hejlsberg, S. Wiltamuth, and P. Golde, The C# Programming
Language, second ed. Addison Wesley Professional, 2006.

[22] S. Henninger, “Retrieving Software Objects in an Example-Based
Programming Environment,” Proc. 14th Int’l ACM SIGIR Conf.
Automated Software Eng., pp. 408-418, 1991.

[23] J.D. Herbsleb and E. Kuwana, “Preserving Knowledge in Design
Projects: What Designers Need to Know,” Proc. Human Factors in
Computing Systems, pp. 7-14, 1993.

[24] R. Holmes and G.C. Murphy, “Using Structural Context to
Recommend Source Code Examples,” Proc. Int’l Conf. Software
Eng., pp. 117-125, 2005.

[25] S. Ibrahim, H.B. Idris, and A. Deraman, “Case Study: Reconnais-
sance Techniques to Support Feature Location Using Recon2,”
Proc. Asia-Pacific Software Eng. Conf., pp. 371-378, 2003.

[26] D. Jackson, “Aspect: An Economical Bug Detector,” Proc. Int’l
Conf. Software Eng., pp. 13-22, 1994.

[27] D. Jackson and E.J. Rollins, “A New Model of Program
Dependences for Reverse Engineering,” Proc. SIGSOFT Founda-
tions of Software Eng. Conf., pp. 2-10, 1994.

[28] D. Janzen and K. De Volder, “Navigating and Querying Code
without Getting Lost,” Proc. Int’l Conf. Aspect-Oriented Software
Development, pp. 178-187, 2003.

[29] W.L. Johnson and A. Erdem, “Interactive Explanation of Software
Systems,” Proc. Knowledge-Based Software Eng., pp. 155-164, 1995.

[30] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A Multi-
linguistic Token-Based Code Clone Detection System for Large
Scale Source Code,” IEEE Trans. Software Eng., vol. 28, no. 7,
pp. 654-670, July 2002.

[31] A.J. Ko, R. DeLine, and G. Venolia, “Information Needs in
Collocated Software Development Teams,” Proc. Int’l Conf. Soft-
ware Eng., 2007.

[32] A.J. Ko and B.A. Myers, “Designing the Whyline: A Debugging
Interface for Asking Questions about Program Failures,” Proc.
Conf. Computer Human Interaction, pp. 151-158, 2004.

[33] A.J. Ko, B.A. Myers, M.J. Coblenz, and H.H. Aung, “An
Exploratory Study of How Developers Seek, Relate, and Collect
Relevant Information during Software Maintenance Tasks,” IEEE
Trans. Software Eng., vol. 32, no. 12, pp. 971-987, Dec. 2006.

[34] J. Koenemann and S.P. Robertson, “Expert Problem Solving
Strategies for Program Comprehension,” Proc. SIGCHI Conf.
Human Factors in Computer Systems: Reaching through Technology,
pp. 125-130, 1991.

[35] W. Kozaczynski, S. Letovsky, and J. Ning, “A Knowledge-Based
Approach to Software System Understanding,” Proc. Knowledge-
Based Software Eng. Conf., pp. 162-170, 1991.

[36] S. Letovsky, “Cognitive Processes in Program Comprehension,”
Proc. Conf. Empirical Studies of Programmers, pp. 80-98, 1986.

[37] S. Letovsky, “Cognitive Processes in Program Comprehension,”
J. Systems and Software, vol. 7, no. 4, pp. 325-339, Dec. 1987.

[38] D. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental Models
and Software Maintenance,” Proc. Conf. Empirical Studies of
Programmers, pp. 80-98, 1986.

[39] S. Mancoridis, B. Mitchell, C. Rorres, Y.-F. Chen, and E. Gansner,
“Using Automatic Clustering to Produce High-Level System
Organizations of Source Code,” Proc. Int’l Workshop Program
Comprehension, pp. 45-53, 1998.

[40] R. Mays, “Power Programming with the Lemma Code Viewer,”
technical report, IBM TRP Networking Laboratory, 1996.

[41] N. Miyake, “Constructive Interaction and the Iterative Process of
Understanding,” Cognitive Science, vol. 10, no. 2, pp. 151-177, 1986.

[42] H.A. Muller, M.A. Orgun, S.R. Tilley, and J.S Uhl, “A Reverse
Engineering Approach to Subsystem Structure Identification,”
Software Maintenance: Research and Practice, vol. 5, no. 4, pp. 181-
204, 1993.

[43] B.A. Myers, R. Chandhok, and A. Sareen, “Automatic Data
Visualization for Novice Pascal Programmers,” Proc. IEEE Work-
shop Visual Languages, pp. 192-198, 1988.

[44] P.D. O’Brien, D.C. Halbert, and M.F. Kilian, “The Trellis
Programming Environment,” Proc. Conf. Object-Oriented Program-
ming, Systems, and Applications, pp. 91-102, 1987.

[45] N. Pennington, “Stimulus Structures and Mental Representations
in Expert Comprehension of Computer Programs,” Cognitive
Psychology, vol. 19, pp. 295-341, 1987.

[46] S.P. Reiss, “Connecting Tools Using Message Passing in the Field
Environment,” IEEE Software, vol. 7, no. 4, pp. 57-66, July 1990.

[47] X. Ren, F. Shah, F. Tip, B.G. Ryder, and O. Chesley, “Chianti: A
Tool for Change Impact Analysis of Java Programs,” Proc. Object-
Oriented Systems, Languages, Programming, and Applications,
pp. 432-448, 2004.

[48] M.P. Robillard, W. Coelho, and G.C. Murphy, “How Effective
Developers Investigate Source Code: An Exploratory Study,”
IEEE Trans. Software Eng., vol. 30, no. 12, pp. 889-903, Dec. 2004.

[49] M.P. Robillard and G.C. Murphy, “FEAT: A Tool for Locating,
Describing, and Analyzing Concerns in Source Code,” Proc. Int’l
Conf. Software Eng., pp. 822-823, 2003.

[50] B. Shneiderman, Software Psychology: Human Factors in Computer
and Information Systems. Winthrop, 1980.

[51] B. Shneiderman and R. Mayer, “Syntactic/Semantic Interactions
in Programmer Behavior: A Model and Experimental Results,”
Int’l J. Computer and Information Sciences, vol. 8, no. 3, pp. 219-238,
1979.

[52] J. Sillito, G.C. Murphy, and K. De Volder, “Questions Program-
mers Ask during Software Evolution Tasks,” Proc. SIGSOFT
Foundations of Software Eng. Conf., pp. 23-34, 2006.

[53] J. Sillito, K. De Volder, B. Fisher, and G. Murphy, “Managing
Software Change Tasks: An Exploratory Study,” Proc. Int’l Symp.
Empirical Software Eng., 2005.

[54] J. Singer, T. Lethbridge, N. Vinson, and N. Anquetil, “An
Examination of Software Engineering Work Practices,” Proc.
IBM Centre for Advanced Studies Conf., pp. 209-223, 1997.

[55] V. Sinha, D. Karger, and R. Miller, “Relo: Helping Users Manage
Context during Interactive Exploratory Visualization of Large
Codebases,” Proc. Visual Languages and Human-Centric Computing
Conf., pp. 187-194, 2006.

[56] E. Soloway and K. Ehrlich, “Empirical Studies of Programming
Knowledge,” IEEE Trans. Software Eng., vol. 10, no. 5, pp. 595-609,
1984.

[57] R.M. Stallman, “Emacs the Extensible, Customizable Self-Doc-
umenting Display Editor,” Proc. ACM SIGPLAN SIGOA Symp.
Text Manipulation, pp. 147-156, 1981.

[58] J. Steffen, “Interactive Examination of a C Program with
CSCOPE,” Proc. Usenix Winter Conf., pp. 170-175, 1985.

[59] J. Steven, P. Chandra, B. Fleck, and A. Podgurski, “Jrapture: A
Capture/Replay Tool for Observation-Based Testing,” Proc. ACM
SIGSOFT Int’l Symp. Software Testing and Analysis, pp. 158-167,
2000.

[60] M.-A.D. Storey, F.D. Fracchia, and H.A. Muller, “Cognitive
Design Elements to Support the Construction of a Mental Model
During Software Visualization,” Proc. Int’l Workshop Program
Comprehension, pp. 17-28, 1997.

[61] M.-A.D. Storey, H.A. Muller, and K. Wong, “Manipulating and
Documenting Software Structures,” Software Visualization, pp. 244-
263, 1996.

[62] M.-A.D. Storey, K. Wong, and H.A. Muller, “How Do Program
Understanding Tools Affect How Programmers Understand
Programs?” Science of Computer Programming, vol. 36, nos. 2-3,
pp. 183-207, 2000.

[63] A.L. Strauss and J. Corbin, Basics of Qualitative Research: Techniques
and Procedures for Developing Grounded Theory. Sage Publications,
1998.

[64] B. Stroustrup, The C++ Programming Language, second ed.
Addison Wesley Longman, 1991.

[65] W. Teitelman and L. Masinter, “The Interlisp Programming
Environment,” Computer, vol. 14, no. 4, pp. 25-34, Apr. 1981.

[66] D. Tidwell, XSLT, first ed. O’Reilly Media, 2001.
[67] M.W. van Someren, Y.F. Barnard, and J.A.C. Sandberg, The Think

Aloud Method; A Practical Guide to Modelling Cognitive Processes.
Academic Press, 1994.

[68] A. von Mayrhauser and A.M. Vans, “From Code Understanding
Needs to Reverse Engineering Tool Capabilities,” Proc. Computer-
Aided Software Eng., pp. 230-239, 1993.

450 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 34, NO. 4, JULY/AUGUST 2008

[69] A. Walenstein, “Cognitive Support in Software Engineering Tools:
A Distributed Cognition Framework,” PhD dissertation, Simon
Fraser Univ., 2002.

[70] A. Walenstein, “Theory-Based Cognitive Support Analysis of
Software Comprehension Tools,” Proc. Int’l Workshop Program
Comprehension, pp. 75-84, 2002.

[71] M. Weiser, “Program Slicing,” Proc. Int’l Conf. Software Eng.,
pp. 439-449, 1981.

[72] N. Wilde and C. Casey, “Early Field Experience with the Software
Reconnaissance Technique for Program Comprehension,” Proc.
Working Conf. Reverse Eng., pp. 270-276, 1996.

[73] L. Williams, R.R. Kessler, W. Cunningham, and R. Jeffries,
“Strengthening the Case for Pair-Programming,” IEEE Software,
vol. 17, no. 4, pp. 19-25, July/Aug. 2000.

[74] D.D. Woods, “Visual Momentum: A Concept to Improve the
Cognitive Coupling of Person and Computer,” Int’l J. Man-
Machine Studies, vol. 21, pp. 229-244, 1984.

[75] S.G. Woods, A.E. Quilici, and Q. Yang, Constraint-Based Design
Recovery for Software Engineering: Theory and Experiments. Springer,
1997.

[76] X. Zhang and R. Gupta, “Cost Effective Dynamic Program
Slicing,” Proc. ACM SIGPLAN Conf. Programming Language Design
and Implementation, pp. 94-106, 2004.

Jonathan Sillito received the BSc and MSc
degrees in computing science from the Uni-
versity of Alberta in 1998 and 2000, respec-
tively, and the PhD degree in computer science
from the University of British Columbia in 2007.
He is currently an assistant professor in the
Department of Computer Science at the Uni-
versity of Calgary. His research interests are in
the human and social aspects of software
engineering. He is a member of the IEEE and

the IEEE Computer Society.

Gail C. Murphy received the BSc degree in
computing science from the University of Alberta
in 1987 and the MS and PhD degrees in
computer science and engineering from the
University of Washington in 1994 and 1996,
respectively. From 1987 to 1992, she worked as
a software designer in industry. She is currently
a professor in the Department of Computer
Science at the University of British Columbia.
Her research interests are in software evolution,

software design, and source code analysis. She is a member of the
IEEE and the IEEE Computer Society.

Kris De Volder received the PhD degree from
the Vrije Universiteit Brussel, Belgium, in 1998,
where his work centered on the use of logic
programming to support synthesizing software
implemented in Java. He is an assistant
professor with the Computer Science Depart-
ment at the University of British Columbia. He
did seminal work on applying logic metapro-
gramming to aspect-oriented software develop-
ment. His current research interests are

programming-language design and software development tools.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

SILLITO ET AL.: ASKING AND ANSWERING QUESTIONS DURING A PROGRAMMING CHANGE TASK 451

