
Recovering Traceability Links between
Code and Documentation

Giuliano Antoniol, Member, IEEE, Gerardo Canfora, Member, IEEE, Gerardo Casazza, Member, IEEE,

Andrea De Lucia, Member, IEEE, and Ettore Merlo, Member, IEEE

Abstract—Software system documentation is almost always expressed informally in natural language and free text. Examples include

requirement specifications, design documents, manual pages, system development journals, error logs, and related maintenance

reports. We propose a method based on information retrieval to recover traceability links between source code and free text

documents. A premise of our work is that programmers use meaningful names for program items, such as functions, variables, types,

classes, and methods. We believe that the application-domain knowledge that programmers process when writing the code is often

captured by the mnemonics for identifiers; therefore, the analysis of these mnemonics can help to associate high-level concepts with

program concepts and vice-versa. We apply both a probabilistic and a vector space information retrieval model in two case studies to

trace C++ source code onto manual pages and Java code to functional requirements. We compare the results of applying the two

models, discuss the benefits and limitations, and describe directions for improvements.

Index Terms—Redocumentation, traceability, program comprehension, object orientation, information retrieval.

æ

1 INTRODUCTION

MOST of the documentation that accompanies large
software systems consists of free text documents

expressed in a natural language. Examples include require-
ments and design documents, user manuals, logs of errors,
maintenance journals, design decisions, reports from
inspection and review sessions, and also annotations of
individual programmers and teams. In addition, free text
documents often capture the available knowledge of the
application domain, for example, in the form of laws and
regulations or in technical/scientific handbooks. Even when
(semi-)formal models are applied, free text is largely used
either to add semantics and context information in the form
of comments, or to ease the understanding of the formal
models to nontechnical readers. As a matter of fact,
diagrammatic representations are often supplemented with
free text descriptions that convey information that is not
captured by the diagrams themselves and a Z [43]
specification document is typically an amalgam of mathe-
matics (that is precise and supports reasoning) and
explanatory text that makes the document an effective
means of communication.

Establishing traceability links between the free text

documentation associated with the development and

maintenance cycle of a software system and its source

code can be helpful in a number of tasks. A few notable

examples are:

. Program comprehension. Existing cognition models
share the idea that program comprehension occurs
in a bottom-up manner [39], [40], a top-down
manner [14], [51], or some combination of the two
[30], [32], [33], [34]. They also agree that program-
mers use different types of knowledge during
program comprehension, ranging from domain
specific knowledge to general programming knowl-
edge [14], [50], [53]. Traceability links between areas
of code and related sections of free text documents,
such as an application domain handbook, a specifi-
cation document, a set of design documents, or
manual pages, aid both top-down and bottom-up
comprehension. In top-down comprehension, once a
hypothesis has been formulated, the traceability
links provide hints on where to look for beacons
that either confirm or refute it. In bottom-up
comprehension, the main role of the traceability
links is to assist programmers in the assignment of a
concept to a chunk of code and in the aggregation of
chunks into more abstract concepts.

. Maintenance. As the software industry matures,
companies have built up a sizable number of legacy
systems. A legacy system is an old system which is
valuable for the corporation which owns and which
often developed it. For the purpose of maintaining
legacy systems, design recovery, as defined in [18],
may be performed, thus requiring different sources
of information, such as source code, design doc-
umentation, personal experience, and general
knowledge about problem and application domains
[12], [35]. Central to design recovery is representa-
tion [47], for which different schemes have been
used and described in [45] and [13]. Traceability
links between code and other sources of information

970 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 10, OCTOBER 2002

. G. Antoniol, G. Canfora, and A. De Lucia are with the Research Centre on
Software Technology, Department of Engineering, University of Sannio,
Palazzo Bosco Lucarelli, Piazza Roma, I-82100 Benevento, Italy.
E-mail: antoniol@ieee.org, {gerardo.canfora, delucia}@unisannio.it.

. G. Casazza is with the Department of Informatica e Sistemistica,
University of Naples, Federico II, Via Claudio 21, I-80125 Naples, Italy.
E-mail: gec@unisannio.it.

. E. Merlo is with the Department of Electrical and Computer Engineering,
Ecole Politechnique, C.P. 6079—Succ. Centre Ville, Montreal, Quebec,
Canada. E-mail: ettore.merlo@polymtl.ca.

Manuscript received 15 Oct. 2000; revised 5 Apr. 2001; accepted 7 Nov. 2001.
Recommended for acceptance by A. Andrews.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 115376.

0098-5589/02/$17.00 ß 2002 IEEE

are a sensible help to perform the combined analysis
of heterogeneous information and, ultimately, to
associate domain concepts with code fragments and
vice-versa.

. Requirement tracing. Traceability links between the

requirement specification document and the code

are a key to locate the areas of code that contribute to

implement specific user functionality [42], [28], [44].
This is helpful to assess the completeness of an

implementation with respect to stated requirements,

to devise complete and comprehensive test cases,

and to infer requirement coverage from structure

coverage during testing. Traceability links between

requirements and code can also help to identify the

code areas directly affected by a maintenance

request as stated by an end user. Finally, they are
useful during code inspection, providing inspectors

with clues about the ultimate goals of the code at

hand and in quality assessment, for example,

singling out loosely-coupled areas of code that

implement heterogeneous requirements.
. Impact analysis. A major goal of impact analysis is

the identification of the work products affected by a
proposed change [9]. Changes may initially have
been made to any of the documents that comprise a
system, or to the code itself, and have then to be
propagated to other work products [25], [52]. As an
example, enhancing an existing system by adding
new functions is, in most cases, initiated at the
requirement specification level and changes are then
propagated through design documents down to the
source code. Conversely, a change of an algorithm or
a data structure may start at the code level and is
then documented in the relevant sections of the
design documentation. This shows a need for a
means of establishing traceability links between code
and free text documentation.

. Reuse of Existing Software. Deriving reusable
assets from existing software systems has emerged
as a winning approach to promote the practice of
reuse in industry [16], [17]. Means to trace code to
free text documents are a sensible help to locate
reuse-candidate components. Indeed, since existing
software often has not been produced with reuse in
mind, knowledge about its functionality and the
application domain concepts it implements is spread
in several places, including requirement specifica-
tion documents, manual pages, design documents,
and the code itself. In addition, traceability links
between the code and an application domain hand-
book are helpful to index reusable assets according
to an application domain model and to implement
querying facilities that retrieve them for potential
reuse based on a user request [10], [15], [24].

Unlike other reverse engineering problems, recovering

traceability links between free text documentation and

source-code components cannot be simply based on

compiler techniques because of the difficulty of applying

syntactic analysis to natural language sentences. We

propose a method based on Information Retrieval (IR) to

establish and maintain traceability links between the source
code and free text documents. Automated IR systems are
concerned with the retrieval of documents from (usually
very large) document databases, based on user information
needs [23]. They prepare the collection of documents for
retrieval through an indexing process; user needs are
captured by phrases which are themselves indexed and
used to rank the documents.

IR has proven useful in many areas, including the

management of huge scientific and legal literature, office

automation, and the support to complex engineering

projects such as software engineering projects. We believe

that IR techniques can provide a way to semiautomatically

recovering traceability links between the documentation of

a system and its source code. Similar to Biggerstaff [12] and

Biggerstaff et al. [13], a premise of our work is that

programmers use meaningful names for program items,

such as functions, variables, types, classes, and methods.

Much of the application-domain knowledge that program-

mers process when writing the code is often captured by the

mnemonics for identifiers; therefore, the analysis of these

mnemonics can help to associate high-level concepts with

program concepts, and vice-versa [12], [13], [38]. Moreover,

while in [12], [13], the names of program items are used as a

clue to suggest concepts implemented in the code, we use

the name to locate relevant pieces of documentation.
A widely used approach to retrieve documents from the

document space is ranked retrieval, which returns a ranked
list of documents [27]. The method proposed in this paper
ranks the free-text documents against queries constructed
from the identifiers of source code components and can be
customized to work with different IR models. In this paper,
two IR models have been applied, a probabilistic model and
a vector space model [27].

In the probabilistic model, free-text documents are

ranked according to the probability of being relevant to a

query computed on a statistical basis. To compute this

ranking, we exploit the idea of a language model, i.e., a

stochastic model that assigns a probability to every string of

words taken from a prescribed vocabulary [21]. We estimate

a language model (actually, a unigram approximation of the

model) for each document, or identifiable section, and use a

Bayesian classifier to score the sequences of mnemonics

extracted from each source code component against the

models. A high score indicates a high probability that a

particular sequence of mnemonics be relevant to the

document; therefore, we interpret it as an indication of the

existence of a semantic link between the component from

which the sequence had been extracted and the document.
The vector space model treats documents and queries as

vectors in an n-dimensional space, where n is the number of
indexing features (in our case, words in the vocabulary).
Documents are ranked against queries by computing a
distance function between the corresponding vectors. In
this paper, the documents are ranked according to a widely
used distance function, i.e., the cosine of the angle between
the vectors [27], [48].

The two IR models have been applied in two case
studies. In the first case study, the C++ classes of the LEDA

ANTONIOL ET AL.: RECOVERING TRACEABILITY LINKS BETWEEN CODE AND DOCUMENTATION 971

library (Library of Efficient Data Types and Algorithms)1

have been traced to relevant pages. In the second case
study, traceability links have been recovered between the
Java classes of a hotel management system, named
Albergate, and its functional requirements, as specified in
the requirement document. The results, measured in terms
of the two well-known IR metrics, precision and recall [23],
are in both cases satisfactory. This supports the hypothesis
that IR, either probabilistic or vector space models, provides
a practicable solution to the problem of semiautomatically
recovering traceability links.

The traceability link recovery method based on IR has
been evaluated by comparing it with the results achieved
using the grep UNIX utility, according to the approach
proposed by Maarek et al. [31]. Finally, the benefits of the
method in helping software engineers to recover traceability
links between code and free text documentation has been
experimentally evaluated.

The remainder of the paper is organized as follows:
Section 2 presents the traceability link recovery method and
discusses the IR models exploited. Results from two case
studies are presented in Section 3, together with a
discussion and comparison of the performances of the two
IR models used. Section 4 evaluates the benefits of IR models
when applied to the problem of recovering traceability
links. Section 5 discusses related work; finally, Section 6
gives concluding remarks and outlines lessons learned and
directions for future work.

2 TRACEABILITY LINK RECOVERY METHOD

Our method to recover traceability links between code and
free text documentation uses the identifiers extracted from a
source code component as a query to retrieve the
documents relevant to the component. We assume that
programmers use meaningful names (i.e., names derived
from the application and problem domain) for their
identifiers and/or that identifiers are preprocessed to

extract names that share the semantics of the requirements
(e.g., splitting sequences of words contained in a single
identifier); consequently, “words” were chosen as indexing
feature.

This section describes the overall traceability link
recovery method, gives background information on the
IR models applied, and discusses tool support.

2.1 The Process

Fig. 1 shows the approach for traceability link recovery
using IR models. The figure highlights two paths of
activities, one to prepare the document for retrieval
(document path) and the other to extract the queries from
code (code path).

In the document path, documents are indexed based on a
vocabulary that is extracted from the documents them-
selves. The construction of the vocabulary and the indexing
of the documents are preceded by a text normalization
phase performed in three steps:

1. In the first step, all capital letters are transformed
into lower case letters.

2. In the second step, stop-words (such as articles,
punctuation, numbers, etc.) are removed.

3. In the third step, a morphological analysis is used to
convert plurals into singulars and to transform
conjugated forms of verbs into infinitives.

The code path builds and indexes a query for each source
code component. The construction of a query consists of
three steps:

1. Identifier extraction parses the source code compo-
nent and extracts the list of its identifiers.

2. Identifier separation splits identifiers composed of
two or more words into separate words (i.e.,
AmountDue and amount_due would be split into
the words amount and due).

3. Text normalization applies the three steps described
above for document indexing.

Finally, a classifier computes the similarity between
queries and documents and returns a ranked list of

972 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 10, OCTOBER 2002

1. Freely available for academic research and teaching from http://
www.mpi.sb.mpg.de/LEDA.

Fig. 1. Traceability Link Recovery Method.

documents for each source code component. Documents are

ranked against a source code component by decreasing

similarity.
Of course, indexing the documents and the queries and

ranking the documents against a query depend on the

particular IR model adopted. In the following sections, two

IR models are described, a probabilistic model and a vector

space model. In the probabilistic model, free text documents

are ranked according to the probability of being relevant to

a source code component. The vector space model treats

documents and queries as vectors; documents are ranked

against queries by computing a distance function between

the corresponding vectors.

2.2 Probabilistic IR Model

This model computes the ranking scores as the probability

that a document Di is related to the source code component

Q (that is the query Q).

SimilarityðDi;QÞ ¼ PrðDijQÞ:

Applying Baye’s rule [11], the conditioned probability

above can be transformed in:

PrðDijQÞ ¼
PrðQjDiÞPrðDiÞ

PrðQÞ :

For a given source code component, PrðQÞ is a constant

and we can further simplify the model by assuming that all

system documents have the same probability. Therefore, for

a given source code component Q, all documents Di are

ranked by the conditioned probabilities PrðQjDiÞ.
These conditioned probabilities are computed by esti-

mating a stochastic language model [21] for each document

Di. Indeed, due to the hypothesis that the source code

components and the documents insist on the same

vocabulary V , a source code component Q can be

represented by a sequence of m words w1; w2; . . . ; wm (the

identifiers of the source code component) of the vocabulary

V and the conditioned probability:

PrðQjDiÞ ¼ Prðw1; w2; . . . ; wm j DiÞ

can be estimated on a statistical basis by exploiting a

stochastic language model for the document Di. This

model collects statistics about the frequence of the

occurrences of sequences of words of V in Di that allow

to estimate Prðw1; w2; . . . ; wm j DiÞ for any sequence of

words w1; w2; . . . ; wm of V . However, the probability above

can be written as:

Prðw1; w2; . . . ; wm j DiÞ

¼ Prðw1 j DiÞ
Ym
k¼2

Prðwk j w1; . . . ; wkÿ1; DiÞ:

and when m increases the conditioned probabilities

involved in the above product quickly become difficult to

estimate for any possible sequence of m words in the

vocabulary. A simplification can be introduced by con-

ditioning the dependence of each word to the last nÿ 1

words (with n < m):

Prðw1; w2; . . . ; wm j DiÞ

’ Prðw1; . . . ; wnÿ1 j DiÞ
Ym
k¼n

Prðwk j wkÿnþ1; . . . ; wkÿ1; DiÞ:

This n-gram approximation, which formally assumes a
time-invariant Markov process [20], greatly reduces the
statistics to be collected in order to compute PrðQjDiÞ;
clearly, this also introduces an imprecision. However,
n-gram models are still difficult to estimate because, if jV j
is the size of the vocabulary, all possible jV jn sequences of
words in the vocabulary have to be considered; indeed, the
estimation can be very demanding even for a 2-gram
(bigram) model.2 Moreover, the occurrence of any sequence
of words in a document Di is a rare event, as it generally
occurs only a few times and most of the sequences will
never occur due to the sparseness of data. Therefore, in our
approach, we have considered a unigram approximation
(n ¼ 1) that corresponds to consider all words wk to be
independent. Therefore, each document Di is represented
by a language model where unigram probabilities are
estimated for all words in the vocabulary and:

SimilarityðDi;QÞ ¼ PrðQjDiÞ

¼ Prðw1; w2; . . . ; wm j DiÞ ’
Ym
k¼1

Prðwk j DiÞ:

Unigram estimation is based on the term frequency of
each word in a document. However, using the simple term
frequency would turn the product

Qm
k¼1 Prðwk j DiÞ to zero,

whenever any word wk is not present in the document Di.
This problem, known as the zero-frequency problem [55],
can be avoided using different approaches (see [21]). The
approach we have adopted consists of smoothing the
unigram probability distribution by computing the prob-
abilities as follows:

Prðwk j DiÞ ¼
ckÿ�
N þ � if wk occurs in Di

� otherwise,

�
where N is the total number of words in the document Di

and ck is the number of occurrences of words wk in the
document Di. The interpolation term � is:

� ¼ n

N � jV j�;

where n is the number of different words of the vocabulary
V occurring in the document Di. The value of the parameter
� is computed according to Ney and Essen [37] as follows:

� ¼ nð1Þ
nð1Þ þ 2 � nð2Þ ;

where nðjÞ is the number of words occurring j times in the
document Di.

2.3 Vector Space IR Model

Vector space IR models map each document and each query
onto a vector [27]. In our case, each element of the vector
corresponds to a word (or term) in a vocabulary extracted

ANTONIOL ET AL.: RECOVERING TRACEABILITY LINKS BETWEEN CODE AND DOCUMENTATION 973

2. In a bigram model, Prðw1; w2; . . . ; wm j DiÞ ’ Prðw1 j DiÞ
Qm

k¼2
Prðwk j wkÿ1DiÞ.

from the documents themselves. If jV j is the size of the
vocabulary, then the vector ½di;1; di;2; . . . di;jV j� represents the
document Di. The jth element di;j is a measure of the
weight of the jth term of the vocabulary in the document
Di. Different measures have been proposed for this weight.
In the simplest case, it is a Boolean value, either 1 if the jth
term occurs in the document Di, or 0 otherwise; in other
cases, more complex measures are constructed based on the
frequency of the terms in the documents.

We use a well-known IR metric called tf-idf [48].
According to this metric, the jth element di;j is derived
from the term frequency tfi;j of the jth term in the document
Di and the inverse document frequency idfj of the term over
the entire set of documents. The term frequency tfi;j is the
ratio between the number of occurrences of word jth over
the total number of words contained in the document Di.
The inverse document frequency idfj is defined as:

idfj ¼
Total Number of Documents

Number of Documents containing the jth term
:

The vector element di;j is:

di;j ¼ tfi;j � logðidfjÞ:

The term logðidfjÞ acts as a weight for the frequency of a
word in a document: the more the word is specific to the
document, the higher the weight.

The list of identifiers extracted from a source code
component Q is represented in a similar way by a vector
½q1; q2; :::qjV j�. The similarity between a document Di and a
source code component Q is computed as the cosine of the
angle between the corresponding vectors:

SimilarityðDi;QÞ ¼
PV

j¼1 di;jqjffiPV
h¼1ðdi;hÞ

2 �
PV

k¼1ðqkÞ
2

q :

2.4 Tool Support

We have developed a toolkit that supports and partially
automates the method shown in Fig. 1. In particular, we
consider source code components consisting each of an
object-oriented class, written either in C++ or in Java. We
use top-down recursive parsers to analyze C++ and Java
source code. The parse trees are traversed and, each time a
class is encountered, the comments, if any, and the
identifiers of attributes, methods, and method parameters
are stored in support files. For the present study, comments
were disregarded: the entire traceability link recovery
method relies on the mnemonics used for classes, attributes,
methods, and parameters.

We have integrated public domain facilities and tools
developed in house to assist text processing for the English
and Italian languages. Identifier separation is performed in
two steps: the first step is completely automated and
recognizes words separated by underscore and sequences
of words starting with capital letters. The second step is
semi-automatic: the tool exploits spelling facilities to
prompt the software engineer with the words that might
be separated. The first two steps of text normalization,
namely letter transformation and stop-word removing,
have also been completely automated. Finally, we have

implemented a semiautomatic tool that uses thesaurus

facilities to help users to transform words into their roots.
The document indexer and document classifier have

been implemented according to the two IR models experi-

mented. For the probabilistic model, we used the CMU tool

suite [46] to estimate the stochastic language models and we

have implemented a Bayesian classifier that computes, for

each language model, the PrðQjDiÞ for the given input text.

For the vector space IR model, the computation of the vector

elements and the final step of cosine computation and

document ranking are implemented by simple Perl scripts.

3 CASE STUDY

We have applied the traceability link recovery method

based on both the probabilistic IR model and the vector

space IR model in two case studies with different

characteristics. The results have been assessed using two

widely accepted IR metrics, namely, recall and precision [23].

Recall is the ratio of the number of relevant documents

retrieved for a given query over the total number of relevant

documents for that query. Precision is the ratio of the

number of relevant documents retrieved over the total

number of documents retrieved. It is worth noting that each

query retrieves a ranked list of documents. We use a cut

level N to select the first N documents in the list and

analyze the behavior of Recall and Precision with different

values of N.
Recovering traceability links is a semiautomatic process.

The main role of IR tools consists of restricting the

document space, while recovering all documents relevant

to each source code component. Without tool support, one

must analyze all the documents before discovering that a

given class is not described by any document; with a

restricted document space the number of documents to

analyze is generally much smaller. This means that high

recall values (possibly 100 percent) should be pursued; of

course, in this case higher precision values reduce the effort

required to discard false positives (documents that are

retrieved but are not relevant to a given query).
It is worth noting that the recall is undefined for queries

that do not have relevant documents associated. However,

these queries may retrieve false positives that have to be

discarded by the software engineer. To take into account

such queries, we used the following aggregate formulas:

Recall ¼
P

i #ðRelevanti ^RetrievediÞP
i #Relevanti

%;

Precision ¼
P

i #ðRelevanti ^RetrievediÞP
i #Retrievedi

%;

where i ranges over the entire query set, including the

queries with no associated documents. These queries do not

affect the computation of the recall (Relevanti is the empty

set), while they negatively affect the computation of the

precision whenever Retrievedi is not the empty set. This

negative influence takes into account the effort required to

discard false positives.

974 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 10, OCTOBER 2002

3.1 LEDA Case Study

The first case study was a freely available C++ library of
foundation classes, called LEDA (Library of Efficient Data
types and Algorithms), developed and distributed by Max-
Planck-Institut für Informatik, Saarbrücken, Germany. We
analyzed the code and the documentation of release 3.4,
consisting of 95 KLOC, 208 classes, and 88 manual pages.
The aim was to map source code classes onto manual pages.

The LEDA manual pages contain a high number of
identifiers that also appear in the source code. Actually, the
LEDA team generated manual pages with scripts that extract
comments from the source files. A markup language was
used to identify the comment fragments to be extracted.
Function names, parameter names, and data type names
contained in these comments appear in the manual pages,
thus making the traceability link recovery task easier. For
this reason, we applied a simplified version of the method
shown in Fig. 1. The simplification concerned the identifier
separation and the text normalization activities; in parti-
cular, identifier separation only consisted of splitting
identifiers containing underscores, while text normalization
was performed only at the first level of accuracy, i.e., the
transformation of capital letters into lower case letters.

To validate the results, we used a 208� 88 traceability
matrix linking each class to the manual page describing it
[6]. Each class was described by at most one manual page
and many classes (110) were not described by any manual
page. The number of links in the traceability matrix was 98.
Ten manual pages did not describe LEDA classes, but basic
concepts and algorithms, thus, the number of relevant
manual pages was 78. This means that some manual pages
described more than one class: for example, very often an
abstract class and its derived concrete classes were
described by the same manual page (we discovered 20 of
such cases).

Table 1 shows the results. The first two columns show
the number of documents retained for each query (first N
documents in the ranked list) and the total number of
documents retrieved by all queries for each cut level. The
table also shows for each IR model and each cut level the
total number of relevant documents retrieved by all queries
and the aggregate precision and recall values.

The poor results of the precision with both IR models are
due to the fact that most of the queries (110) were derived
from classes without relevant manual pages associated
(these queries contribute to the total number of retrieved
documents). The main difference between the two
IR models is that the probabilistic model retrieves most of
the documents with smaller cut values. However, the vector
space model achieves 100 percent of recall sooner than the
probabilistic model (see Fig. 2), i.e., cutting the ranked list of
documents at 12 candidates, whereas 17 is the cut level
required to achieve 100 percent of recall with the probabil-
istic model (not shown in the table).

3.2 Albergate Case Study

The second case study was a software system, called
Albergate, developed in Java according to a waterfall
process. For this system, all the documentation related to
the entire software development process was available (e.g.,

ANTONIOL ET AL.: RECOVERING TRACEABILITY LINKS BETWEEN CODE AND DOCUMENTATION 975

TABLE 1
LEDA Results

Fig. 2. LEDA precision/recall results.

requirement documents, design documents, test cases, etc.).
Albergate is a software system designed to implement all
the operations required to administer and manage a small/
medium size hotel (room reservation, bill calculation, etc.).
It was developed from scratch by a team of final year
students at the University of Verona (Italy) on the basis of
16 functional requirements written in Italian (as well as
all other system documentation). Albergate consists of
95 classes and about 20 KLOC and exploits a relational
database. The aim of this case study was to trace source
code classes to functional requirements [5]. We focused on
the 60 classes implementing the user interface of the
software system.

To validate the results, the original developers were
required to provide a 16� 60 traceability matrix linking
each requirement to the classes implementing it. Most of the
functional requirements were implemented by a low
number of classes: on the average, a requirement was
implemented by about 4 classes with a maximum of 10.
Most classes were associated with one requirement, only
6 classes were associated with two requirements, and
8 classes were not associated with any functional require-
ment. The total number of links in the traceability matrix
was 58.

In this case study, we applied the full version of the
text processing steps described in section 3.1 (see Fig. 1).
The motivation was that the relative distance between
source code and documents was higher than in the LEDA

case study. Common words between requirements and
classes were quite infrequent in the Albergate system: In
fact, unlike LEDA manual pages, Albergate functional
requirements were produced in the early phases of the
software development life cycle. Moreover, the Italian
language has a complex grammar: Verbs have many more
conjugated variants than English verbs, plurals are almost
always irregular, and adverbs and adjectives have
irregular forms, too.

Table 2 shows the results of this case study (the meaning
of the columns is the same as in Table 1). Unlike the LEDA
case study, the results of the vector space model are not
very different than those produced by the probabilistic
model (see Fig. 3). However, for the probabilistic model
100 percent of recall was obtained by considering the first
6 documents for each class, while for the vector space model
all traceability links were recovered by considering the first
7 documents for each class.

3.3 Probabilistic vs. Vector Space Model

The two case studies suggest that both IR models (vector

space and probabilistic) are suitable for the problem of

recovering traceability links between code and documenta-

tion. The results are very similar, in particular, with respect

to the number of documents a software engineer needs to

analyze to get very high values of recall. However, the data

show that the probabilistic model achieves higher values of

recall with smaller cut values and makes little progress

towards 100 percent of recall. On the other hand, the vector

space model starts with lower recall values and makes

regular progress with higher cut values towards 100 percent

of recall.
A possible explanation lies in the nature of the two

models. The probabilistic model associates a source code

component (in our case studies a class) with a document

based on the product of the unigram probabilities with

which each code component identifier appears in the

software document [6], [5] (see Section 2.2).

976 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 10, OCTOBER 2002

TABLE 2
Albergate Results with Improved Process

Fig. 3. Albergate precision/recall results with improved process.

These probabilities are computed on a statistical basis

and code component identifiers that do not appear in the

document are assigned a very low probability. Conversely,

the similarity measure of a vector space model only takes

into account the code identifiers that also appear in the

document and weigh the frequencies of the occurrences of

such words in the document (code component) with respect

to a measure of their distribution in other documents (code

components, respectively).
Therefore, the probabilistic model is more suitable for

cases where the presence of code component identifiers that

do not belong to the software document is low: This is also

the reason why, with respect to the best match, the

probabilistic model performs better in the LEDA case study

(82.65 percent of recall) than in the Albergate case study

(50 percent of recall). It is worth noting that the probabilistic

model exploited in this paper is also used in speech

recognition [21] and information theory [20] fields, where

the aim is to associate a received sentence with a possible

transmitted sentence, with a very low error probability.

Conversely, the vector space model fits cases where each

group of words is common to a relatively small number of

software documents [4]. This means that the vector space

model does not aim for the best match, but rather to

regularly achieve the maximum recall with a moderate

number of retained documents.
This hypothesis is supported by the results obtained by

applying the simplified version of the text processing steps

in Fig. 1 to the Albergate case study, with both the

probabilistic and the vector space models. The simplified

versions of the identifier separation and text normalization

steps produce code components and software documents

with a higher number of different words. Table 3 shows the

results achieved, while Fig. 4 depicts the Precision/Recall

curves of the two IR models, in both simplified and

improved processes. For the vector space model, the results

of the simplified and improved processes are not very

different. Conversely, the differences are evident when

applying the two versions of the text processing steps with

the probabilistic model [5]. This means that, unlike the

probabilistic model, the vector space model is able to

achieve higher recall values based on a smaller number of

relevant words in a source code component.

4 EVALUATION

The traceability link recovery method presented in this

paper has been evaluated with respect to the following

criteria:

. performances of an IR model with respect to
standard tools,

. effectiveness of an IR model in helping a software
engineer,

. effort saving with respect to the granularity of the
document space, and

. effectiveness of a fixed cut versus a variable cut.

These issues will be discussed in the next sections.

4.1 Comparing IR Models with grep

We compared the results achieved in the two case studies

with the probabilistic and vector space IR models with the

results obtained by using the grep UNIX utility, as

proposed by Maarek et al. [31]. In fact, grep provides the

simplest way to trace source code components (e.g., classes)

ANTONIOL ET AL.: RECOVERING TRACEABILITY LINKS BETWEEN CODE AND DOCUMENTATION 977

TABLE 3
Albergate Results with Simplified Process

Fig. 4. Albergate precision/recall results.

onto high-level documentation (e.g., manual pages and/or
requirements). The search can be done at least in two ways:
In the first approach, each class identifier is used as the
string to be searched in the files of high-level artifacts, while
the second approach considers the or of the class identifiers.

Table 4 shows the results of the grep approach: It is
worth noting that, for the Albergate system, 94 percent of
the single item queries gave empty results, while if items
are or combined 94 percent of classes were traced to 10 or
more requirements. Empty sets are less frequent for LEDA;
however, the average number of traced manual pages is
quite high (20 and 75, respectively). Even worse, the grep

approach did not offer any way to rank the retrieved
requirements. From a practical point of view, this means
that the maintainer has to examine a large number of
candidates with the same priority.

4.2 Benefits of IR in a Traceability Recovery
Process

To assess the effectiveness of the proposed approach, a
preliminary in-field experiment was designed. The experi-
ment concerned the Albergate system and involved eight
students, four final year undergraduate students, and four
postgraduate students. All students were familiar with the
procedural and the object-oriented programming para-
digms; however, their experience with the Java program-
ming language was quite different. The undergraduate
students had been introduced to Java just six months before
the experiment took place. In particular, they attended a
course during which they developed a small size project
using Java. On the other hand, the postgraduate students
had gained a significative experience of Java. In fact, they
learned the language during the undergraduate courses and
used it to develop the project for their graduation thesis.
Moreover, at the time of our experiment, they were
involved in other Java-based projects.

Two groups were formed: Group A (three undergradu-
ate and one postgraduate students) and Group B (three
postgraduate and one undergraduate students). The same
task was assigned to both groups: the reconstruction of the
Albergate traceability matrix. A copy of the requirements
document and of the Albergate source code was given to
each student. In addition, students of Group A also

received, for each source code class, the ranked list of
requirements obtained by applying the traceability link
recovery method to the probabilistic IR model. However, no
indication of where the ranked lists had to be cut (see
Section 4) was provided.

On average, the performance of the two groups was
better than the performance achieved by the probabilistic
IR model on the best match, as shown in Table 5. However,
the best results were obtained on the average by the
students that exploited the results of the traceability link
recovery method (Group A). It is worth noting that this
group was mainly composed of undergraduate students,
less expert with Java. Also, note that the best performance
within Group A was obtained by the postgraduate student,
as shown in Table 6. Table 7 shows the results achieved by
students of Group B.

4.3 Considerations on Effort Saving and
Document Granularity

Although the limited sample of our experiment does not
allow to generalize conclusions, the preliminary data
demonstrate the benefits of helping a software engineer
with an automated approach based on IR models. Future
work will be devoted to experiments involving a larger
number of software engineers from industry to determine
whether there is some statistical evidence of the benefits of
using our method. With these experiments, we also aim to
demonstrate a correlation between the use of the results of
an IR model and the effort required to recover the
tracebility link matrix.

In the previous sections, we have evaluated the results
using the IR metrics recall and precision. To achieve an
indication of the benefits of using an IR approach in a
traceability link recovery process, we can also introduce a
Recovery Effort Index (REI), defined as the ratio between the
number of documents retrieved and the total number of
documents available:

REI ¼ #Retrieved

#Available
%:

978 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 10, OCTOBER 2002

TABLE 4
grep Results

TABLE 5
Average Results

TABLE 6
Results of Group A

This metric can be used to estimate the percentage of the
effort required to manually analyze the results achieved by
an IR tool (and discard false positive), when the recall is
100 percent, with respect to a completely manual analysis.
For a given software system, the quantity 1ÿREI can be
used to estimate the effort saving due to the use of an
IR method to recover traceability links, with respect a
completely manual analysis. The lower the REI, the higher
the benefits of the IR approach.

At present, we do not have statistical evidence of a
correlation between the REI and the effort required to
accomplish the recovery task, although, in the student
experiment, we have noticed that students of Group A on
the average took less time to do the job; the statistical
validation of the REI will be part of future work.

It is interesting to observe that the REI also measures the
ratio between the precision of the results achieved on the
same software system by a completely manual process,
namely, Pm, and a semiautomatic IR tool-based process,
namely, Pt, when the recall is 100 percent:

Precisionm
Precisiont

¼ #ðRelevant ^RetrievedmÞ
#ðRelevant ^RetrievedtÞ

#Retrievedt
#Retrievedm

:

Note that the number of relevant documents retrieved is
the same in both processes (all relevant documents) and
that the documents retrieved with a manual analysis are
just all documents available, then

Precisionm
Precisiont

% ¼ #Retrievedt
#Available

%

that is the REI for the semiautomatic process.
The values of REI registered in the two case studies for

the vector space IR model are rather different: Albergate
requires 43.75 percent REI to achieve 100 percent recall,
whereas, LEDA only requires 13.63 percent REI. A possible
explanation is that the set of available documents in the
Albergate case study is smaller (16 functional require-
ments versus the 88 manual pages of LEDA); to get the
same REI as in the LEDA case study the maximum recall
would have to be achieved with about two documents
retrieved (that also means about 50 percent precision).
However, this is very unlikely to be achieved with
IR methods. They generally aim to retrieve a small
percentage of a huge document space. Therefore, it is
likely to hypothesize that greater benefits (and lower
values of REI) are achieved for document spaces of greater
size. Larger document spaces are also achieved when
different concepts are included in different documents.
Therefore, it is likely to think that greater benefits of this

approach are achieved when the granularity of the
concepts included in the documents is finer.

Alternatively, the REI could be computed with respect to
a manual analysis supported by grep (queries with or
combined items). In this case, the REI is computed as the
ratio between the number of relevant documents retrieved
with an IR approach and the number of documents
retrieved by grep.3 For the vector space model the values
for REI are 54.54 percent in the Albergate case study and
16 percent in LEDA.

4.4 Retrieving a Variable Number of Documents

In our case studies, we have retained a fixed number of
documents for each query. The results achieved for the
recall can be considered good, as, in both case studies, we
were able to achieve 100 percent recall with a moderate
number of retained candidates per query.

We wondered if with a variable number of retained
candidates per query we could improve precision and REI,
while maintaining a maximum recall. The approach
adopted to test this hypothesis consisted of using a
threshold on the similarity values to prune the ranked list
of documents retrieved by a query. In particular, for each
query Q, we computed the value of such a threshold tQ as a
percentage of the similarity measure of the best match:4

tQ ¼ c � ½max
i
si;Q�;

where 0 � c � 1. A query Q returns all and only the
documents Dk such that sk;Q � tQ. Of course, the higher the
value of the parameter c, the smaller the set of documents
returned by a query.

Table 8 shows the results achieved with the vector space
IR model for the Albergate case study using different values
of the parameter c (and then different thresholds). The
results are not very encouraging, as the maximum recall is
achieved when setting the threshold to only 10 percent of
the highest similarity measure. Using this percentage, the
average number of retrieved documents per query is 9,
while 3 documents are retrieved in the best case, and
15 documents in the worst case.

Although the results for the precision are worse than the
results achieved with a fixed cut (first seven documents in
Table 2), they still demonstrate the benefits of using an
IR approach: Indeed, when the recall is 100 percent
(c ¼ 10 percent), the REI is 50.41 percent; this means that

ANTONIOL ET AL.: RECOVERING TRACEABILITY LINKS BETWEEN CODE AND DOCUMENTATION 979

3. Of course, this requires that the grep-based approach achieves
100 percent recall, as in our case.

4. For the sake of simplicity SimilarityðDi;QÞ is expressed as si;Q.

TABLE 7
Results of Group B

TABLE 8
Albergate Results Using a Threshold

presumably about 50 percent of the effort can be saved by
only discarding the documents whose similarity measure is
below 10 percent of the best match.

Of course, the results can be improved by mixing a
variable and fixed cut: Each query retrieves only the
documents with a similarity measure greater than a given
threshold, but no more than a fixed number. As an example,
the last row in Table 8 shows the results achieved by
considering as the number of documents retrieved by each
query the minimum between seven and the number of
documents whose similarity value is higher than 10 percent
of the best match. In this case, the results are better than the
results achieved with a fixed cut (the first seven documents
in Table 2): The average number of retrieved documents is
six and the REI is 34.27 percent, that means that the
percentage of effort saved might be more than 65 percent.

5 RELATED WORK

Several papers have been proposed in the literature that
deal with recovering traceability links between source code
and documentation, or that apply analysis of informal
information or information retrieval to software engineer-
ing. Impact analysis is related to traceability link recovery.
Most papers in the field assume the existence of some form
of ripple propagation graph describing relations between
software artifacts, including code and documentation, and
focus on the prediction of the effects of a maintenance
change request on both the source code and the specifica-
tion and design documents [9], [25], [52].

TOOR [42], IBIS [28], and REMAP [44] are a few
examples of CASE tools that maintain traceability links
among various software artifacts. However, these tools are
focused on the development phase and either force naming
conventions or require human interventions to define the
links.

Some methods used to recover traceability links between
source code and design documents have been presented in
the literature. Sefika et al. [49] have developed a hybrid
approach that integrates logic-based static and dynamic
visualization and helps determining design-implementa-
tion congruence at various levels of abstraction. Murphy
et al. [36] exploit software reflexion models to match a
design expressed in the Booch notation against its C++
implementation. Regular expressions are used to exploit
naming conventions and map source code model entities
onto high-level model entities. Similarly, Antoniol et al. [7],
[22] present a method to trace C++ classes to an OO design.
Both the source code classes and the OO design are
translated into an Abstract Object Language (AOL) inter-
mediate representation. Then, the AOLs extracted from
design and code are compared using a maximum match
algorithm [19] that computes the best mapping between
source code classes and entities of the OO design based on
the Levenstein string edit distance [26]. The idea of
adopting a more tolerant string matching is also central to
[54], where procedural applications are rearchitectured into
OO systems. Central to the approach is a binding step to
link candidate objects (extracted from the code) to elements
of an object model recovered from the system documenta-
tion. Binding is a semiautomatic step, guided by a similarity

measure inspired to the Dice’s coefficient [23] computed
over n-gram substrings: For 3-gram, the similarity between
terms is based on the shared unique sequences of three
characters [23], [2], [1]. Our work mostly differs from the
above contributions by the relative higher distance between
software artifacts; moreover, an exact string matching was
adopted. However, it is worth noting that the effect of text
normalization is similar to adopt a more tolerant string
matching. For example, the 3-gram similarity for the terms
”program” and ”programming” is 76.92 percent; once text
normalization is performed, in this particular case, any
n-gram similarity corresponds to exact string matching. In
other words, text normalization may alleviate the adoption
of a more stringent similarity criterion.

Analysis of informal information in the source code
(comments and mnemonics for identifiers) can help to
associate domain concepts with program fragments and
vice-versa. The importance of informal information analysis
has been discussed in [12] where an approach based on
structures similar to semantic networks has been proposed
and the possibility of using some kind of neural networks
has been addressed. Comments and mnemonics have an
information content with an extremely large degree of
variance between systems and, often, between different
segments of the same system. Furthermore, this informal
information is rarely parsable by Natural Language (NL)
grammars because it is mostly based on incomplete
sentences combined with abbreviations in a way which is
not described by NL grammars. The problem presents some
analogies with spoken sentence interpretation [29]. Thus,
classification methods based on Artificial Neural Networks
(ANN) or the stochastic approach exploited in this paper,
rather than formal parsers, are more suitable for analyzing
this type of information. These methods relate concepts to
patterns of word sequences. As an example, ANNs for
source code informal information analysis have been
investigated in [35], where a connectionist method, that
can be used for design recovery in conjunction with more
traditional approaches, is proposed for analyzing the
informal information (comments and mnemonics) in pro-
grams. The proposed approach uses a combination of top-
down domain analysis (the creation of a concept hierarchy
by a domain expert, to be used in the construction of the
training set) and a bottom-up approach (the analysis of the
informal information using the network).

Several software reuse environments use IR to index and
retrieve the reusable assets. The RSL [15] system extracts
free-text single-term indices from comments in source code
files looking for keywords like “author,” “date created,” etc.
REUSE [10] is an information retrieval system which stores
software objects as textual documents in view of retrieval
for reuse. ALICE [41] is another example of a system that
exploits information retrieval techniques for an automatic
cataloguing of software componets for reuse. Similarly,
CATALOG [24] stores and retrieves C components, each of
which is individually characterized by a set of single-term
indexing features automatically extracted from natural
language headers of C programs. Maarek et al. [31]
introduce an IR method to automatically assemble software
libraries based on a free text indexing scheme. The method

980 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 10, OCTOBER 2002

uses attributes automatically extracted from natural lan-
guage IBM RISC System/6000 AIX 3 documentation to
build a browsing hierarchy which accepts queries expressed
in natural language.

6 CONCLUSION

We have presented an IR method to recover traceability
links between code and free text documentation and have
applied it to trace C++ and Java source classes to manual
pages and functional requirements, respectively. The paper
discussed the differences between two IR models, a
probabilistic model and a vector space model. The results
achieved in the two case studies with both IR models
support the hypothesis that IR provides a practicable
solution to the problem of semiautomatically recovering
traceability links between code and documentation.

In particular, both models achieve 100 percent of recall
with almost the same number of documents retrieved.
However, the probabilistic model achieves the highest recall
values (less then 100 percent) with a smaller number of
documents retrieved and then performs better when
100 percent of recall is required. On the other hand, the
vector space model shows regular progresses in the recall
values when increasing the number of documents retrieved.
Also, it requires less effort in the preparation of the query
and document representations.

Vector space and probabilistic models need to be further
validated on larger systems to assess the relative perfor-
mance: In our case studies, the probabilistic approach may
be preferred when high recall values, but not 100 percent of
recall, are required with low cut values (in this cases effort
saving may be preferred over the recovery of a complete
mapping). However, other researchers on different systems
may obtain different results. We did not obtain any
statistical evidence to prefer one approach over the other.
Also, we did not obtain any evidence to prefer a fixed cut
criterion over a variable threshold-based cut criterion as the
results are comparable. Future work is required to assess
this issue.

Concerning the adequacy of a probabilistic model, a
quick comparison between the size of software engineering
documentation to natural language processing corpora
makes clear that we suffer from a poor training even when
unigram models are considered. Sparseness of data and
zero frequency may be alleviated by smoothing techniques;
different smoothing techniques were tested [21], [37], [55]:
in our case studies shift-� gave the best results. In the
meantime, we observed a contradictory phenomenon:
Smoothing gives very low nonzero probabilities to unseen
words; as a result, sometimes, a query is ”killed” by the
weight of word unseen in the training material. It is worth
noting, that the vector space model simply discards these
words.

Benchmarking the approaches against a grep brute force
traceability link recovery demonstrates the benefits of the
more sophisticated technologies. As in [31] grep is over-
whelmed by IR approaches. Our experience clearly indi-
cates that, as the distance between software artifacts
increases, the poorer the grep performance are.

The best results were achieved once text normalization
was applied, thus implicitly introducing a more tolerant
matching criterion, according to the approaches presented
in [7], [54]. Not surprisingly, in the Albergate case study,
where the higher distance between artifacts makes the
recovery task more difficult, the effect of text normalization
was considerably higher.

However, text normalization in some cases can fail to
reconduct software documents and source code to a
common vocabulary. Indeed, the key idea of the method
presented in this paper is that the application-domain
knowledge processed by programmers when writing the
code is captured by mnemonic identifiers. Under this
assumption, the source code identifier vocabulary shares a
significant number of items with the documentation
vocabulary. Although this conjecture is supported by the
results obtained in both case studies discussed in this paper,
the effectiveness of the method becomes less pronounced
when the number of common words between the source
code component identifiers and the documention items
decreases.

This limitation can be overcome by extending our
approach as in [8]. Indeed, it often happens that program-
mers tend to process application-domain knowledge in a
consistent way when writing code: Program item names of
different code regions related to a given text document are
likely to be, if not the same, at least very similar. Under the
above assumption, the knowledge of few known existing
traceability links can be exploited to recover new trace-
ability links even when the number of common words
between the source code component identifiers and the
documention is null. In other words, once programmer
behavior can be modeled, no matter where the knowledge
comes from, few links suffice to recover all the other
traceability links [8]. Programmer behaviors can be cap-
tured through stochastic modeling: programmers process
high-level documentation and domain concepts producing
low-level artifacts (e.g., program item names). Once a
subset of traceability links is available, for any given link,
the joint probability distribution of the text document
(words) and a set of linked source code components is
estimated together with the document words marginal
probability distributions. The estimated probability distri-
butions are used in a Bayesian classifier to score sequences
of mnemonics extracted from a not yet classified code
component (i.e., a component not belonging to the subset of
known traceability links). Higher scores suggest the ex-
istence of links between the component from which a
particular sequence of mnemonics is extracted and the
document that generated the marginal probability distribu-
tion. Preliminary results have shown that this approach
represents a valid alternative to the method presented in
this paper in that the case documents and code insist on
different vocabularies [8].

As a final remark, we are currently investigating the use
of IR to support impact analysis [9], [25], [52] and,
particularly, the identification of the components that are
thought to be initially affected by a change request. Our
idea is to use the maintenance request text to build a query

ANTONIOL ET AL.: RECOVERING TRACEABILITY LINKS BETWEEN CODE AND DOCUMENTATION 981

to retrieve the relevant software documents directly im-

pacted by the maintenance request [3].

ACKNOWLEDGMENTS

The authors would like to thank Professor Aniello Cimitile

for his precious suggestions. A special thanks to the

Albergate programmer team: Claudio Ciccone, Andrea

Colombari, Francesca Danzi, Daria Girelli, Roberto Martini,

Matteo Meneghini, Andrea Porta, and Paola Vincenti, who

kindly provided the source code and the documentation of

the system and the requirement to the code traceability

matrix. They also want to thank the anonymous reviewers

for their comments that helped to improve the original

version of this paper.
This research is partially supported by the Agenzia

Spaziale Italiana (ASI) grant I/R/091/00 and by the project

“Virtual Software Factory,” funded by Ministero della

Ricerca Scientifica e Tecnologica (MURST) and jointly

carried out by EDS Italia Software, University of Sannio,

University of Naples ”Federico II,” and University of Bari.

REFERENCES

[1] G. Adamson and G. Boreham, “The Use of an Associative
Measure Based on Character Structure to Identify Semantically
Related Pairs of Words and Document Titles,” Information Storage
and Retrieval, vol. 2, no. 10, pp. 253–260 Oct. 1974.

[2] R.C. Angell, G.E. Freund, and P. Willett, “Automatic Spelling
Correction Using a Trigram Similarity Measure,” Information
Processing and Management, vol. 19, no. 4, pp. 255–261 Apr. 1983.

[3] G. Antoniol, G. Canfora, G. Casazza, and A. DeLucia, “Identifying
the Starting Impact Set of a Maintenance Request: A Case Study,”
Proc. European Conf. Software Maintenance and Reeng., pp. 227–230,
Mar. 2000.

[4] G. Antoniol, G. Canfora, G. Casazza, and A. DeLucia, “Informa-
tion Retrieval Models for Recovering Traceability Links between
Code and Documentation,” Proc. IEEE Int’l Conf. Software
Maintenance, pp. 40–49, Oct. 2000.

[5] G. Antoniol, G. Canfora, G. Casazza, A. DeLucia, and E. Merlo,
“Tracing Object-Oriented Code into Functional Requirements,”
Proc. Eighth Int’l Workshop Program Comprehension, pp. 227–230,
June 2000.

[6] G. Antoniol, G. Canfora, A. DeLucia, and E. Merlo, “Recovering
Code to Documentation Links in Object-Oriented Systems,” Proc.
IEEE Working Conf. Reverse Eng., pp. 136–144, Oct. 1999.

[7] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella, “Design-Code
Traceability for Object Oriented Systems,” The Annals of Software
Eng., vol. 9, pp. 35–58, 2000.

[8] G. Antoniol, G. Casazza, and A. Cimitile, “Traceability Recovery
by Modeling Programmer Behavior,” Proc. Seventh Working Conf.
Reverse Eng., pp. 240–247, Nov. 2000.

[9] R.S. Arnold and S.A. Bohner, “Impact Analysis—Towards a
Framework for Comparison,” Proc. Int’l Conf. Software Mainte-
nance, pp. 292–301, 1993.

[10] S.P. Arnold and S.L. Stepowey, “The Reuse System: Cataloging
and Retrieval of Reusable Software,” Software Reuse: Emerging
Technology, W. Tracz, ed., 1987.

[11] L. Bain and M. Engelhardt, Introduction to Probability and
Mathematical Statistics. Belmont, Calif.: Duxburry Press, 1992.

[12] T. Biggerstaff, “Design Recovery for Maintenance and Reuse,”
IEEE Computer, July 1989.

[13] T. Biggerstaff, B. Mitbander, and D. Webster, “The Concept
Assignment Problem in Program Understanding,” Proc. Int’l Conf.
Software Engineering, pp. 482–498, May 1993.

[14] R. Brooks, “Towards a Theory of the Comprehension of Computer
Programs,” Int’l J. Man-Machine Studies, vol. 18, pp. 543–554, 1983.

[15] B.A. Burton, R.W. Aragon, S.A. Bailey, K. Koelher, and L.A.
Mayes, “The Reusable Software Library,” Software Reuse: Emerging
Technology, W. Tracz, ed., pp. 129–137, 1987.

[16] G. Caldiera and V.R. Basili, “Identifying and Qualifying Reusable
Software Components,” IEEE Computer, pp. 61–70, 1991.

[17] G. Canfora, A. Cimitile, M. Munro, “Re2: Reverse Engineering and
Reuse Re-Engineering,” J. Software Maintenance—Research and
Practice, vol. 6, pp. 53–72, 1994.

[18] E. Chikofsky and J.C. II, “Reverse Engineering and Design
Recovery: A Taxonomy,” IEEE Software, vol. 7, no. 1, pp.13–17,
Jan. 1990.

[19] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introductions to
Algorithms, MIT Press, 1990.

[20] T.M. Cover and J.A. Thomas, Elements of Information Theory. Wiley
Series in Telecommunications, New York: John Wiley & Sons,
1992.

[21] R. DeMori, Spoken Dialogues with Computers, Orlando, Fla.:
Academic Press, Inc., 1998.

[22] R. Fiutem and G. Antoniol, “Identifying Design-Code Inconsis-
tencies in Object-Oriented Software: A Case Study,” Proc. Int’l
Conf. Software Maintenance, pp. 94–102, Nov. 1998.

[23] W.B. Frakes and R. Baeza-Yates, Information Retrieval: Data
Structures and Algorithms. Englewood Cliffs, N.J.: Prentice-Hall,
1992.

[24] W.B. Frakes and B.A. Nejmeh, “Software Reuse through Informa-
tion Retrieval,” Proc. 20th Ann. HICSS, pp. 530–535, Jan. 1987.

[25] M.J. Fyson and C. Boldyreff, “Using Application Understanding
to Support Impact Analysis,” J. Software Maintenance—Research and
Practice, vol. 10, pp. 93–110, 1998.

[26] D. Gusfield, Algorithms on Strings, Trees, and Sequences. New York:
Cambridge Univ. Press, 1997.

[27] D. Harman, “Ranking Algorithms,” Information Retrieval: Data
Structures and Algorithms, pp. 363–392, 1992.

[28] J. Konclin and M. Bergen, “Gibis: A Hypertext Tool for
Exploratory Policy Discussion,” ACM Trans. Office Information
Systems, vol. 6, no. 4, pp. 303–331, Oct. 1988.

[29] R. Kuhn and R.D. Mori, “Learning Speech Semantics with
Keyword Classification Trees,” Proc. IEEE Int’l Conf. Acoustics,
Speech and Signal Processing, Apr. 1993.

[30] S. Letovsky, Cognitive Processes in Program Comprehension: First
Workshop. E. Soloway and S. Iyengar eds., Ablex, 1986.

[31] Y. Maarek, D. Berry, and G. Kaiser, “An Information Retrieval
Approach for Automatically Constructing Software Libraries,”
IEEE Trans. Software Eng., vol. 17, no. 8, pp. 800–813, 1991.

[32] A.V. Mayrhauser and A. Vans, “From Program Comprehension to
Tool Requirements for an Industrial Environment,” Proc. IEEE
Workshop Program Comprehension, pp. 78–86, 1993.

[33] A.V. Mayrhauser and A. Vans, “Dynamic Code Cognition
Behaviours for Large Scale Code,” Proc. Third IEEE Workshop
Program Comprehension, pp. 74–81, 1994.

[34] A.V. Mayrhauser and A.M. Vans, “Identification of Dynamic
Comprehension Processes During Large Scale Maintenance,”
IEEE Trans. Software Eng., vol. 22, no. 6, pp. 424–437, June 1996.

[35] E. Merlo, I. McAdam, and R.D. Mori, “Source Code Informal
Information Analysis Using Connectionist Models,” Proc. Int’l
Joint Conf. Artificial Intelligence, pp. 1339–1344, Sept. 1993.

[36] G.C. Murphy, D. Notkin, and K. Sullivan, “Software Reflexion
Models: Bridging the Gap between Source and High-Level
Models,” Proc. Third ACM Symp. Foundations of Software Eng., 1995.

[37] H. Ney and U. Essen, “On Smoothing Techniques for Bigram-
bases Natural Language Modelling,” Proc. IEEE Int’l Conf.
Acoustics, Speech, and Signal Processing, vol. 12, no. 11, pp. 825–
828, 1991.

[38] P.W. Oman and C.R. Cook, “The Book Paradigm for Improved
Maintenance,” IEEE Software, vol. 7, no. 1, pp. 39–45, Jan. 1990.

[39] N. Pennington, Comprehension Strategies in Programming. In:
Empirical Studies of Programmers: Second Workshop. G.M. Olsen,
S. Sheppard, and S. Soloway eds., Nordwood, Englewood Cliffs,
N.J., Ablex, 1987.

[40] N. Pennington, “Stimulus Structures and Mental Representations
in Expert Comprehension of Computer Programs,” Cognitive
Psychology, vol. 19, pp. 295–341, 1987.

[41] M. Pighin, “Tracing Object-Oriented Code into Functional
Requirements,” Proc. Fifth Conf. Software Maintenance and Reeng.,
pp. 196–199, Mar. 2001.

[42] F.A.C. Pinhero and J.A. Goguen, “An Object-Oriented Tool for
Tracing Requirements,” IEEE Software, vol. 13, no. 2, pp. 52–64,
Mar. 1996.

[43] D.L. Potter, J. Sinclair, D. Till, An Introduction to Formal Specification
and Z. Englewood Cliffs, N.J.: Prentice-Hall, 1991.

982 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 10, OCTOBER 2002

[44] B. Ramesh and V. Dhar, “Supporting Systems Development Using
Knowledge Captured During Requirements Engineering,” IEEE
Trans. Software Eng., vol. 9, no. 2, pp. 498–510, June 1992.

[45] C. Rich and R. Waters, The Programmer’s Apprentice. Reading,
Mass.: Addison-Wesley, 1990.

[46] R. Rosenfeld, “Adaptive Statistical Language Modeling: A
Statistical Approach,” PhD thesis, School of Computer Science,
Carnegie Mellon Univ., Apr. 1994.

[47] S. Rugaber and R. Clayton, “The Representation Problem in
Reverse Engineering,” Proc. Working Conf. Reverse Eng., pp. 8–16,
1993.

[48] G. Salton and C. Buckley, “Term-Weighting Approaches in
Automatic Text Retrieval,” Information Processing and Management,
vol. 24, no. 5, pp. 513–523, 1988.

[49] M. Sefika, A. Sane, and R.H. Campbell, “Monitoring Compliance
of a Software System with Its High-Level Design Models,” Proc.
Int’l Conf. Software Eng., pp. 387–396, 1996.

[50] B. Shneiderman and R. Mayer, “Syntactic/Semantic Interactions
in Programmer Behaviour: A Model and Experimental Results,”
Int’l J. Computer and Information Sciences, vol. 8, no. 3, pp. 219–238,
Mar. 1979.

[51] E. Soloway and K. Ehrlich, “Empirical Studies of Programming
Knowledge,” IEEE Trans. Software Eng., vol. 10, no. 5, pp. 595–609,
1994.

[52] R.J. Turver and M. Munro, “An Early Impact Analysis Technique
for Software Maintenance,” J. Software Maintenance—Research and
Practice, vol. 6, no. 1, pp. 35–52, 1994.

[53] I. Vessey, “Expertise in Debbugging Computer Programs: A
Process Analysis,” Int’l J. Man-Machine Studies, vol. 23, pp. 459–
494, 1985.

[54] J. Weidl and H. Gall, “Binding Object Models to Source Code,”
Proc. 22nd Computer Software and Applications Conf. (COMPSAC
’98), pp. 26–31, Aug. 1998.

[55] I.H. Witten and T.C. Bell, “The Zero-Frequency Problem:
Estimating the Probabilities of Novel Events in Adaptive Text
Compression,” IEEE Trans. Information Theory, vol. 37, pp. 1085–
1094, 1991.

Giuliano Antoniol received the doctoral degree
in electronic engineering from the University of
Padua in 1982. He worked at Irst for 10 years
where he leads the the Irst Program Under-
standing and Reverse Engineering (PURE)
Project team. He is member of the editorial
board of Journal Software Testing Verification
and Reliability. He is currently an associate
professor at the University of Sannio, Faculty of
Engineering, where he works in the area of

software metrics, process modeling, software evolution, and mainte-
nance. He is a member of the IEEE and the IEEE Computer Society.

Gerardo Canfora received the Laurea degree in
electronic engineering from the University of
Naples, Federico II, Italy, in 1989. He is currently
a full professor of computer science at the
Faculty of Engineering and the Director of the
Research Centre on Software Technology
(RCOST) of the University of Sannio in Bene-
vento, Italy. From 1990 to 1991, he was with the
Italian National Research Council (CNR). During
1992, he was at the Department of Informatica e

Sistemistica of the University of Naples, Federico II, Italy. From 1992 to
1993, he was a visiting researcher at the Centre for Software
Maintenance of the University of Durham, UK. In 1993, he joined the
Faculty of Engineering of the University of Sannio in Benevento, Italy.
He has served on the program committees of a number of international
conferences; he was program cochair of the 1997 International
Workshop on Program Comprehension and of the 2001 International
Conference on Software Maintenance. His research interests include
software maintenance, program comprehension, reverse engineering,
reuse, reengineering, migration, workflow management, and document
management. He is a member of the IEEE and the IEEE Computer
Society.

Gerardo Casazza received the Laurea degree in computer engineering
from the University of Salerno, Italy, in 1997. From 1998 to 2001, he was
a PhD student in electronic engineering and computer science at the
University of Naples, Federico II. In October 2001, he completed his
PhD program concerned with software maintenance in cooperative
environments. His research interests include cooperative supports for
software maintenance, impact analysis, reverse engineering, and
program comprehension. He is a member of the IEEE and the IEEE
Computer Society.

Andrea De Lucia received the Laurea degree in
computer science from the University of Salerno,
Italy, in 1991, the MSc degree in computer
science from the University of Durham, UK, in
1995, and the PhD degree in electronic en-
gineering and computer science from the Uni-
versity of Naples, Federico II, Italy, in 1996. He is
currently an associate professor of computer
science in the Faculty of Engineering of the
University of Sannio in Benevento, Italy. Pre-

viously, he was with the Department of Informatica e Applicazioni of the
University of Salerno, Italy, and with the Department of Informatica e
Sistemistica of the University of Naples, Federico II, Italy. From 1994 to
1995, he was a visiting researcher at the Centre for Software
Maintenance of the University of Durham, UK. In 1996, he joined the
Faculty of Engineering of the University of Sannio in Benevento, Italy.
He serves on the program and organizing committees of several
international conferences and was program cochair of the 2001
International Workshop on Program Comprehension. His research
interests include software maintenance, reverse engineering, reuse,
reengineering, migration, program comprehension, workflow manage-
ment, document management, and visual languages. He is a member of
the IEEE and the IEEE Computer Society.

Ettore Merlo received the PhD degree in
computer science from McGill University (Mon-
treal) in 1989 and the Laurea degree (summa
cum laude) from University of Turin (Italy) in
1983. He was the lead researcher of the
software engineering group at Computer Re-
search Institute of Montreal (CRIM) until 1993
when he joined Ecole Polytechnique de Mon-
treal where he is currently an associate profes-
sor. His research interests are in software

analysis, software reengineering, user interfaces, software mainte-
nance, artificial intelligence, and bio-informatics. He has collaborated
with several industries and research centers in particular on software
reengineering, clone detection, software quality assessment, software
evolution analysis, testing, architectural reverse engineering, and
dynamic genetic linkage analysis. He is a member of the IEEE and
the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

ANTONIOL ET AL.: RECOVERING TRACEABILITY LINKS BETWEEN CODE AND DOCUMENTATION 983

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

