
IEEE TRANSACTIONS ON SOFrWARE ENGINEERING, VOL. SE-2, N

Proc. IEEE Symp. Computer Software Reliability, New York,
NY, 1973.

[20] T. A. Thayer et al., "Software reliability study," TRW Rep.
74-2260.1.9-29, June 1974.

William E. Howden was born in Vancouver, Canada, on December 8,
1940. He received the B.A. degree in mathematics from the University
of California, Riverside, in 1963, the M.Sc. degree in mathematics from
Rutgers University, New Brunswick, NJ, in 1965, the M.Sc. degree in
computer science from Cambridge University, Cambridge, England, in
1970, and the Ph.D. degree in computer science from the University of
California, Irvine, in 1973.

MU. J3, bKrlEMBKK1976 215

In 1965 and 1966 he was with Atomic Energy
of Canada, Chalk River, Ont. From 1970 to
1974 he was a Lecturer in computer science at
the University of California, Irvine. Since 1973
he has been a consultant to McDonnell Douglas,
Huntington Beach, in software reliability. He is
currently Assistant Professor of Information
and Computer Science at the University of Cali-
fornia, San Diego. His research interests are in
software and system reliabilty and in interac-tive problem solving.

Dr. Howden is a member of the Association for Computing Machinery
and the British Computing Society.

A System to Generate Test Data and Symbolically
Execute Programs

LORI A. CLARKE

Abstract-This paper describes a system that attempts to generate test
data for programs written in ANSI Fortran. Given a path, the system
symbolically executes the path and creates a set of constraints on the
program's input variables. If the set of constraints is linear, linear pro-
gramming techniques are employed to obtain a solution. A solution to
the set of constraints is test data that will drive execution down the
given path. If it can be determined that the set of constraints is incon-
sistent, then the given path is shown to be nonexecutable. To increase
the chance of detecting some of the more common programming errors,
artificial constraints are temporarily created that simulate error condi-
tions and then an attempt is made to solve each augmented set of
constraints. A symbolic representation of the program's output vari-
ables in terms of the program's input variables is also created. The
symbolic representation is in a human readable form that facilitates
error detection as weUl as being a possible aid in assertion generation
and automatic program documentation.

Index Terms-Program valEdation, software reliability, symbolic
execution, test data generation.

I. INTRODUCTION
HERE is a growing awareness of the problems involved

Tin testing programs and of the need for automated sys-
tems to aid in this process. This paper describes an

implemented system that aids in the selection of test data and
the detection of program errors.
The usual approach to program testing relies solely on the

intuition of the programmer. The programmer generates

Manuscript received October 6, 1975; revised May 14, 1976. This
work was supported in part by the National Science Foundation under
Grant GJ 36461.
The author is with the Department of Computer and Information

Science, University of Massachusetts, Amberst, MA.

data to test the program until satisfied that the program is
correct. The success of this method depends on the expertise
of the programmer and the complexity of the program.
Experience has shown that this approach to testing programs
is inadequate and costly [1] . Consequently, several alternative
approaches have been proposed. These approaches can be
categorized into two areas, program corrections (also called
program verification or program proving) and program
validation.
In the program correctness method formal mathematical

proofs are used to demonstrate that a program terminates and
satisfies the program's specifications. First, assertions about
the program's variables are made at various points in the code
and then theorem proving techniques are employed to verify
the correctness of these assertions. In general, automated
theorem proving techniques are used, though human assistance
is still needed [2].
Program correctness has focused attention on the problems

of program reliability. However, the state of the art is such
that there are many drawbacks that prevent program cor-
rectness from being a practical tool, at least in the immedi-
ate future. Major difficulties are the creation of program
assertions and the considerable human interaction frequently
required in the theorem proving stages. Even after this rather
complex process the results may be questionable. If the
program cannot be proved correct this may be due to an
error in the program but also may be due to a flaw in the
assertions or limitation in the theorem prover, human or
machine.- Even if the program is proved correct, this process
still may be questionable. In addition, proving programs cor-

an Q cwtrllD Dr n

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SEPTEMBER 1976

rect is a complex and tedious task and, therefore, is not
usually applied to large programs where such analysis is needed
most [2], [3].
Program validation is a more vaguely defined area that

encompasses a wide range of automated tools that analyze
and evaluate programs. These tools aid in program testing
though they do not necessarily guarantee that a program is
correct. Various validation projects developed in recent years
have analyzed several aspects of programs. For example, the
DAVE- system developed by Osterweil and Fosdick [4]
analyzes the data flow of programs and detects data flow
anomolies within and between subprograms. The PET system
developed by Stucki [51 maintains relevent execution infor-
mation about statements such as the execution count and
minimum and maximum values. Ramamoorthy, Meeker, and
Turner developed a system called ACES that detects unreli-
able program constructs [6]. The EFFIGY system developed
by King algebraically represents a path's computations by
symbolically executing a path [7]. The SELECT system de-
veloped at the Stanford Research Institute attempts to gener-
ate test data and verify assertions for program paths [3].
These are but a few of the validation tools that are now
available.
The system that will be described here also aids in program

validation. This system has the following capabilities.
1) Generates test data to drive execution down a program

path. Test data generation is a powerful tool that can be em-
ployed to improve the current haphazard approach to testing
programs. Automatically generating input data for a compre-
hensive set of program paths and then executing the program
with the generated input data, assures the user that the code
has been well tested. Program analysis of this type should
alleviate the problem of program errors occurring in running
programs in segments of code that never have been tested.
2) Detects nonexecutable program paths. Not all program

paths are executable and, therefore, the system attempts to
recognize nonexecutable paths. Detection of executable and
nonexecutable paths is of value in analyzing programs.
3) Creates symbohc representations of the program's output

variables as functions of the program's input variables. Sym-
bolic representations of the output variables aid in program
validation by concisely representing a path's computations.
The symbolic representation is in a human readable form that
facilitates error detection as well as being a possible aid in
assertion generation and automatic program documentation.
4) Detects certain types of program errors. Executing a

program path and verifying the results does not guarantee
that the path is correct for all possible input data. Therefore,
to further aid in program validation, an attempt is made to
generate data that will detect some of the more common
run time errors, such as subscripts that are out of bounds.
This incorporates some of the ideas for error checking sug-
gested by Sites [8].

II. SYSTEM PROPERTIES
Generating test data is a difficult task posing many complex

problems. In fact, the general problem is unsolvable. There-
fore, the system philosophy is to design and implement a

system that will test the feasibility of generating test data
as well as to clarify the major problem areas. The system is
limited in that it requires each analysis path to be completely
specified, it generates test data only when the path constraints
are linear, and it ignores input and output specifications.
These limitations are explained below.
The problem of generating test data to execute any specified

statement in a program is analogous to the halting problem
(assume the statement is STOP) and thus unsolvable. To cir-
cumvent this problem it is necessary to eliminate infinite
paths. An approach that has been employed is to analyze
paths that are restricted to a maximum-loop count or number
of statements [3], [7] . This technique often creates a prolif-
eration of program paths, especially in large programs. Fur-
thermore, the user may only be concemed with a few paths or
paths that satisfy a particular criterion. Therefore, it was
decided that the system will not incorporate path selection.
The system requires that the paths be completely specified
but leaves the criteria of path selection to the user.
To generate test data that satisfies the conditional state-

ments on the path requires that the system be capable of
solving arbitrary systems of inequalities, an unsolvable prob-
lem [9]. Therefore, to generate test data for a specific pro-
gram path is an unsolvable problem. A hypothesis of this
work is that the inequalities will usually be relatively simple
and often linear. This view is reinforced by cursory observa-
tions- of programs and by Knuth's study of Fortran programs
[10] . Should this assumption prove valid then linear program-
ming techniques can be employed in most cases to solve the
system of inequalities. If this premise fails then more power-
ful methods such as the conjugate gradient method [11] can
be applied to solve the inequalities. The conjugate gradient
method requires human interaction while the linear program-
ming algorithm does not. For the prototype it was decided
that human interaction will be kept to a minimum and intro-
duced later only if experience indicates it to be necessary.
Another difficulty is array subscripts. A problem occurs

when array subscripts depend on input data. For example, in
the following segment of code assume the value of J is read as
data.

A(l)= 10.

A(2)=O.

IF(A(J). LT.5.)...

The value of J affects the conditional statement and therefore
must be determined. This is a computable problem. J can only
be assigned a value from a finite set of integers and, therefore,
all possible values of J could be enumerated. Though enumer-
ation is a possibility it may prove to be impractical. There-
fore, the approach that was chosen marks whenever such a
constraint occurs so that information may be obtained on how
frequently the problem occurs. The test data generation
process will only be stymied if undetermined -array subscripts
affect a conditional statement.

216

CLARKE: SYSTEM TO GENERATE TEST DATA

A decision was also made to ignore input and output state-
ments except for the read and write variable lists. Thus,
format specifications and other relevant information which
constrain the size of the test data is ignored. Information of
this type, though quite useful, adds another degree of com-
plexity to the problem. It is felt that the main issues of test
data generation should be addressed first and then, if the
problem appears accessible, the system can be enhanced
further.
Therefore, the general philosophy is to implement a proto-

type that can generate test data for some program paths.
Human interaction will be kept to a minimum. The cause of
all failures as well as relevant program constructs will be moni-
tored so that the areas of greatest concern can be determined.
It is expected that the actual test results will be informative
about the feasibility of test data generation and will provide
a good basis for future directions of research.

III. OVERVIEW
To describe the system, a few definitions are first needed.

The subject program is represented by a directed graph call the
control flow graph. The nodes in the graph are the executable
statements of the program and the edges represent the pro-
gram flow. The control flow graph is assumed to have one
entry point no (a node with indegree zero) and one or more
exit points (nodes with outdegree zero). P is used to denote
the successor operator. Thus, rn denotes the set of nodes
joined to the node n by edges directed from n. A control path
is a sequence of nodes nil, ni2, . . , nim where ni5.1 E Frni
and nil = no. Not every control path can be executed. An
execution path is a control path which cannot be executed.
In order to generate test data for a control path the variable

relationships that affect the program flow must be determined.
These variable relationships can be expressed as a set of
constraints in terms of the program's input variables. A pro-
gram input variable is a variable that receives a value by means
of some form of external communication. Conversely, a
program output variable retums a value by some form of
extemal communications. Note that extemal communication
can occur in input and output statements and, if the calling
program is not being analyzed, in the parameter and COMMON
variables.
To generate the constraints the path is symbolically exe-

cuted. When a path is symbolically executed values are not
assigned to variables as occurs during normal execution, rather,
expressions denoting the evolution of the variables are as-
signed. For example, in Fig. 1, the variable representation of
J after statements 1,2,3 and 4 are symbolically executed is
J = I2 - II - 1 where II and 12 denote the input values of
parameters J and K, respectively. The constraint created by
the above control path is I1 + 1 <12.
Whenever a conditional transfer of control is encountered

one or more constraints, representing the branch from the
chosen conditional statement, are generated. Ideally, each
constraint would be passed to an inequality solver to check
its consistency with the existing constraints. If the constraint
is inconsistent, it would be known that the path is infeasible.
If the constraint is consistent, the symbolic execution of the

1

2

4

5

6 10

20

SUBROUTINE SUB (J,K)

J = J+ 1

IF (J.GT.K) GO TO 10

J = K - J

GO TO 20

J = J -.K

IF (J.GT.-l) GO TO 30

J a -J

9 30 RETURN

10 END

Fig. 1.

path would continue. At the end of the path, the solution
set found by the inequality solver would be a data set that
would force execution of the designated path. Because of
storage limitations and interface problems, however, the sys-
tem does the symbolic execution as a separate job step. The
constraints are written to a file and then during the next
phases, simplified and solved. Although this is inefficient,
since the symbolic execution may continue down an infeasible
path, it is a reasonable alternative for an experimental system.
To demonstrate these ideas, consider the example in Fig. 1.

The path through statements 1-5, 7, and 9 is associated with
the following set of constraints:

I1 + 1 S12

12 - (I1 + 1) > - .

One possible solution to the set of constraints is I1 = 0,
12= 1. If the user were to call subroutine SUB with actual
parameters 0 and 1 this path would be executed. The path
through statements 1-3 and 6-9 is associated with the fol-
lowing set of constraints:

I1 + 1 >12

I1 + 1 - I2S-1.

This set of constraints is inconsistent and the designated con-
trol path is therefore infeasible.
Whenever an output variable is used to communicate with

the external environment the symbolic representation of the
variable is returned to the user instead of a value. The sym-
bolic representation can be used to detect errors in the pro-
gram. By examining the symbolic representations of the out-
put variables, computation errors can often be detected.
Symbolically executing programs in order to represent the

path's computations was proposed by Balzer in the EXDAMS
system, "extensible debugging and monitoring system," in
1969 [12]. Current research has also used symbolic execution
to generate test data and validate programs.
The SELECT system [31 generates test data and creates a

symbolic representation of the output variables for programs
written in a subset of Lisp. SELECT has limited capabilities
to handle procedure calls. Also, the path constraints and
output variable representations are currently represented as
a Lisp list rather than a more human recognizable form.
EFFIGY accepts programs written in a subset of PL/1 that
allows only integer values.

217

8

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SEPTEMBER 1976

Howden has developed a system that recognizes classes of
paths and generates path descriptions [13]. Miller and Melton
have also developed a system that generates the path con-
straints [14]. These systems analyze Fortran programs. In
both systems the path descriptions must be manually solved
to generate test data and they do not handle procedure calls
adequately. Huang has also briefly described a system for
generating the path constraints [15]. Miller and Melton,
Howden, and Huang do not use symbolic execution but use
an approach that traces backwards through the code to deter-
mine how the conditional statements evolved. This approach
does not allow early detection of nonexecutable paths and
requires multiple passes to analyze each iteration of a loop.
An iteractive system developed at TRW recognizes some

nonexecutable paths and aids the user in generating test
data [16]. Goodenough and Gerhart have proposed a method
of selecting test data and paths using decision tables [17].
Both these methods require more user participation than the
other systems mentioned here.
Both SELECT and EFFIGY analyze programs written in a

special dialect of a language. The test data generation system
described here analyzes programs written in ANSI Fortran.
It is felt that a popular user language poses a wider range of
problems (such as communication between procedures and
equivalencing of variable names). Also, analysis of programs
written in a popular language should be a more realistic test
for theoretical -ideas. Fortran was chosen because it is a
commonly used language and a large source of programs in
need of validation is readily available. The methods described
in this paper, however, are applicable to other languages.
In fact, the system translates the source language into an
intermediate code before any program analysis is attempted.

IV. STRUCTURE OF THE ANALYSIS PROGRAM

Fig. 2 depicts the overall flow of the analysis program. The
system consists of a preprocessor and three phases; symbolic
execution, constraint simplification, and inequality solver.
Instead of building the preprocessor from scratch the DAVE
system, a data flow analysis program, is used. During a lexical
analysis scan DAVE translates the subject program into a
list of tokens. DAVE also creates a data base of information
about each program unit. Each data base contains a symbol
table, COMMON table, and label table similar to tables usually
constructed by compilers, and a statement flow table that
represents the control flow graph. The token list and tables
described above are also used in the data generation system.
The data generation system can run independently of DAVE

and in fact does not use the more sophisticated capabilities of
that system. A different preprocessor could be implemented
that would simply build the needed tables.

Intermediate Code Phase
Before the subject program is analyzed the token list is

translated into an intermediate code similar to an assembly
language. The intermediate code for each statement is stored
in a doubly linked list that is attached to the corresponding
node of the control flow graph. Intermediate code represent-
ing a conditional statement is attached to the corresponding

path
descriptions N

"

constraint yocrersnat ion
simplification e t

inequality
solver

generated
test data

Fig. 2.

edge of the graph. For example, in a logical if statement of
the form IF (EXPRESSION) STATEMENT, the intermediate code
representing the expression is attached to the edge that is
followed if the evaluation of the expression is true. Code
representing the complement of the expression is attached
to the edge that is followed if the evaluation of the expression
is false. An example of the code and control flow graph for
the subroutine in Fig. 1 is shown in Fig. 3.
Representing the subject program in an intermediate form

has several advantages. First, as was noted, it allows the
analysis to be more easily adapted to other languages. A new
language would have to be translated into the intermediate
code and then, depending on the new language, modifications
would be, necessary to the test data generation system. Sec-
ond, since all expressions are represented as a series of binary
and array operations, it is easy to fold constants and simplify
the variable representation during the analysis. Finally, the
code is stored as a doubly linked list to enable future optimiza-
tion and detection of parallelism in the code.

Path Selection
The user has a choice between two methods of designating

a path, static or interactive. The static method is designed to
accept automatically generated paths while the interactive

218

CLARKE: SYSTEM TO GENERATE TEST DATA

Fig. 3.

method is designed to aid a human user in selecting a path.
Both methods will be described below.
In the static mode, a path is designated by a sequence of

subprogram names, statement numbers, and loop counts.
EOP designates the end of a path, END designates the end of
the analysis, and $N designates a loop count of n. In addition,
each path must satisfy the following conditions:

1) it must be a control path;
2) it can enter or return from a subprogram only when the

corresponding code contains a procedure reference or return;
3) whenever a path enters a program unit the initial state-

ment must be the first executable statement in -the program
unit.
For example, consider the path described by

SUB1, 1,2,3,5, SUB2, 1,2,7,8, SUB1 ,(6,7)$2,EOP,END.
In analyzing this path the system will start with subprogram
SUB1 and symbolically execute statements 1,2,3 and 5. While
executing statement 5 there is a procedure call to subprogram
SUB2. Subprogram SUB2's statements 1,2,7, and 8 are then
executed. In statement 8 there is a return statement and the
analysis retums to subprogram SUB1, statement 5. The
remaining code in statement 5 is executed. Then the loop
formed by statements 6 and 7 is executed twice.

If at any time during the analysis of the path, it can be
determined that the path is infeasible, a message is returned
to the user and the analysis of that path is terminated. Since
the inequality solver is called only after the symbolic execu-
tion phase is complete, infeasible paths are only detected at
this stage when a predicate folds to the value false.
The interactive mode is more human oriented. The user

is aided by the system in selecting a control path. To initiate
the analysis of a path in the interactive mode the user first
designates the starting subprogram unit. If after a statement
n1 is executed there is more than one exit node (an exit node is
any of the set of nodes ni such that ni GE Ln1) then the system
lists all the exit nodes. The user chooses one of these exit
nodes as the next node in the control path or ends the path.

The analysis program informs the user when a path has entered
or returned from a program unit.

If in attempting to analyze a path it is deternined that the
path is infeasible, a message is issued. The user may then end
the analysis, end the analysis of that path and start a new
path, or choose another exit node from the list and let the
analysis continue.

Symbolic Execution
Symbolic execution involves assigning expressions instead

of values to variables while following a program path. An
expression represents the computation that would have
evolved in order to compute each variable's value. An expres-
sion is represented internally as a directed graph. The graphs
are similar to expression trees that are often used in compliers
for translating statements. However, the graph that is con-
structed here is called an evolution graph and may represent
several statements and variables instead of just one statement
and variable. The symbolic representation of a variable is
generated by traversing the variable's evolution graph.
An example of an evolution graph for a small segment of

code is given in Fig. 4(c). The method used to build the graph
is similar to the code optimization techniques for eliminating
common subexpressions described by Cocke and Schwartz
[18] and is outlined below.
In order to build the graph, input variables and constants are

assigned unique symbols called input and constant value
numbers. All unary and binary expressions are assigned
computation value numbers and entered into a computation
table. The computation table contains the operator, the
value numbers of the two operands, and the computation
value number of the binary expression. In an assignment
statement the variable being defined on the left-hand side
(LHS) is given the same value number as the expression on the
right-hand side (RHS). A variable's value number is stored in
the variable's symbol table entry in the subprogram's data
base.
To clarify the example to be given here, an input variable's

219

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SEPTEMBER 1976

READ(UNIT) B, C, D
A = B + C * D
C = A +F 5
WRITE C

(a)

Operand I

value #

X 2
X 1
T 2

Operand 2
value #

X 3
T 1
C I

Computation table for the code in 3.8a

(b)

Evolution graph for variable C

(C)

name value number

A T 2

B X 1

C T 3

D X 3

Symbol table after execution of the code in 3.8a

tion table. The operands are pointers to the left and right
edges of the graph. Input and constant value numbers are the
terminal nodes. The symbolic representation of a variable
is found by a preorder traversal of the subgraph pointed to
by the variable's value number. The evolution graph and

Expressionvaluexpres symbolic representation of variable C are depicted in Fig. 4(c)
T 1 and (d).
T 2 In a similar manner path coiastraints can also be constructed.
T 3

Predicates from the conditional statements are entered into
the computation table and assigned a value number. The
evolution graph for the constraint can then be extracted from
the computation table.
The above method allows communication between subpro-

grams to be handled quite simply. In order to pass informa-
tion to a subprogram, the actual parameter's value number is
passed (even expressions have value numbers). On retuming to
the calling program unit, the dummy parameter's value num-
ber is passed back. In order to pass an array, a list of value
numbers must be passed between the program units.
An,input variable receives a new input value every time the

variable would receive an extemal value. For example, if a
read statement is in a loop, the input variables-in the statement
receive new input values every time the loop is executed.
While symbolically executing the path, constant expressions

are folded (computed) whenever possible. If the following
statements were encountered on a path

A =2

B =3

C=A- B+ 1,

(d)

C = (X1) + (X2) * (X3) + 5

Symbolic representation of output variable C

(e)

Fig. 4.

value number will have a prefix of "X," a constant's value
number a prefix of "C," and a computation value number a

prefix of "T." Now consider the statements in Fig. 4(a).
B, C, and D are input variables; let. their input value numbers
be Xl, X2, and X3, respectively. The computation table
entries for the two arithmetic expressions are shown in Fig.
4(b). After the firtt arithmetic statement is symbolically
executed, variable A has the value number T2. When variable
A is referenced in the second arithmetic statement, the value
number T2 is used as the operand. After the second arith-
metic statement is executed, C's original value -number of X2
is replaced by its current value number T3. Fig. 4(c) shows

the symbol table entires for A, B, C, and D at this point.
In the fourth statement C is an output variable. The sym-

bolic representation of C can be printed from the evolution
graph which -is contained in the computation table. The vari-
able's value number is the pointer to the root of the variable's
evolution graph. If the variable's value number is not an input
or constant value number, it indexes an entry in the computa-

the actual value of C would be computed and A, B, and C
would have constant value numbers. Folding simplifies the
evolution graph even though some of the variable's evolution
is lost. If experience shows that this is a hindrance to vali-
dating the program then folding can be suppressed.

Error Checking
Generating data to force execution down a path can assure

that the code has been tested but cannot assure that all errors

have been detected. To increase the chance of detecting
some of the more common programming errors, artificial
constraints are temporarily created to simulate error condi-
tions. An attempt is then made to solve the augmented set
of- constraints. If there exists a solution set to the augmented
constraints then errors may occur when executing the code
and a message is therefore issued.
Subscripts that are out of bounds are a common and often

elusive programming trror and will be used to illustrate the
error detection capabilities. Assume the allowable subscript
range of an array is declared to be between I and 100. When
array element X(I) is referenced on the path, the two con-

straints S(I) > 100 and S(I) < 1 are created where S(I) repre-

sents the symbolic representation of variable I. If either of
these constraints is consistent with the existing constraints an

error message is returned to the user. If both are inconsistent
with the existing constraints, they are removed from the set of
constraints and the symbolic execution of the path continues.

Operator

+

220

CLARKE: SYSTEM TO GENERATE TEST DATA

Simplification Phase
The constraints that have been generated during the sym-

bolic execution phase may be long and in an unsimplified
form. Therefore, the constraints are first simplified before an

attempt is made to solve the inequalities. For example, the
constraint II - I2<3 * 12 would be simplified to II - 4 *

12 < 0.
Many techniques could have been used to simplify the

constraints. Because of ease of applicability and availability
however, Altran, a language designed for algebraic manipula-
tions, was chosen [19].
The inequality solver that will be described in the next

section requires that the constraints be linear. Therefore,
the Altran program also recognizes and flags nonlinear con-

straints and constraints that reference the intrinsic and built-in
Fortran functions. The Altran program must often manipulate
the expression to obtain a linear form. For example, I1/I2 < 7
is recognized as equivalent to a linear expression and is there-
fore transformed into I1 - 7 * 12 < 0.
The inequality solyer also requires that the inequalities be

in a specific form that will be described in the next section.
The Altran program easily performs the necessary

manipulations.

Inequality Solver

The inequality solver attempts to solve the constraints that
have been generated during the symbolic execution phase and
simplified during the simplification phase. As was mentioned,
ideally the inequality solver would be called after each con-
straint is generated. If the new constraint is consistent with
the previous constraints then the symbolic execution would
continue. If the new constraint is inconsistent then the path
is infeasible and the symbolic execution of that path would
end. However, due to limitiations of the current operating
system, it was decided that for this experimental system the
symbolic execution would be done as a separate job step.
In order to determine when a path becomes infeasible,

each constraint is added to the system of constraints one at
a time. When a constraint is first added to the system of
constraints a check is made to determine if the previous
solution satisfies the current constraint. If so, the new con-

straint is consistent and the next constraint may be added. If
not, a new solution is attempted. If the inequality solver finds
that the new constraint is inconsistent with the previous con-

straints, then the path is infeasible. A message is returned
to the user and then the next path is attempted. If all the
constraints are consistent, then the final solution is a test
data set that would cause execution of the path.
When a temporary constraint is encountered, it is added to

the set of previous constraints and a solution is attempted. If
a solution can be found, then an error message is returned to
the user. In any case, the temporary constraint is removed
from the set of constraints and the next constraint is
examined.
As was previously shown, solving a general system of in-

equalities is an unsolvable problem. Therefore, any choice of
an algorithm will not always be successful. The algorithm
that was chosen is a linear programming algorithm for integer

and real variables due to Glover [20]. Of course, linear pro-
gramming algorithms can solve only systems of linear con-
straints. The general linear programming problem and its
applicability to test data generation is described below.
The general form of a linear programming problem is

MAX O(X).

Subject to

AX.B
X>0.

Where 0 is a linear function called the objective function, X is
an N-vector of unknowns, B is an M-vector of constants, and A
is an M X N matrix with (N>M) [21] . The vector X repre-
sents the input variables. The constraints must be transformed
into the form AXS B. A few examples of the transformation
techniques will be described below.
The constraint 2iai,x1 > bi can easily be transformed into

the 6 form by multiplying the constraint by -1. The con-
straint Zjaijx1 = bi can be replaced by the two constraints
1jaiaxi < bi and 1i - aijxi < -bi. The constraint 21aix1 < bi
can be changed to 2jaijxj + t < bi where t is a small constant.
The constraint Z2aix1 = bi can be replaced by one of the two
inequalities l2aipjx > bi or 2ljajx1 < bi which is then trans-
formed by the methods described above. If the inequality
chosen is determined by the inequality solver to be inconsis-
tent with the system of constraints then the altemative con-
straint will be attempted. Similarly, any constraint containing
the OR operator is treated as alternative constraints. AND Op-
erators between constraints are removed and each conjunctive
term is a separate constraint.
The symbolic representation of the input variables will not

necessarily be restricted to nonnegative values as required by
the linear programming problem. If variable Xqi is not con-
strained to be nonnegative, then this can be handled by sub-
stituting (Xip - Xiq) for Xi, where Xip, Xgq > 0. The linear
programming system solves for Xip and Xiq and then substi-
tutes back to compute X11.
The vector X of input variables may be of various data

types: real, integer, logical, hollerith, double precision, or com-
plex. As noted, the real and integer data types can be handled
by mixed linear programming algorithms. Logical data types
are handled by converting true and false values to 1 and 0,
respectively. For example, the expression (L.OR. .NOT.M) iS
represented by (L.EQ.1).OR.(M.EQ.0). Fortran restricts the
use of logical operators so that no additional constraints are
necessary. Hollerith variables are treated as integer variables.
Complex and double precision variables cannot be handled
by the linear programming inequality solver.

V. CONCLUSION
The test data generation system described in this paper

symbolically executes a path and provides a symbolic represen-
tation of the output variables and path constraints in terms of
the program's input vanriables. Common run time errors such
as subscripts that are out of bounds and division by zero may
also be detected. Using the path constraints an attempt is

221

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, SEPTEMBER 1976

made to generate test data that would cause execution of
the selected path or to determine that the path is infeasible.
The capabilities provided by this system should aid in program
testing and validation.
The system is limited in its ability to handle all constructs of

Fortran, particularly array references that depend on input
variables. In addition, test data generation is currently con-
fined to paths that can be described by a set of linear path
constraints. Even in program paths where the analysis is
incomplete due to the system's limitations, knowledge is
gained about the program from the path constraints and
symbolic representations of the output variables.

It is hoped that from this experimental system more can be
learned about the structure of programs such as the types
of array usage and the complexity of path constraints. This
information should aid future research in program validation
and test data generation.

REFERENCES

1j] W. C. Hetzel, Ed, Program Test Method. Englewood Cliffs, NJ:
Prentice-Hall, 1973.

[21 R. London, "A view of program verification," in Proc. Int. Conf.
Reliable Software, Apr. 1975, pp. 5 34-545.

[3] R. S. Boyer, B. Elspas, and K. N. Levitt, "SELECT-A formal
system for testing and debugging programs by symbolic execu-
tion," in Proc. Int. Conf. Reliable Software, Apr. 1975, pp.
234-244.

[4] L. J. Osterweil, and L. D. Fosdick, "Data flow analysis as an aid
in documentation, assertion generation, validation, and error
detection," Dep. Comput. Sci., Univ. Colorado, Boulder, Rep.
55, Sept. 1974.

[5] L. G. Stucki, "Automatic generation of self-metric software,"
in Rec. 1973 IEEE Symp. Software Reliability, pp. 94-100.

[6] C. V. Ramamoorthy, R. E. Meeker, and J. Turner, "Design and
construction of an automated software evaluation system," in
Rec. 1973 IEEE Symp. Software Reliability, pp. 28-37.

[7] J. C. King, "A new approach to program testing," in Proc. Int.
Conf. Reliable Software, Apr. 1975, pp. 228-233.

[8] S. L. Sites, "Proving that computer programs terminate clearly,"
Dept. Comput. Sci., Stanford Univ., Stanford, CA.

[9] M. Davis, "Hilbert's tenth problem is unsolvable," Amer. Math.
Mon., vol. 80, pp. 233-269, Mar. 1973.

[10] D. C. Knuth, "An empirical study of FORTRAN programs,"
Software-Practice and Experience, vol. 1, pp. 105-133, 1971.

[11] B. Elspas, M. Green, A. Korsak, and P. Wong, "Solving non linear
inequalities associated with computer program paths," Stanford
Res. Inst., preliminary draft.

[12] R. M. Balzer, "EXDAMS-Extendable debugging and monitor-
ing system," in 1969 Spring Joint Computer Conf., AFIPS Conf.
Proc. vol. 34. Montvale, NJ: AFIPS Press, 1969., pp. 567-580.

[13] W. E. Howden, "Methodology for the generation of program test
data," IEEE Trans. Comput., vol. C-24, pp. 554-559, May 1975.

[14] E. F. Miller, and R. A. Melton, "Automated generation of test
case datasets," in Proc. Int. Conf. Reliable Software, Apr. 1975,
pp. 51-58.

[15] J. C. Huang, "Program testing," Dep. Comput. Sci., Univ. Hous-
ton, Houston, TX, May 1974.

116] K. W. Krause, R. W. Smith, and M. A. Goodwin, "Optimal soft-
ware test planning through automated network analysis," in
Rec. 1973 IEEE Symp. Software Reliability, pp. 18-22.

[17] J. B. Goodenough, and S. L. Gerhart, "Toward a theory of test
data selection," Proc. Int. Conf. Reliable Software, Apr. 1975,
pp. 493-510.

[18] J. Cocke, and J. T. Schwartz, Programming Languages and Their
Compilers, New York Univ., Courant Inst. Math. Sci.

[19] W. S. Brown, Altran User's Manual, Bell Telephone Lab., vol. 1,
1973.

[20] F. Glover, private communications.
[211 G. B. Dantzig, Linear Programming and Extensions. Princeton,

NJ: Princeton Univ. Press, 1963.

,... Lori A. Clarke was born in New York City, NY,
on February 11, 1947. She received the B.A.
degree in mathematics from the University of

AiIl*ii Rochester, Rochester, NY, in 1969 and the
Ph.D. degree in computer science from the
University of Colorado, Boulder, in 1976.
She worked for Preventive Psychiatry, Uni-

versity of Rochester, from 1969 to 1970 devel-
oping a data base management system. She was
an Applications Programmer for the National
Center for Atmospheric Research from 1970

to 1974. She is currently an Assistant Professor in the Department of
Computer and Information Science, University of Massachusetts,
Amherst. Her interests include software reliability and compiler design.
Dr. Clarke is a member of the Association for Computing Machinery.

222

