
Finding Bugs in Java Native Interface Programs 
Goh Kondoh       Tamiya Onodera 

Tokyo Research Laboratory 
IBM Research 

1623-14, Shimotsuruma, Yamato-shi 
Kanagawa-ken, Japan 

+81-46-215-4584, +81-46-215-4645 
{gkondo,tonodera}@jp.ibm.com 

 
 
ABSTRACT 
In this paper, we describe static analysis techniques for finding 
bugs in programs using the Java Native Interface (JNI). The JNI is 
both tedious and error-prone because there are many JNI-specific 
mistakes that are not caught by a native compiler. This paper is 
focused on four kinds of common mistakes. First, explicit 
statements to handle a possible exception need to be inserted after 
a statement calling a Java method. However, such statements tend 
to be forgotten. We present a typestate analysis to detect this 
exception-handling mistake. Second, while the native code can 
allocate resources in a Java VM, those resources must be 
manually released, unlike Java. Mistakes in resource management 
cause leaks and other errors. To detect Java resource errors, we 
used the typestate analysis also used for detecting general 
memory errors. Third, if a reference to a Java resource lives 
across multiple native method invocations, it should be converted 
into a global reference. However, programmers sometimes forget 
this rule and, for example, store a local reference in a global 
variable for later uses. We provide a syntax checker that detects 
this bad coding practice. Fourth, no JNI function should be called 
in a critical region. If called there, the current thread might block 
and cause a deadlock. Misinterpreting the end of the critical 
region, programmers occasionally break this rule. We present a 
simple typestate analysis to detect an improper JNI function call 
in a critical region. 

We have implemented our analysis techniques in a bug-finding 
tool called BEAM, and executed it on opensource software 
including JNI code. In the experiment, our analysis techniques 
found 86 JNI-specific bugs without any overhead and increased 
the total number of bug reports by 76%. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification  – 
correctness proofs, reliability, validation. D.3.3 [Programming 
Languages]: Language Constructs and Features  – constraints, 
data types and structures, polymorphism, procedures, functions, 
and subroutines. 

General Terms 
Algorithms, Performance, Design, Reliability, Experimentation, 
Languages, Verification. 

Keywords 
Java Native Interface, static analysis, typestate analysis 

1. INTRODUCTION 
A foreign function interface (FFI) allows code written in one 
language to call code written in another language. Many 
programming languages support their own FFIs, and Java’s 
version is called the Java Native Interface (JNI). However, the 
JNI is tedious to use and error-prone. For example, the 
programmer’s guide [10] devotes an entire chapter, Traps and 
Pitfalls, to 15 of the most common programming errors (Table 1). 
To express a simple expression that can be written as just a few 
terms in Java, JNI typically requires several lines in native code. 
Also, some JNI functions must be called in a specific order. As a 
result, code using the JNI is more likely to have bugs than code 
without JNI calls. These JNI mistakes are not caught by the 
compiler. We encountered these problems with JNI programming 
while we were developing a static analysis tool for Java in BEAM 
[3]. In an early phase of the development, we integrated a Java 
parser written in Java with the BEAM modules written in C and 
C++. During this development we encountered most of the 
problems described in Table 1, and that motivated us to create a 
JNI bug-finding tool. 

Table 1 spans from high-level design issues to bad coding 
practices at low levels. The design issues 5, 6, 7, 14 and 15 are 
beyond our scope because they depend on the target software and 
cannot be checked automatically by a static analysis tool. We 
worked on the other problems, especially those not covered by 
prior research, and prioritized them according to their severity. 
We selected the problems marked with symbol ‘X’ and also added 
the problem of calling a JNI function from a critical region, which 
is described later. 

A type inference system [6] is a useful approach for Problems 2 
and 3. We implemented such a system and found it somewhat 
useful during the coding phases. However, it did not perform well 
in our experiments (for reasons explained in Section 6.2). 
Problem 4 can easily be detected by a syntax checker or a 
compiler warning (such as a –Wconversion warning). BEAM 
already included a checking tool for this kind of bug, but it also 
failed to produce some of the relevant warning messages in our 
experiments. Therefore, we do not further discuss these tools in 
this paper. 
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Problems 8, 9, 10, and 12 are future work, mostly due to limited 
interest from our customers and limited need based on our 
experiences. Each of these problems would also require a 
customized syntax checker, in contrast to allowing a generalized 
approach based on a standard dataflow analysis framework. 

Thus, our goal was to find the errors related to Problems 1, 11, 
and 13 and the problem of calling a JNI function in a critical 
region. This paper’s contributions are: 

• We present static analysis techniques for JNI programs to 
detect: 

 mistakes of error checking, 

 memory leaks, 

 invalid uses of a local reference, and 

 JNI function calls in critical regions. 

• We describe the implementation details for these techniques 
and experimental results with some benchmark programs. 

Table 1: Traps, pitfalls, and the coverage of our tools and 
existing work. The second and third columns correspond to our 
tool and prior work. 

Problems Our 
focus 

Prior 
work 

1. Error Checking X  

2. Passing Invalid Arguments to JNI 
Functions  [6] [15]  

3. Confusing jclass with jobject  [6]  

4. Truncating jboolean Arguments  compile
r 

5. Boundaries between Java Application 
and Native Code   

6. Confusing IDs with References   

7. Caching Field and Method IDs   

8. Terminating Unicode Strings   

9. Violating Access Control Rules   

10. Disregarding Internationalization   

11. Retaining Virtual Machine Resources X  

12. Excessive Local Reference Creation   

13. Using Invalid Local References X  

14. Using the JNIEnv across Threads   

15. Mismatched Thread Models   
 

This paper is organized as follows: In Section 2, we describe our 
analysis target JNI and define the kinds of mistakes our analysis 
should detect. In Section 3, we present our analysis techniques for 
detecting these problems. In Section 4, we give implementation 
details about our analytic tool and experimental results on some 
benchmarks. In Section 6 we compare our system to other 

research and we conclude with the utility of our analysis in 
Section 7. 

2. JNI MISTAKES 
In this section, we describe and give examples of the four 
common mistakes we try to detect. We selected these four 
because they seem common in open source software and because 
we had experiences of encountering them. 

2.1 Error Checking 
In Java, a method declaration explicitly includes one or more 
types of exceptions which may be thrown. A method invocation 
expression can appear in a try block that is followed by catch 
clauses corresponding to the exception types it can throw. These 
correspondences among the types of thrown exceptions, the types 
of caught exceptions, and the exceptions in the method 
declarations are checked by a compiler for Java programs. 

Using JNI, a programmer can write native code calling a Java 
method that can throw an exception. Such a thrown exception is 
not related to the exceptions or try-catch statements in C++. 
Rather, it comes from the JNI function ExceptionOccurred. 
Therefore, JNI programmers need to insert exception checking 
code which works in the same way as Java’s catch statement after 
a Java method invocation. This exception checking code is often 
forgotten because no compiler will notice that it is missing. 

In order to invoke a Java method from native code, the following 
three steps are required for an instance method: 

• The native code first calls GetMethodID, which performs a 
lookup for the method in the given class. The lookup is based 
on the name and type descriptor of the method. If the method 
does not exist, GetMethodID returns NULL and a 
NoSuchMethodError instance is created in a pending 
state. 

• If the method was found in the previous step, the native code 
then calls Call<Type>Method where <Type> is the 
return type of the method. The receiver object, the method ID 
and the actual arguments are passed to this JNI function. 

• The native code checks if an exception was raised in the 
previous step by calling the JNI function ExceptionCheck 
or ExceptionOccurred. If an exception was thrown, the 
native code clears the exception after handling the error or 
returns to Java with the exception pending. 

These steps are very similar to those of reflected method invocations 
in Java except for the third one. For a reflection call in Java, a try-
catch statement must be placed to handle the thrown exception of 
type 
java.lang.reflect.InvocationTargetException. In 
native code, the exception of a Java type cannot be caught by any 
language construct such as the try-catch statement in C++. 
Figure 1 illustrates how to invoke the Java methods foo() and 
bar() on an object reference obj in C++ and how to check for 
the occurrence of an exception. Looking only at this native code, 
neither programmers nor compilers can tell whether or not the 
method foo() can throw an exception. However, this code never 
ignores the thrown exception because it conservatively assumes 
that foo() can throw an exception. Not all methods throw an 
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exception, but most of them can. According to [10], programmers 
are required to perform an explicit exception check after every 
JNI function call that could possibly throw an exception. This 
example is safe because the exception thrown from foo()will be 
never ignored. 

Figure 2 shows an example programmers tend to write. This 
example does not include the exception checking between the two 
Java method invocations. Note that the second invocation ignores 
an exception if it is raised by the first one. Java virtual machine 
features dynamic checks for JNI function calls if the -Xcheck:jni 
option is enabled. IBM J9 VM [2] with this option generates 
warnings for this kind of code even if it is executed without 
throwing an exception. If the programmer of this code is sure that 
foo() never throws an exception, omitting the exception 
checking may make sense. However, the checking is required in 
general. 
 

Furthermore, JNI functions can be called by a helper function as 
well as a top-level native method implementation function in 
native code. For example, in Figure 3, just looking at the main 
function, we do not know whether or not an exception handling 
mistake exists after returning from the helper function 
CallFooWrapper. Although CallFooWrapper does not 
check if an exception is thrown, it does not always mean an error 
because the exception can be correctly returned to Java if 
CallFooWrapper is called at the end of the native method 
execution. Therefore, in order to detect errors at helper function 
call sites we need to have an interprocedural analysis. Fortunately, 
this interprocedural analysis would be easy because it would not 
require context sensitivity: Whatever argument is passed to a 
function, we can assume that a JNI function to be called inside 
can produce an exception. This is analogous to that a Java method 
which declares an exception must be always called in an 
appropriate try-catch statement or a method rethrowing it. 

 

Figure 3: An example calling a function possibly throwing an 
exception 

2.2 Retaining Virtual Machine Resource 
The second type of common mistakes is retaining virtual machine 
resource. Native code can dynamically allocate a Java virtual 
machine resource by the allocator functions: 
• GetStringChars(JNIEnv *env, jstring 

str,jboolean *isCopy) 

• GetStringUTFChars(JNIEnv *env, jstring 
str,jboolean *isCopy) 

• Get<Type>ArrayElements(JNIEnv *env, 
<ArrayType> array,jboolean *isCopy) where 
<Type> is one of Boolean, Byte, Char, Short, Int, Long, 
Float, and Double 

These functions return NULL if and only if invocation of them 
has thrown an exception, whose type is OutOfMemoryError. 

The resource must be freed later by the corresponding deallocator 
functions: 
• ReleaseStringChars 

• ReleaseStringUTFChars 

• Release<Type>ArrayElements 

Programmers tend to forget calling deallocator functions, 
typically in an exception handling path. 
In addition, some programmers have a misunderstanding about 
the third parameter isCopy of the allocator JNI functions. The 
isCopy parameter is of the pointer-to-jboolean type. During an 
allocator call, JNI_TRUE is assigned to *isCopy if a copy has 
been made for the return value. Otherwise, JNI_FALSE is 
assigned. Some programmers think that if *isCopy is 
JNI_FALSE (e.g. Figure 4) or if they pass NULL to isCopy 
(e.g. GetStringChars(env, jstr, NULL)) the returned 
resource does not need to be released later. However, regardless 

jclass cls = env->GetObjectClass(obj); 

jmethodID mid = 

env->GetMethodID(cls, "foo", "()V"); 

env->CallVoidMethod(obj, mid); 

if (env->ExceptionCheck()) { 

  /* error handling */ 

  env->ExceptionClear(); /* or return */ 

} 

mid = env->GetMethodID(cls, "bar", "()V"); 

env->CallVoidMethod(obj, mid); 

Figure 1: A native code example calling a Java method 

jclass cls = env->GetObjectClass(obj); 

jmethodID mid = 

env->GetMethodID(cls, "foo", "()V"); 

env->CallVoidMethod(obj, mid); 

mid = env->GetMethodID(cls, "bar", "()V"); 

env->CallVoidMethod(obj, mid); 

Figure 2: An example possibly ignoring an exception 

void CallFooWrapper(JNIEnv *env, jobject obj) 

{ 

jclass cls = env->GetObjectClass(obj); 

jmethodID mid = 

env->GetMethodID(cls, "foo", "()V"); 

env->CallVoidMethod(obj, mid); 

} 

void main(JNIEnv *env) 

{ 

jobject obj1 = …; 

jobject obj2 = …; 

… 

CallFooWrapper(env, obj1); 

/* should exception checking be here?*/ 

jclass cls = env->GetObjectClass(obj2); 

jmethodID mid = 

env->GetMethodID(cls, "foo", "()V"); 

env->CallVoidMethod(obj2, mid); 

} 
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of isCopy or *isCopy, the corresponding deallocator 
function should be called. 

Of course, virtual machine resources should not be released more 
than once, or accessed after freed. We deal with these invalid uses 
of deallocated resources as well as leaks. 

2.3 Using Invalid Local References 
There is a design pattern in which one native method stores a Java 
object into a global variable at static initialization time and 
another method uses it later. Because the reference to the Java 
object lives across method calls, it must be a global reference 
rather than a local reference. However, some programmers forget 
to convert the local reference to the class object into a global one 
as Figure 5. The local reference should be converted into a global 
reference by the NewGlobalRef function before assigned. 

2.4 Calling a JNI Function in a Critical 
Region 
The fourth thing programmers need to care is to avoid JNI function 
calls in a critical region which starts with a call to 
GetStringCritical/GetPrimitiveArrayCritical 
and ends with ReleaseStringCritical / 
ReleasePrimitiveArrayCritical. Such a JNI function 
call between these calls to critical functions, for example, as shown 
in Figure 6, may cause the current thread to block. 
Note that we could overlap (not necessarily nest) multiple pairs of 
GetStringCritical  (GetPrimitiveArrayCritical) and 
ReleaseStringCritical 
(ReleasePrimitiveArrayCritical).  This situation could make 
programmers write more invalid function calls than usual. 

 Although this mistake is not mentioned in the Traps and Pitfalls 
chapter of [10]1, we think it is as important as the other mistakes. 

 
 
 

3. DETECTING JNI MISTAKES 
Below, we describe the design of our analysis for each JNI 
problem.  Our approach is based on typestate analysis [13] and 
syntax checking. 

3.1 Typestate Analysis for Exception 
First, we present an analysis which detects lacks of exception 
checks between Java method invocations. This analysis is based 
on typestate analysis and its typestate configuration is defined as 
Figure 7. 

 
Figure 7: Typestate configuration for the exception analysis 
In this analysis, three states are defined: Cleared in which no 
exception is pending, Unchecked in which it is unknown 
whether an exception is thrown or not, and Thrown in which an 
exception is pending. Calls to JNI functions which invoke Java 
methods (e.g CallVoidMethod) trigger transition to the 
Unchecked state. Also, these function calls are required to be in 
the Cleared state. If it is in the Unchecked state, the analysis 
reports an error because an exception might be pending before the 
call and ignored during the call. Of course, if it is in the Thrown 
state, the analysis also reports the same error. The state transits 
from Unchecked to Cleared if an ExceptionCheck call 
returns false. Otherwise it goes to Thrown. In order to go back to 
the Cleared state from the Thrown state, a call to 

                                                                 
1 We suspect that the reason this problem is not adopted is it is 

relatively a new problem. These critical JNI function are newly 
introduced in JDK 1.2 

if jvm_env->ExceptionCheck() 
returns false 

jvm_env->ExceptionClear() 

Cleared 

Unchecked
Thrown 

jvm_env->CallVoidMethod(...) 

CallInCriticalRegion(JNIEnv *env,  

jobject obj, jstring jstr) 

{ 

  jboolean isCopy; 

  const jchar *cstr = 

env->GetStringCritical(jstr, &isCopy); 

  /* Any JNI function must not called here */ 

  env->CallVoidMethod(obj, mid); 

  env->ReleaseStringCritical(jstr, cstr); 

} 

static jclass fooCls; 

JNIEXPORT void JNICALL 

Java_Foo_initialize(JNIEnv *env, jclass cls) 

{ /* fooCls should be converted into global */ 

  fooCls = (*env)->FindClass(env, "Foo"); 

} 

JNIEXPORT void JNICALL 

Java_Foo_bar(JNIEnv *env, jobject object) 

{ 

/*fooCls is no longer valid */ 

jmethodID mid = 

(*env)->GetMethodID(env, fooCls, "foo", "()V"); 

  … 

} 

jboolean isCopy; 

const char *cstr = 

(*env)->GetStringChars(env, jstr, &isCopy); 

… 

if (isCopy) { 

(*env)->ReleaseStringChars(env, jstr, cstr); 

} 

Figure 4: An improper example retaining a VM resource 

Figure 5: An example using an invalid local reference 

Figure 6: An improper example calling a JNI function in a 
critiacal region 

if jvm_env->ExceptionCheck() 
returns true 
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ExceptionClear is required. If native code finishes at the 
Unchecked or Thrown state, we should not report any error 
because the pending exception will be handled by Java code 
correctly. 

This typestate analysis can be solved as a dataflow problem. Its 
lattice would be the powerset lattice of 2{Cleared, Unchecked, Thrown} 
ordered by inclusion. The transfer function changes the states as 
described above. 

3.2 Typestate Analysis for Virtual Machine 
Resources 
Errors related virtual machine resources can be detected by 
another simple typestate analysis configured as Figure 8. A 
memory block returned by an allocator function immediately 
enters into the Allocated state. It goes to the Deallocated state 
when a corresponding deallocator function is called on that 
memory block. 
If a memory block remains in the Allocated state at the end of 
native code, the analysis reports a memory leak. In addition, it 
also reports an error if a Deallocated memory block is accessed 
or passed to a deallocator function. 

 
Figure 8: Typestate configuration for VM resources 
Although the above configuration is efficient to detect leaks, it 
produces a false positive for code shown in Figure 9.  This is 
because it does not take into account allocation failure. The 
allocation functions do not allocate the resource if their invocation 
has thrown an exception. Although the exception, which is of the 
OutOfMemoryError type, is seldom raised, we can avoid 
generating a false positive by using the typestate configuration 
depicted in Figure 10. 

Figure 9: An example from which the simple configuration 
produces a false positive 
 
In this configuration, if invocation of the allocation functions 
returns NULL or throws an exception, the first argument for the 
JNI environment goes into the Thrown state. Otherwise it goes 
into the Cleared state and the allocated resource moves equally 
to Figure 8. Note that the Thrown and Cleared states are 
identical to the ones shown in Figure 7 and also used by the 
exception analysis described before. 

 
Figure 10: Typestate configuration for the exception of VM 
resource allocation. The upper states are used for the VM 
environment (i.e. the first or ‘this’ argument of the allocator 
functions) and the lower states are used for each resource 
allocated successfully (i.e. the return value of the allocator 
functions). 

3.3 Syntax Check for Using Invalid Local 
References 
The main cause of using an invalid local reference is its 
assignment into a global variable. We detect such an assignment 
by a syntax checker. It just finds an assignment whose left hand 
side is a global variable and right hand side takes the value 
returned by a function call other than NewGlobalRef and 
NewWeakGlobalRef. 

This simple analysis generates a false positive for code shown in 
Figure 11 where the global variable is overwritten by a global 
reference. To avoid generating this false positive and to 
completely find true positives, we should have reaching definition 
analysis.  However, we selected the syntax checker because its 
implementation cost is significantly smaller than dataflow 
analysis.  We simply ignore a global variable which has multiple 
assignments in a function. 

 

3.4 Typestate Analysis for Calling a JNI 
Function in a Critical Region 
A function call in a critical region can be detected by yet another 
typestate analysis that is configured as Figure 12. There are two 
states, Critical and NotCritical. When the GetStringCritical 
or GetPrimitiveArrayCritical function is called, the 
native code unconditionally goes into the Critical state regardless 

Allocated Deallocated 

Cleared 

Thrown 

for each allocated resource 
allocation 
successful 

for global 
environment 

allocation 
failure 

deallocation 

Allocated Deallocated 

GetStringChars, 

GetStringUTFChars, … 

ReleaseStringChars, 

ReleaseStringUTFChars, … 

  utf = env->GetStringUTFChars(str, NULL); 

  if (env->ExceptionOccurred()) 

    return NULL; 

static jclass fooCls; 

JNIEXPORT void JNICALL 

Java_Foo_initialize(JNIEnv *env, jclass cls) 

{ 

  fooCls = (*env)->FindClass(env, "Foo"); 

  fooCls = (*env)->NewGlobalRef(env, fooCls); 

} 

Figure 11: An example correctly assigning a global 
reference
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of the current state. When the ReleaseStringCritical or 
ReleasePrimitiveArrayCritical function is called, it 
unconditionally goes to the NotCritical state regardless of the 
current state. Other JNI function calls are required to be in the 
NotCritical state. This problem can be also solved as a dataflow 
problem by converting this typestate configuration into a 
powerset lattice. 

 
Figure 12: Typestate configuration for Calling a JNI Function 
in a Critical Region 
This typestate analysis is sound but not complete because it 
cannot detect an absence of the release functions when critical 
regions are overlapped. In order to deal with overlapping, more 
accurate typestate configuration is necessary. Figure 13 shows 
typestate configuration for at most three critical regions. In this 
configuration 1, 2 and 3+ which represent the number of overlaps 
are introduced instead of Critical. Transitions are conditional on 
the current state and the native method function is required to be 
in the NotCritical state at the beginning. This configuration is 
more accurate than the previous one but still incomplete.  
The complete configuration should have infinite states, 
NotCritical, 1, 2, 3, … like a counter automaton with a variable 
for the number of overlaps. When implementing this typestate 
analysis with this infinite configuration on a dataflow analysis 
framework, a powerset lattice cannot be used because of infinite 
height. Instead, a flat lattice is used. We will discuss if this 
completeness matters in real applications in Section 5. 

 
Figure 13: Typestate configuration for at most three 
overlapping critical regions 

4. IMPLEMENTATION 
We have implemented the typestate analysis described in Section 
3.1, and 3.4 on BEAM. BEAM has extensibility for typestate 
checking by a user-defined typestate configuration. In this 

configuration, users can specify requirements for a function, namely 
states in which an argument of a function must be before called. 
They can also specify the effect of a function, namely states an 
argument of the function goes after called. Although Figure 7 just 
describes about CallVoidMethod, ExceptionCheck, and 
ExceptionClear, we have defined typestate configuration for 
all the JNI functions which are defined as members of a struct in 
C++. 
BEAM has built-in typestate configuration similar to Figure 8 and 
allows users to write specification about memory allocator and 
deallocator functions. For the typestate analysis described in Section 
3.2, we have defined such attributes for C++ JNI functions listed in 
section 2.2. With those attributes, BEAM can detect virtual machine 
memory leaks, multiple deallocations of a resource and use of 
deallocated resources. 

In C, JNI functions are called indirectly through a pointer in a 
struct as shown in Figure 14. Ideally, we should resolve which 
function can be called at an indirect call site by pointer analysis. 
However, we did not find any assignment to the pointer member 
variables except for the initialization of the env struct in any 
application or JVM code. Therefore, we have extended BEAM as 
it can interpret typestate configuration defined for pointer 
variables and gave the same properties as ones defined for C++ 
functions. 
BEAM has capability of interprocedural analysis (IPA). In the 
first phase, BEAM’s IPA analyzes a function with our typestate 
configuration and generates some information about requirements 
for calling context and a set of possible states after a call. The 
second phase analyzes a function, which may call another 
function, with the information obtained by the previous phase. 
Unfortunately, the analysis in the first phase is flow-insensitive. 
Therefore, it generates less accurate information than flow-
sensitive one. For example, the flow-insensitive analysis is not 
able to find out the function CallFooWrapper2 in Figure 15 
finishes in the Unchecked state whereas the flow-sensitive 
analysis is. 
In addition to typestate analysis, we have implemented the syntax 
checker described in Section 3.3 on BEAM as well. BEAM 
allows developers to implement their own checkers analyzing its 
internal representations, namely its abstract syntax tree and 
flowgraph. We decided to implement our syntax checker to 
analyze the flowgraph. BEAM represents a JNI function call in C 
in flowgraph in the same way as the equivalent call in C++, while 
this is not the case in the abstract syntax tree. For example, C and 
C++ JNI function calls in Figure 14 are converted into a 
flowgraph node called CALL with the same three incoming edges. 
Thus, we need to have only one implementation for both 
languages. Even if native code is written in a third language, we 

1 Not 
Critical 2 3+ 

ReleaseStringCritical 

ReleasePrimitiveArrayCritical 

GetStringCritical 

GetPrimitiveArrayCritical 

Critical 

NotCritical 

ReleaseStringCritical 

ReleasePrimitiveArrayCritical 

GetStringCritical 

GetPrimitiveArrayCritical 

C++: 
  mid = env->GetMethodID(cls, "foo", "()V"); 
env->CallVoidMethod(obj, mid) 

C: 
mid =(*env)->GetMethodID(env, cls, "foo", 

"()V"); 

(*env)->CallVoidMethod(env, obj, mid) 

Figure 14: Function call difference between C++ and C 
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will be able to reuse the implementation. Another reason we 
chose the flowgraph as our analysis target is that BEAM does 
optimization on the flowgraph and it brings us efficiency. 

Figure 15: An example which might throw an exception 

5. EXPERIMENTAL RESULTS 
We executed our JNI analysis tool on four open source software 
projects shown in Table 2. We analyzed source code snapshots 
obtained from their code repository. Their SVN/ BZR revisions or 
CVS dates are shown in Column 2. In this experiment, we only 
analyzed files which include a JNI environment access (i.e. ones 
in which “JNIEnv” is found by grep.)  The numbers of such files 
and their lines are shown in Columns 4 and 5, respectively. We 
first try the simple configurations shown in Figure 8 and Figure 
12 for the detection of VM resource leaks and calling JNI 
function call in a critical region, respectively. 

Table 2: Benchmark programs 

 revision/ 
CVS date description # of 

files 
# of  
lines 

Harmony [1] r566512 Java class 
library 159 53159 

Java Gnome 
[9] 411 Java interface 

to Gnome 20 3670 

Gnu  
Classpath [7] 

2008-01-
22 

Java class 
library 69 27364 

Mozilla 
Firefox [5] 

2008-01-
22 web browser 22 22427 

 

In addition to our JNI experiments, we executed BEAM without 
our JNI analysis features on the same file set to see how much the 
JNI analysis features cost. It ran at the same speed and generated 
the same non-JNI bug reports. Thus we do not report 
experimental results of BEAM by itself.  We can conclude that 
our JNI analysis feature does not make a penalty of both precision 
and speed. 

Table 3 shows results of our analyses on the benchmark programs. 
We ran BEAM against these programs under Linux 2.6 on an 
unloaded IBM IntelliStation M Pro which contains a 2.66 GHz 
Intel Core2 processor and 3GB of RAM. Row 2 represents the 
number of bugs which are not related to our JNI analysis. They 

include array index out of range, null dereference, and use of an 
uninitialized variable. Rows 3 to 6 correspond to mistakes 
described in Section 2.1 through 2.4. We manually verified all the 
reported errors and found in Gnu Classpath only one false 
positive of a VM resource leak caused by the code like Figure 9. 
However, if we use the more complex configuration shown in 
Figure 10, the false positive disappeared. We do not report its 
experimental results because they did not differ from the run with 
the simpler configuration except for the false positive, and the 
analysis time was almost the same. 

Table 3: Experimental results (numbers in parentheses were 
found by interprocedural analysis) 

 Harm
ony 

Java 
Gnome 

Gnu 
Classpath 

Mozilla 
Firefox Total 

Non JNI 84 3 12 15 114 

Error 
Checking 22 2 22(10) 9(3) 55 

Virtual 
Machine 
Resource 

18 0 7 0 25 

Using 
Invalid 
Local 

References 

4 0 0 0 4 

JNI 
Function 
Call In a 
Critical 
Region 

2 (1) N/A N/A N/A 2 

86 

Time 
(mm:ss) 31:59 0:12 1:59 2:02  

 
At a first glance, the table shows that our JNI analysis totally 
generates 43% of all the bug reports. In other words, by adding 
our JNI-domain-specific analysis to a general bug-finding tool the 
number of reported bugs increased by 76% for JNI-domain-
specific programs. 

Looking at the breakdown, the kind of errors most frequently 
reported is error checking shown in Row 3.  This coincides with 
what Section 10.1 of [10] points out. These benchmarks have 
many Java method invocation sites, most of which are followed 
by the error checking code. However, the programmers still forgot 
to insert such error checking code in some places which our tool 
attempts to detect. 

The second most frequently reported errors are virtual machine 
resource problems. As mentioned before, most of GNU 
Classpath’s memory leaks were caused by programmers’ 
misunderstanding of the allocator functions. 

We found four assignments of local references into a global 
variable in Harmony. We verified that the global variable is used 
like a local variable and these local references are correctly used 
in terms of results. In this regard, these four reports are false 
positives. However, for better coding we think that these variables 
should be declared local. 

void CallFooWrapper2(JNIEnv *env, jobject obj) 

{ 

jclass cls = env->GetObjectClass(obj); 

jmethodID mid = 
env->GetMethodID(cls, "foo", "()V"); 

env->CallVoidMethod(obj, mid); 

if (env->ExceptionCheck()) { 

  … 

  env->ExceptionClear(); 

} 

env->CallVoidMethod(obj, mid); 

} 
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We found two JNI function calls in critical regions in Harmony. 
As mentioned before, critical regions can be overlapped.  
Harmony includes 15 critical regions which overlap with each 
other. We tried the typestate analysis with the infinite state 
configuration for Harmony. However, BEAM reported the same 
set of JNI errors and almost the same set of non-JNI ones, while it 
took 41 minutes and 7 seconds. We think that this increased 
analysis time is because we had to give to each native method 
function a precondition that requires the function to start with the 
NotCritical state. This precondition could become extra 
information and make BEAM take more time. 

Finally, we show the effectiveness of IPA. Our IPA relies on 
BEAM’s IPA, which is flow-insensitive. First we were not sure 
how effective the IPA was because we predicted there were many 
wrapper procedures like Figure 15. However, the flow-insensitive 
IPA is working somewhat effectively for Gnu Classpath and 
Mozilla. The reason is in those applications callee functions are 
very simple from a viewpoint of JNI. Most of them call a JNI 
method invocation function just once. Otherwise, their control 
flows related to JNI are simple.  We still need to investigate why 
IPA was not so effective for Harmony and Java Gnome; they 
might have few simple wrapper functions or require flow-
sensitive IPA. However, looking at the running time, we believe 
that our flow-insensitive IPA yields us good balanced results. 

6. RELATED WORK 
Prior work dealing with JNI can be categorized into runtime 
checks, static analysis for safety, and new programming models 
for integrating two programming language. 

6.1 Runtime Checking by Java VM 
While this paper is focused on static analysis, runtime checking 
by the –Xcheck:jni option of Java VMs is also helpful for 
programmers. We ran a few test programs with two commercial 
VMs, Sun HotSpot(TM) Client VM [14] version 1.5.0 and IBM J9 
VM [2] version 1.5.0. 
The test programs are as follows: 

• In the “Error Checking” tests, we ran the native code shown 
in Figure 2 with two cases. In the “Throw” case, we made 
the first Java method invocation (call foo()) actually 
throw an exception. In the “Not Throw” case, we did not. 

• In the “VM Resource – Leak” test, we called only the 
GetStringChars function with the isCopy parameter 
NULL and never called the ReleaseStringChars 
function. 

• In the “VM Resource – Release Twice” test, we called 
GetStringChars and called ReleaseStringChars twice. 

• In the “VM Resource – Access Released Resource” test, we 
called GetStringChars followed by  
ReleaseStringChars, and read the contents of the array 
already released. 

• In the “Using Invalid Local Reference” test, we ran the 
native code shown in Figure 5. 

• In the “Call in Critical Region” test, we ran the native code 
shown in Figure 6. 

Table 4 shows the results of these tests on the two VMs. The 
finding here is that the –Xchceck:jni option, especially of J9, is 
useful for the mistakes we try to detect. However, in order to find 
bugs by using VM’s runtime checks, failure-exposing test inputs 
must be provided whereas our techniques require only source 
code.  

Table 4: Runtime checking by Java VM 

HotSpot VM IBM J9 VM 
 

opt noopt with opt noopt 

Throw error crash error crash 

Error 
C

hecking Not 
Throw   warning  

Leak   warning  

Release 
Twice crash crash error crash 

V
M

 R
esource 

Access 
Released 
Resource 

read0 read0 crash crash 

Using Invalid 
Local Reference error crash error crash 

Call in Critical 
Region warning  error  

opt: run with the –Xcheck:jni option. noopt: run withouth the 
option. error: exit with an error message. warning: continue 
running with a warning message. crash: aborted with an fatal 
error such as segmentation fault. blank cell: continue running 
silently. read0: the released resource is filled with zero and 
further access can read it. 

6.2 Static Analysis Tools for JNI 
Furr and Foster [6] have presented a polymorphic type inference 
system for JNI, which statically analyzes native code and checks 
the correctness of literal names given to JNI function calls. We 
implemented their type system, which we found very useful at 
build time. It can detect misspelling before testing. In our 
experiments, however, it did not find any serious error but a 
minor one which misspells "java/net/ServerSocket" as 
"Ljava/net/ServerSocket;" in a call to the FindClass 
function. That might be because the code checked in a repository 
is well-tested. Tan et al.[15] proposed a framework called Safe 
Java Native Interface that ensures validity of Java references. For 
example, it makes sure the Java references are not destroyed by 
pointer operations. Both of the analyses are beneficial to ensure 
correctness of JNI function invocations. On the other hand, our 
analysis deals with a broader set of mistakes including exception 
handling mistakes, memory leaks, using invalid local references 
and JNI function calls in a critical region. 
Livshits et al.[11] proposed a technique to resolve invocation 
targets from Java reflection calls. They resolve targets using 
points-to information and available type declarations in Java. 
Although they do not claim, we believe their work can be applied 
to static analysis for JNI. 
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6.3 New Programming Models and Runtime 
There are efforts [4][8] introducing new programming languages 
as mixture of Java and C to bring programmers productivity and 
safety. In their languages both Java code and C code can be 
nested in each other and programmers do not need to write native 
code with JNI function calls. The correctness of exception 
handling as well as syntax is checked by the compilers. As long as 
the compiler generates correct code, there is no memory leak or 
invalid use of local references or JNI function calls in a critical 
region. However, since they are quite new programming 
environments, it requires programmers’ migration efforts. 
On the other hand, Jace [16] helps simplify JNI programming by 
providing C++ proxy classes for Java classes. As long as native 
code accesses Java objects through the proxy classes, all the type 
errors can be checked by a C++ compiler as naming errors. In 
addition, because the proxy classes convert a Java exception into 
a C++ proxy class and throw it, exception correspondence can 
also be checked by a C++ compiler. However, Jace also requires 
migration efforts. Besides, new proxy classes must be provided 
for safe accesses to new Java classes. 
Whereas Jace handles Java exceptions at the class library level, 
CEE-J [12] supports mixing C++ and Java exceptions at the 
virtual machine level. This means that programmers writing 
native methods in C++ can throw Java exceptions with the C++ 
'throw' statements. Similarly, C++ code can catch Java exceptions 
with the C++ 'try'/'catch' mechanism. Furthermore, Java code can 
catch an exception thrown from C++. This shared exception 
support can enhance the readability of native code. However, this 
mechanism works only on the CEE-J virtual machine. 

7. CONCLUSION 
We presented static analysis techniques for JNI programming 
mistakes which are not dealt with by existing tools. We 
implemented a JNI bug-finding tool with those techniques, and 
showed that our tool could find many errors in real applications 
using JNI. 
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