
Customization Change Impact Analysis for
ERP Professionals via Program Slicing

Nurit Dor
Panaya Inc.

nurit@panayainc.com

Tal Lev-Ami∗
Tel-Aviv University

tla@post.tau.ac.il
Shay Litvak
Panaya Inc.

shay@panayainc.com

Mooly Sagiv∗

Tel-Aviv University
msagiv@post.tau.ac.il

Dror Weiss
Panaya Inc.

dror@panayainc.com

ABSTRACT
We describe a new tool that automatically identifies impact of cus-
tomization changes, i.e., how changes affect software behavior. As
opposed to existing static analysis tools that aim at aiding pro-
grammers or improve performance, our tool is designed for end-
users without prior knowledge in programming. We utilize state-
of-the-art static analysis algorithms for the programs within an En-
terprise Resource Planning system (ERP). Key challenges in ana-
lyzing real world ERP programs are their significant size and the
interdependency between programs. In particular, we describe and
compare three customization change impact analyses for real-world
programs, and a balancing algorithm built upon the three indepen-
dent analyses. This paper presents PanayaImpactAnalysis (PanayaIA),
a web on-demand tool, providing ERP professionals a clear view of
the impact of a customization change on the system. In addition we
report empirical results of PanayaIA when used by end-users on an
ERP system of tens of millions LOCs.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Program analy-
sis; D.3.1 [Formal Definitions and Theory]: Semantics

General Terms
Algorithms, Experimentation, Management

Keywords
Customization Change Impact Analysis

1. INTRODUCTION
Enterprise Resource Planning systems (ERPs) provide compre-

hensive sets of software tools for all the business processes of an
organization, regardless of the organization’s business or character.

∗This work was conducted while visiting Panaya Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’08, July 20–24, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-050-0/08/07 ...$5.00.

Businesses, non-profit organizations, non-governmental organiza-
tions, governments, and other large entities utilize ERP systems.
Today, only few organizations choose to implement management
software in-house. Instead, ERP vendor packages are integrated
into the organization. The ERP system is cross-functional and en-
terprise wide. All functional departments involved in operations or
production are integrated into one system. In addition to manufac-
turing, warehousing, logistics, and information technology, also ac-
counting, human resources, marketing, and strategic management
may be included. ERP systems are composed of a large code base
shared between all customers of the system together with a rich set
of customization options. There is clear separation between the de-
velopers of the ERP system and the ERP professionals responsible
for the customization of the system for a specific organization.

Clearly, integrated systems impose challenges: changes made
in one business area can affect several business processes in dif-
ferent business practices. Indeed, ERP systems have thousands of
customization properties. In SAP R/3 4.6C, a leading ERP ven-
dor, has approximately 30,000 dialogs for customization of the
system, modifying approximately 9,000 customization tables. The
customizations are configured in order to control the behavior of
the system. For example, a specific SAP installation can customize
not only the list of warehouses but also the types of transfers into
and out of each warehouse. ERP professionals have great power
to customize the application for different environments. With that
power comes considerable complexity.

ERP professionals, who usually master a limited number of ap-
plications, are responsible for applying customization changes to
the system. However, in many cases it is difficult to predict the
effect of a change on the whole system. Current techniques for
aiding ERP professionals in understanding the potential impact of
a change are mostly organizational, such as expert consulting and
change steering committees. ERP professionals making a change
need to work together with their peers in order to ensure that the
proper effect is correctly achieved. Sometimes, it is not clear which
modules are affected, leading to complications and problems in
production. In a survey held among ERP professionals, 72% an-
swered that customization problems are a serious technical prob-
lem, which ranked as second highest technical problem, after inte-
gration with existing systems [25]. Therefore, it is not surprising
that the capital spent on maintenance tasks is very high.

Code change impact analysis [1, 22, 19] determines the effect
of a source code modification and aims at supporting programmers
in focused testing and debugging. This paper describes new tech-
niques for customization change impact analysis that aim at aiding
end-users (in our case, ERP professionals) in understanding and
testing the behavior of the software after a customization change.

97

Contrary to code change impact analysis, in a customization change
impact analysis the source code has not been modified. We present
PanayaIA, a static analysis tool that provides customization change
impact analysis for ERP professionals. For a given customization
change, PanayaIA lists the possible affected parts of the ERP sys-
tem with a detailed description of the effect, in the ERP profes-
sional’s terminology. Although PanayaIA applies state-of-the-art
program analysis techniques, the input and output of the tool does
not involve the analyzed code. The techniques presented here are
applicable to many ERP systems and other customization-based
software. We present our tool for SAP R/3 4.6C.

The contributions of this paper can be summarized as follows:

• A definition of the customization change impact problem, a
real world problem that can lead to failures and unpredictable
behavior on mission critical systems. Section 2 formalizes
the change impact analysis problem.

• A description of the implementation of PanayaIA, a tool that
provides customization change impact information. The tool
is a web-based on-demand service, a nonstandard architec-
ture in the domain of program analysis, which is feasible due
to the ERP nature in which the code is shared among all in-
stallations. The user interface of the tool, implemented for
non programmers, requires attention in order to be clear, co-
herent and self explanatory. Section 3 describes the tool with
an elaboration on the architecture and user interface of the
tool.

• Utilization of static analysis techniques, which have been
greatly improved over the last decades, for solving this prob-
lem and aiding ERP professionals in one of their most crit-
ical and risky tasks. We presents three basic algorithms for
solving the customization change impact problem providing
approximation to the customization change impact. The de-
signed algorithms tackle specific challenges emerging from
analyzing real ERP code and vary in their precision and cost.
In addition, we present a balancing algorithm, which aims at
gathering the “best of all worlds” by combining the three ba-
sic algorithms. Section 4 details the algorithms that provide
an abstraction to the change impact.

• A comparison of the different algorithms in terms of results
and cost on a real, large code base and a measurement of the
precision by studying end-users’ experience with the results.
The implementation of the tool is presented in Section 5. The
study of the effectiveness of the algorithms and the tool is
presented in Section 6.

2. CUSTOMIZATION CHANGE IMPACT
One of the key advantages of an ERP system and in particular

SAP is its flexibility, which is achieved by customization tables
that drive the program functionality. Customization tables can con-
trol the code functionality, for example, whether a report can be
saved or the conditions taken into account in calculation of a price.
Therefore, new and changed business requirements can be quickly
implemented and tested in the system. Within SAP, there are thou-
sands of database tables that may be used to control the behavior of
the application. A customization can dramatically affect the out-
put of the program in terms of the user dialog invoked, the database
manipulation performed, the output to the screen (e.g., error mes-
sages or reports), the invocation of external programs or interfaces,
or any other output to any device, denoted as output identifers of
the program.

2.1 Defining Customization Change Impact
In this section we define the notion of customization change im-

pact and consider abstractions that allow static analysis tools to ap-
proximate this notion in realistic settings. We define two levels of
customization change impact results: program-level impact, which
defines which programs are affected from a change, and detailed
impact, which provides information regarding which parts of a pro-
gram is affected by the change. The program-level impact is, as we
shall see, easier to compute than the detailed impact. The detailed
impact aims at providing details that are understandable to the ERP
professional. Customization in ERP systems is performed by mod-
ifying designated database tables. Formally, a configuration speci-
fication is a set of relation symbols (designating the customization
tables) and a configuration is the corresponding set of relations. An
attribute is a position within a tuple in a relation (corresponding to
a column in a customization table). Thus, customization amounts
to changes of attributes in the configuration (the current setting of
the customization options).

EXAMPLE 1. Figure 1 contains an example of a customization
based program, referred to as Report#3. It is written in C-like
langauge with SQL statements. This program represents a cus-
tomizable report. One of the customizable behaviors of the re-
port is whether it can be printed. If printing is enabled and the
user chooses to print, then the document is printed to the user’s de-
fault printer (if customized). If no default printer is set, a dialog in
which the user needs to choose a printer is displayed. For this pro-
gram, there are two customization tables: ReportConfig and
UserConfig. The first indicates for each report whether printing
is allowed and the second table indicates for each user her default
printer (among other things). A configuration to this program in-
cludes the set of entries for the customization tables, as displayed in
the first row, second column in Table 1. The Printable attribute
of the first tuple in the ReportConfig relation is false.

An ERP program’s input can be seen as a pair 〈C, I〉 where C
is the given configuration, known before execution starts and I is
the user specified input. Formally, a program P : Ω × Γ → O
where: Ω is the set of all configuration; Γ is the set of possible user
inputs to P , O is the set of all outputs. To be able to discuss specific
outputs of the program, we consider the output of the program as a
map of a set OID of output identifiers to their values. Therefore O
is a set of all maps from OID the set of possible output identifiers
and their corresponding values. We define a partial evaluation, [[P]]
of a program P as a function from configurations to specialized
programs [9].1 The specialized program takes as input only the
user specific input and not the configuration. The partial evaluator
guarantees that the generated program is equivalent to the original
program with the same configuration. Thus, for each program P
and for each configuration C ∈ Ω, P (C, I) = ([[P]](C))(I) for all
input I ∈ Γ.

EXAMPLE 2. For the Report#3 program the OID set includes
the following: (i) oerror of Boolean type which holds when the er-
ror message is reported, (ii) oselect of Boolean type which holds
when the printer select dialog is shown, and (iii) oprinted of String
type which holds the name of the printer the report was printed to.
Table 1 shows the partial evaluation of the program Report#3.
The first row represents the program [[Report#3]](Cold) when
printing is disabled. The program is specialized such that on any
request to print an error message is displayed. In this case, the out-
put is oerror = true when the user chooses to print. The second
1This definition is done for explanation purposes only. We do not
construct or use partial evaluation in the current implementation.

98

/* DBtables.h */
typedef struct {

Char user[10];
Char printer[10];
Char phoneNumber[10];
Char departmentCode[10];

} UserConfig
typedef struct {

Int reportNum;
Boolean printable;

} PrintReportConfig
/* main.c */
#include DBtables.h;
UserConfig userConfig;
PrintReportConfig printReportConfig;
Report3() {

computeAndViewReport();
if (getUserCommand()=="Print") {

SQL(select * from ReportConfig into printReportConfig
where ReportNum==3);

if (printReportConfig.printable) {
SQL(select * from UsersConfig into userConfig

where User==getCurrentUser());
if (isEmpty(userConfig.printer))

userConfig.printer = selectPrinterDialog();
printReport(userConfig.printer);

} else {
reportErrorMessage("Report #3 is not printable"); }

}
}

Figure 1: An example of a toy customization based program.

row in Table 1, which corresponds to configuration Cnew, repre-
sents the program when printing is allowed and there are two users
u1 and u2 and two printers. In this case the output depends on the
input. For example, for the user input

[print(user = u2), select(printer = ptr2)]

the output is [oselect = true, oprinted = prt2].

Programs [[P]](C1) and [[P]](C2) are observationally equivalent if
for every input I ∈ Γ they yield the same output:

([[P]](C1))(I) = ([[P]](C2))(I),∀I ∈ Γ

We say that a customization change from Cold to Cnew program-
level impacts P if [[P]](Cold) and [[P]](Cnew) are not observation-
ally equivalent. We define impactProg(Cold, Cnew) to be the set
of programs affected by the change from Cold to Cnew.

EXAMPLE 3. The two specialized programs [[Report#3]](Cold)
and [[Report#3]](Cnew) shown in Table 1 are not observation-
ally equivalent. Clearly, the behave differently on user input re-
quest for printing. Therefore, impactProg(Cold, Cnew) contains
Report#3. An example in which a customization change has no
impact on Report#3, is a modification of ReportConfig cus-
tomization table for a different report, say Report#1. In this case,
program Report#3 is not affected, as the resulting programs are
observationally equivalent.

Although program level customization change impact informa-
tion can aid in test scoping and understanding the change, users

need more elaboration as to which parts are affected and where
to focus testing effort within a program. As we shall see in Sec-
tion 6, the number of output identifiers can be thousands even for a
medium sized program, indicating that a complete test of a program
is tedious and time consuming. For this, we define a observation-
ally equivalent with respect to specific output identifier, and the
detailed impact of a customization change as follows. Outputs O1

and O2 are equivalent with respect to set Φ ⊆ OID of output iden-
tifiers if for every id ∈ Φ we have O1(id) = O2(id). Programs
[[P]](C1) and [[P]](C2) are observationally equivalent with respect
to Φ if for every input I ∈ Γ the outputs of [[P]](C1) and [[P]](C2)
are equivalent with respect to Φ. Notice that for Φ = OID this co-
incides with the notion of observational equivalence defined above.
The detailed impact of a customization change from Cold to Cnew

on a program P is the minimal set Φ ⊆ OID s.t., [[P]](Cold) and
[[P]](Cnew) are observationally equivalent with respect to OID\Φ.
Formally, impactDetail(Cold, Cnew) is a set of pairs, {(P , Φp)},
of affected programs and output identifiers.

EXAMPLE 4. The detailed impact of the customization change
from Cold to Cnew presented in Table 1, contains all the output
identifiers, since there is at least one input for which the output is
changed for each one of the output identifiers. For input [print(user
= u2), select(printer = ptr2)] the output map changes from
[oerror = true] to [oselect = true, oprinted = ptr2], and there-
fore all three output identifiers are affected. Notice that the de-
tailed impact depends on the set of configurations, specifically on
the UserConfig relation. In a case where all the users have a
default printer set, the detailed impact would not include oselect

as no input sequence would cause the printer select dialog to be
shown.

2.2 Abstracting Customization Change Impact
Customization tables are customer-specific and proprietary. They

are regarded as a competence factor since they usually hold criti-
cal missions’ specific behavior. Because PanayaIA is service based
and is not deployed on the customers’ machines, it has limited ac-
cess to the specific configuration. Instead, the tool abstracts the
configuration and estimates impacts as formulated below.

To abstract the concrete customization changes we consider a
set of customization changes represented as a relation ∆, i.e., set
of pairs 〈Cold, Cnew〉. The impact of such a change is defined by a
pointwise extension, i.e.,

impactProg(∆) =
[

〈Cold,Cnew〉∈∆

impactProg(Cold, Cnew)

Similarly, impactDetail is extended to a delta relation. As the
set of configuration pairs is potentially unbounded, the representa-
tion of an abstract customization change, ∆, is the set of database
columns for which there was an attribute change in one of the pairs
〈Cold, Cnew〉 ∈ ∆. An abstract customization change is said to be
atomic if it contains a single database column.

PanayaIA supports three types of concrete customization changes:
Adding a tuple to a given relation, removing a tuple from a rela-
tion and changing an attribute. The abstraction provides a mapping
from concrete customization change 〈Cold, Cnew〉 to an abstract
customization change ∆. For example, the ∆ for adding a tuple
to a relation R is the set of all pairs of configurations Cold, Cnew

s.t., the only change between Cold and Cnew is the addition of new
tuples to R. We abstract ∆ and represent it as the set of all columns
of R.

EXAMPLE 5. The abstract customization change of modifica-
tion to the Printable column of ReportConfig customiza-

99

Configuration Specialized program after partial evaluation
ReportConfig UserConfig

Cold

ReportNum Printable
1 false
3 false

User Printer ...
u1 prt1 ...
u2 null ...

Report3() {
computeAndViewReport();
if (getUserCommand()=="Print")

reportErrorMessage("Report #3 is not printable");
}

Cnew
ReportNum Printable

1 false
3 true

User Printer ...
u1 prt1 ...
u2 null ...

Report3() {
computeAndViewReport();
if (getUserCommand()=="Print") {

SQL(select * from UsersConfig into userConfig
where User==getCurrentUser());

if (isEmpty(userConfig.printer))
userConfig.printer = selectPrinterDialog();

printReport(userConfig.printer);
}

}

Table 1: Partial evaluation of Report#3 for two configurations which differ in the attribute Printable in relation
ReportConfig for Report#3. The declaration part is the same as in Figure 1.

tion table abstractly represents all possible customization changes
in which the tuple of one report was changed from allow to dis-
allow and vice-versa. The abstract detailed impact of this change
on Report#3 are all OID of the program, since it also abstracts
all possible configurations in which some users have default printer
and some do not. In the example of adding a tuple to the UserConfig
customization table, the abstract impact includes object identifiers
oselect and oprinted. The object identifier oerror is not affected
since there is no configuration set in which this customization change
impacts oerror .

Given an algorithm al that abstractly computes impactProgal,
the impact of an abstract customization change, we say that al is
sound if for every abstract customization change ∆:

impactProgal(∆) ⊇ impactProg(∆)

We define soundness of impactDetailal in a similar manner.

3. CHANGE IMPACT TOOL FOR SAP
This section presents characteristics of the SAP system that are

relevant for the tool and for the analyses presented in Section 4, as
well as a high level overview of the PanayaIA tool for ERP profes-
sionals. The PanayaIA tool is built for ERP professionals to interac-
tively utilize during their task of performing customization changes
for maintenance and enhancement of their SAP system. During this
task, ERP professionals verify the changes and perform testing to
the system. In order to be incorporated into this process, the tool
needs to provide an online and immediate response to queries re-
garding impact of changes. For clear understanding of the impact
results, the tool needs to report the impact in the ERP profession-
als terminology. Due to the large system, the impact of a change
can be very large either due to a change that indeed impacts a sig-
nificant part of the system or due to false-positives of the analysis.
PanayaIA utilizes a few techniques to aid the user with managing
the impact result.

3.1 Characteristics of the SAP System
The SAP system contains a proprietary language, a development

environment, and an application server, all used to develop and ac-

tivate the different application modules. SAP functionality is pro-
grammed in its own proprietary language called ABAP, first devel-
oped in the 1970s and has evolved greatly over the years [16], start-
ing from a macro-assembler used exclusively for reports, through
an interpreter language aiming at creating dialog programs in the
1980s. In the 1990s, ABAP has continued to evolve as a forth-
generation language and became the base language for all SAP
application modules. Toward the end of the 1990s, ABAP was en-
hanced with object oriented paradigm. Today’s ABAP is a powerful
language with thousands of constructs including database process-
ing constructs and object oriented paradigm.

The SAP programs are interactive (dialog-based) and database
intensive as most of the data and configuration are stored in the
database. Some database tables have a large number of columns (up
to hundreds of columns), which are mirrored in the code as large
structures. The columns have diverse purposes and different parts
of the code manipulate small portions of the columns according to
their functionality. To support the customizable business processes,
large decision trees are a common implementation paradigm, in ad-
dition to dynamic dispatchers that are used in dynamic computation
of the program flow. The memory allocation is typically on the
stack and mostly as global variables, which are commonly used for
storing and passing information between procedures. Dynamic al-
location, though possible is rarely used. Some ABAP constructs,
such as pointer manipulation, object-oriented code, and concur-
rency, are not commonly used and therefore, for ease of implemen-
tation, are not supported by the current version of PanayaIA.

In addition, some of the SAP programs are maintained for more
than a decade during which more and more functionality has been
added. The code itself is tightly coupled and probably contains a
rather large portion of unreachable code.

SAP code base is comprised of about 60,000 compilation units
which are linked together into approximately 9,000 programs. Many
compilation units are shared between many programs. In section
Section 4 we present our customization change impact analysis al-
gorithms that analyze the SAP code in a general manner, In Sec-
tion 6 we elaborate how the SAP specific complications are handled
in our implementation.

100

3.2 PanayaIA Tool
PanayaIA is an on-demand web tool designed for ERP profes-

sionals. It provides a clear view of the impact of a customization
change on the entire ERP system. PanayaIA consists of two main
processes: an online process that is responsible to communicate
with the end-user and an offline process that orchestrates the differ-
ent analysis algorithms and constructs the Customization Change
Impact Repository (CCI Repository).

PanayaIA’s offline process uses a computer grid (cluster) to per-
form the analysis of all the ERP programs. The duration of the
analysis of approximately 4,000 programs, on a grid of several
dozen of processors, running Linux RedHat 42, can be up to a few
hours and depends on the exact analysis chosen. The deviation of
analysis time is considerable. The average is a few minutes per
program, while the analysis of the largest programs requires a few
hours. Memory consumption, which is less of a concern than run-
ning time, is on average less than 1GB (running on a 64-bit system)
and ascends to 20GB for the largest programs.

Each program is analyzed in a batch mode and the customiza-
tion change impact results are stored in the CCI repository. The
repository contains a mapping from each customization table and
column (an atomic abstract customization change) to the affected
program and its affected output identifiers (dialog fields, error mes-
sages, etc.).

PanayaIA’s online process contains two major components: a
front-end and a back-end. The front-end module handles the com-
munication with the ERP professional. The users report the change
as they are about to transfer to the production system and after ex-
ecuting the query the user receives the impact it might have on the
whole system. The impact is displayed in the terminology of the
ERP professional: not procedures and statements but dialog fields,
error messages, and other business-related output identifiers. The
back-end module uses a computer cluster to answer efficiently on
the users’ requests online over the web (as an on-demand service).
Each impact analysis request is transformed into queries against the
CCI repository. The user’s customization change is disassembled
into atomic abstract changes, and the back-end module retrieves
the corresponding data from the CCI repository. The final result
is the combination (superposition) of all the affected elements that
satisfies the customization change criteria.

One of the big challenges in the user interface and user experi-
ence is the ability to manage a large impact result set. PanayaIA
uses several techniques in order to give the user a clear image of
the impact on the system as a result of a customization change:
(i) Grouping — the affected programs are grouped into application
components each one represents a different business module (e.g.,
accounting, sales, human resources) and the user can drill in the
results relevant to her; (ii) Similarity — programs that have a sim-
ilar impact (usually, in the library code) are grouped and only one
representative is displayed to the user; (iii) Filtering — some of the
users may supply usage information (i.e. a list of the programs that
are used in their organization, usually gathered by a build-in audit
mechanism) thus enabling PanayaIA to focus and display only the
impact on this sub group of programs.

4. CUSTOMIZATION CHANGE IMPACT
ANALYSES

We present three basic static analysis algorithms for customiza-
tion change impact analysis. Each one analyzes the program’s

2Our experimental study shows that running time of the analysis
on Linux machines is about 70% of the running time on Windows
XP x64.

source code for a given atomic abstract customization change ∆
and reports an approximation of the impact either impactProgal(∆),
or impactDetailal(∆). This approximation can include false-
negatives and false-positives. False-negatives may result due to un-
sound treatment of program constructs, in particular dynamic con-
structs, such as dynamic procedure calls (a call with a computed tar-
get) and dynamic SQL statements. Additional unsoundness comes
from unconservative abstraction of customization change impact as
explained in this section. In many cases, conservative methods that
do not produce false-negatives, report a significant amount of false-
positives. In practice, losing soundness in a controlled manner may
yield better value to the end-user than a large number of false posi-
tives. The set of analyses enables study of the differences, precision
gain and loss, and the cost (memory and time) of each analysis.
The balancing algorithm, presented in this section, aims at gather-
ing the best results with fewer false positives and false negatives by
a very specific combination of the results of the three basic algo-
rithms.

4.1 Naive Syntactic Algorithm
The naive syntactic algorithm defines impact as the syntactic ex-

istence of a SQL select statement from the customized table. The
entire abstract syntax tree (AST) of the program is scanned to find
select statements from each customization table. The analysis is
flow- and context-insensitive. This analysis reports impactPrognaive

impact on a program level, and does not detail which output identi-
fiers are affected. Except for cases of undetermined dynamic con-
structs, which may cause analyzing incomplete code of a program,
this analysis is sound and does not have false negatives. Clearly,
this analysis has a rather high false positives rate, especially for
update customization in which one attribute is modified.

EXAMPLE 6. Since there is an SQL select statement from the
UserConfig table in program Report#3, the naive syntactic
algorithm yields that Report#3 is affected by an update cus-
tomization change to the PhoneNum attribute of the UserConfig
configuration of an existing user. Clearly, since there is no concrete
impact on this program, this is an over approximation.

4.2 Column Usage Analysis
In many cases, only a subset of the attributes of a customiza-

tion relation are used in a program. From the syntactic point of
view there is an SQL select statement that retrieves an entire re-
lation, however, the semantics of the program use the values of
only a subset of the retrieved attributes. The goal of the column
usage analysis is to improve precision over the naive syntactic al-
gorithm for customization changes that only modify a subset of the
columns.

Inferring which columns are used in a program is a non trivial
problem since the number of columns is huge and since the pro-
gramming language provides low level operations which do not
necessarily respect the field boundary (e.g., casts between differ-
ent structure types, copying a structure into a scalar and back).

The column usage analysis is a flow-insensitive analysis that first
computes equivalent access-paths in the program. Intuitively, two
access paths, e.g., a reference to variable or to a field of a structure
variable, are equivalent if there may be a transitive memory copy
between them. Thus, if two access paths belong to different equiv-
alent classes there cannot be any data dependency between them.
We claim that a program is not affected by a customization change
if there is no direct use of any of the equivalent access paths of the
changed attribute.

In [21] a computation of low level atoms, a sub-part of a field,
is presented. We implemented a variant of [21] which is a unifi-

101

Statement Pseudo code
x = y unify(group-id(x),group-id(y))

structure copy
S1 = S2
index based

for each field f1 of S1
for each field f2 of S2 s.t f1 overlaps f2

unify(group-id(S1.f1),group-id(S2.f2))
process assignment S1.f1 = S2.f2

x = (cast)S1
unify(group-id(x),group-id(e))
where e is an access-path with prefix S1

Table 2: Handling of assignments in the column usage analysis.
Symbols x and y denote primitive type access paths, S1 and S2
denote structure type access-paths.

cation based algorithm, similar in nature to [24], that can handle
type casting between different structure types, arrays or SQL state-
ments. The basic access paths are variables, field-paths (up to some
k limit), a cell of an array, or a column of a database table. Table 2
displays handling of some interesting basic assignments in building
equivalence classes. Each access-path is associated with a group-
id. The unify operation, unifies two equivalence classes into one
equivalence class. Assignment of structures of different types is
processed as a memory buffer copy, similar to memcpy() in C. In
this case, we unify fields that their indexes are overlapping, as fol-
lows: field f , which has starting and ending indexes fs and fe,
overlaps f ′ if [fs, fe] ∩ [f ′

s, f
′
e] 6= ∅.

EXAMPLE 7. In program OrderHandling() shown in Fig-
ure 2 the following three equivalent access-paths are found: (i) The
column DepartmentCode in table UserConfig; (ii) The ac-
cess path userConfig.departmentCode due to the SQL se-
lect statement that assigns to this access path the column value;
(iii) The access paths userDetails.departmentHead and
userDetails.subDepartment over the formal parameter of
checkAuthorization() due to the type casting in the param-
eter passing.

The impact of an atomic abstract customization change, ∆, can
be addressed as follows: the column c of table t, which is con-
tained in ∆, is computed to be a member of equivalence set S; If
any access path p ∈ S is used in the program’s control or output
statements then we say that the customization change impacts the
program. Similar to the naive algorithm, there is no inference of
the detailed impact.

EXAMPLE 8. An abstract customization change to column
DepartmentCode in table UserConfig impacts the program
OrderHandling() according to the column usage analysis since
access path userDetails.departmentHead is used in the
program and is in the same equivalence access-path as the changed
column.

In the program Report#3 the equivalence access-path set of
DepartmentCode column of UserConfig which includes also
userConfig.departmentCode, is not used in the program.
Therefore, the analysis is able to infer that a customization change
to the DepartmentCode attribute has no effect on Report#3.

4.3 Slicing Algorithm
Program slicing algorithms [12, 13, 27, 5] are widely used for

code change impact analysis, program refactoring and other pro-
gram understating and maintenance applications. This technique,
which computes the part of the program that are potentially affected
by some point of interest, is also applicable for the customization

#include DBtables.h;
UserConfig userConfig;
PrintReportConfig printReportConfig;
typedef struct {

Char user[10];
Char printer[10];
Char phoneNumber[10];
Char departmentHead[1];
Char subDepartment[9];

} DepUserConfig;
OrderHandling() {

if (getUserCommand()=="View") {
... }

else if (getUserCommand()=="New") {
SQL(select * from UsersConfiguration into userConfig);
checkAuthorization(cast<DepUserConfig>(userConfig));
.. }

}
Boolean checkAuthorization(DepUserConfig userDetails) {

if (userDetails.departmentHead == "H")
return true;

else {
reportErrorMessage("No authorization to create a new order");
return false;

}
}

Figure 2: An example of a program with type casting. File
DBtables.h is shown in Figure 1.

change impact and can provide a detailed report of the output iden-
tifiers affected.

The core data structure used for slicing is a Program Dependence
Graph (PDG) whose nodes are the statements of the program, and
includes two types of dependency edges: control dependency and
data dependency. Control dependency occurs when a statement af-
fect the execution of another statement. Data dependency occurs
when a value written in one statement is read in the other state-
ment. Slicing, from a very high level view, amounts to computing
transitive closure of the PDG.

In the context of a customization change, we apply a forward
slice with the SQL select statements from the customized table as
the seed. Only output identifiers used or modified at statements that
are contained in the slice are reported as affected outputs. A slice is
a safe approximation to the customization change impact problem.
We claim that if an output identifier is in the concrete detailed im-
pact then there is a statement that uses this output identifier in the
slice.

Conversely, we claim that if an output identifier, id is not used
or modified in any statement in the slice for column c then id is
not affected by a customization change to c. Intuitively, if the
partial evaluated programs [[P]](Cold) and [[P]](Cnew) are not ob-
servationally equivalent with respect to output identifier id, then
there exists an input I ∈ Γ for which the output maps: O1 form
([[P]](Cold))(I) and O2 from ([[P]](Cnew)(I) are not equivalent
with respect to id. Thus, O1(id) 6= O2(id). This implies that
id must be dependent on the change, through control and/or data
flow. The source code corresponding to this dependency must be
dependent on the SQL select that fetched the column.

One of the main challenges in slicing is the accuracy. Slicing is
an over approximation to the abstract change impact problem since

102

it can not conclude whether or not a particular output identifier may
change. Assume for example, that a conditional statement is con-
tained in slice, however there does not exists a concrete customiza-
tion change (Cold, Cnew) and an input in which the evaluation of
the condition differs at the two configuration. This implies that
output identifiers that are only dependent on the condition are not
affected. However according to the static slice, any statement that
is control dependent on the condition is included in the slice, and
output identifers used or modified at those statements are reported
as affected.

4.3.1 Limited Alternation Slicing Algorithm
Applying slicing algorithms to huge and complicated programs

such as the SAP code base, is challenging because of the complex-
ity of the slicing algorithm and because the resulting slices can be
too big to manage. PanayaIA offers an option to handle these two
problems by using the limited alternation heuristic described be-
low. When studying cases of large slices we concluded that control
dependencies account for a large portions of those slices. The fol-
lowing are common reasons in which the handling of condition had
caused an over approximated slice:

• Unreachable Code. The condition is always evaluated to ei-
ther false or true. This is very common especially in library
code, in which some portions of the code are unreachable in
a particular program. Our unreachable code analysis (based
on constant propagation [28]) fails to infer some of the un-
reachable code and therefore a slice may contain unreachable
code.

• Equivalent code. In some cases, equivalent code sections ap-
pear in both the true and the false part of a condition. The
slice contains this duplicated code sections as part of the
slice, however, the side effect of this code is independent to
the evaluation of the condition.

The limited alternation heuristic limits the number of times a
path in the PDG can alternate traversing control dependency and
data dependency edges. Note that these heuristic are unsound as
there may be valid impacts which involve more than k alternations.
Thus we remove some false positives but may introduce false neg-
atives.

4.4 Balancing Algorithm
It is well known that slicing can yield large impacts due to im-

precisions in the static analysis and the dynamic nature of software.
The PanayaIA tool computes slices by combining several heuris-
tics. The main idea is to combine the results of different potentially
unsound and imprecise approaches aiming towards smaller sets of
impact details while not missing obvious impacts.

The choice between the naive syntactic approach and column us-
age approach is clear, if the change considered is an update to a col-
umn, the column usage approach is superior, otherwise, the naive
syntactic approach has the same precision with better performance.
The slicing based approaches can give more detailed information,
i.e., the affected outputs. Furthermore, since the algorithm is flow-
sensitive it can yield more precise information. However, due to
the size and complexity of the code, unsound heuristics are used to
handle issues such as dynamic call resolving. This may cause the
slicing based algorithms to miss important impacts.

We implemented an algorithm, named balancing algorithm, that
provides impactbalance(∆) by combining the results from the lim-
ited alternation slicing, full slicing and flow insensitive algorithms
in the following way, and as defined in Figure 3. For every change

Source
Code

// AST

��
Call

Graph
��

CFG
��

Def/Use
��

Resolved
Dynamic Calls

@@

Main // link

��
Comp
Unit

99ssssss
Dead
Code

��.
.
.

PDG

��
Comp
Unit

HH�������������������
Impact

Analysis
(a) (b)

Figure 4: High level overview of the modular analysis of a com-
pilation unit (a) and of the analysis of a whole program (b).

the detailed impact is computed using the limited alternation slic-
ing, impactDetail2Alt. If a program is not affected, the full slic-
ing algorithm is consulted (impactDetailfull)and if it discovers
affected output identifiers, they are presented instead. If for a spe-
cific customization change both slicing algorithms return that there
is no impact in any of the programs, the flow insensitive results
are used instead. Note that in this case, only the affected programs
are returned, and not the affected output identifiers. This is useful
in case the unsoundness of the heuristics used in the slicing fully
prevents the system from discovering any impact of a change.

5. IMPLEMENTATION
This section presents PanayaIA’s analysis for SAP code version

4.6C and lessons learned while building and studying the results of
the tool.

5.1 High Level Overview
Due to the large code base of SAP and the sharing of libraries

between programs, we incorporate a modular approach. First, each
compilation-unit is analyzed separately without prior knowledge
about different invocation of the compilation unit and without tak-
ing into account the code of external libraries invocations. Next,
each program is analyzed by inter-procedural analyses of the com-
pilation units that are part of this program. During this phase the
impact analysis is performed in a batch mode as described in Sec-
tion 3.

5.2 Compilation Unit Level Analysis
During the modular analysis of a compilation unit, the order of

invocation of procedures that are external entries is undetermined.
Figure 4 (a) sketches the analysis of a compilation unit. First an ab-
stract syntax tree is generated by parsing the source code. Next, a
call graph is constructed containing only static calls that are within
the compilation unit. A control flow graph, with basic blocks as
nodes, is constructed and handles arbitrary control flow statements,
such as break and continue, in a standard way. Def/use relation
within the compilation units is computed. An analysis that com-
putes possible targets of dynamic calls is performed, which has a
side effect of updating the analyses performed.

5.2.1 Modular Def/Use Chains
The def/use analysis computes for each definition point p (a

modification of an access-path at a program point) which program
points may use the value set at p. This is a rather standard analysis

103

impactbalance(∆) ⊇

8>><
>>:

(p, Φp) (p, Φp) ∈ impactDetailsalt2(∆)
(p, Φp) (p, Φp) ∈ impactDetailsfull(∆) ∧ @Φ′

p(p, Φ′
p) ∈ impactDetailsalt2(∆)

impactProgcol(∆) if ∆ is attribute change and impactDetailsalt2(∆), impactDetailsfull(∆) = ∅
impactPrognaive(∆) if ∆ is tuple change and impactDetailsalt2(∆), impactDetailsfull(∆) = ∅

Figure 3: Definition of the balancing algorithm.

for the purpose of slicing. One complication for the def/use analy-
sis for SAP programs is the very large number of global variables.
Each compilation unit may declare its own global variables. The
scope of the variable is static within the compilation unit. Thus, a
variable may be live between two invocations of procedures in the
same compilation unit. It is rather common programming practice
to declare variables as global, and in a typical compilation unit this
can amount to hundreds of global variables. In addition there are
program global variables which are in the scope of the program (all
compilation units). Another complication is that each compilation
units contains procedures which are external entries to this com-
pilation unit (i.e. procedure that may be invoked from a different
compilation unit).

A common solution is to add all global (compilation unit and
program level) variables to the signature of each procedure. This
requires adding all global variables (from all compilation units) in
order to pass to callee, which are unknown during the modular
analysis of a single compilation unit. Our solution follows this ap-
proach and simulates parameter passing by adding a structure pro-
gram global variable to contain all global variables as fields. Pro-
cedures entries and return from procedure calls, are regarded as def
points for all parameter passing. The def/use chains are computed
intra-procedural. The inter-procedural phase adds def/use relations
for procedure call and return statements.

To improve scalability and efficiency, we implemented two opti-
mizations to reduce the amount of parameter passing. First, a flow-
insensitive context-sensitive analysis computes which variables are
transitively used or modified at each procedure. Variables that are
not used need not be passed as parameters, and variables not mod-
ified need not to be returned. Another optimization is localiza-
tion, which computes program points where global variables can
be safely replaced with local ones. Section 6 shows the improve-
ment which reduced the number of global variables drastically.

5.2.2 Resolving Dynamic Calls
Dynamic procedure calls are rather common and in some cases

can be determined at the compilation unit level. We compute possi-
ble targets and update the call graph, CFG and use/def with respect
to the new targets. With the updated model of the compilation unit,
additional targets for dynamic calls can be resolved. This process
can be repeated until no new targets are resolved. We implemented
a constant propagation algorithm that computes for each dynamic
call the possible targets. In some cases the static analysis cannot
infer all possible targets, leaving this call as partially resolved and
may cause some false negatives.

5.3 Program Level Analysis
Each program in SAP has a main compilation unit which is the

entry point for the program. The main compilation unit transitively
calls other compilation units. Figure 4 (b) illustration the program
level analysis phase. The first step in analyzing a whole program
is to link information from all compilation units’ analyses together.
This includes building a call graph that represents all inner and ex-
ternal calls, by composing all call graphs of the compilation units
and resolving external calls’ targets. At this phase, procedures of

a compilation unit may become dead as a program may use only
parts of a library’s public entry points. During the link phase, the
control-flow graph and def/use chains are updated to represent the
data passed at procedure calls between compilation units.

5.3.1 Call Graph
Since SAP is a highly integrated system, the boundary of a sin-

gle program is not always clear. The semantics of programs over-
lap , as through one program the user can perform actions that are
carried out by another program. In addition, there is a very high
percentage of sharing of library code. This is mainly due to ser-
vices that are dispatchers. A particular activation of a service may
perform a small portion of the functionality, including a subset of
the possible procedure calls. When syntactically analyzing the pro-
gram, the number of potential reachable procedures is very high.
We performed a mini study on 160 programs consisting of 94,000
procedures. On average each procedure is potentially called by 30
programs, where approximately half the procedures are potentially
called by a single program and half are potentially called by more
than 1/3 of the programs. Building a complete program with all the
reachable procedures caused huge overhead both in scalability and
in false positives.

To overcome this problem, we have built a set of SAP knowledge
based heuristics that define the boundaries of a program. First, we
define a set of compilation units that are regarded as SAP basis
and are not included in any program as impact on them are of no
interest. Next, each compilation unit is associated with a compo-
nent. We have built a mechanism that, given the main compilation
unit, defines which components are related and should be included
as part of the program. This reduced the size of programs drasti-
cally, and our study showed that the false negatives caused by this
heuristic are minor compared to the false positives removed.

5.3.2 Unreachable Code Analysis
Some SAP programs have been maintained for a few decades,

thus, include a high portion of unreachable code. In addition, some
procedures are developed for multiple purposes but each program
utilizes them for specific uses. Inferring unreachable code is impor-
tant in order to avoid false positives. Dead statements are marked
as infeasible and are ignored by the impact analysis algorithms ei-
ther as seed statements or as data or control dependent. We imple-
mented an unreachable code analysis based on constant propaga-
tion in the style of [28].

5.3.3 Program Dependency Graph
We implemented a program dependency graph with two layers:

a data flow layer and a control flow layer. The data flow layer con-
sists of the def/use chains computed intra-procedurally at the com-
pilation unit layer and the inter-procedural def/use chains that are
computed at the linking phase of a program. The ABAP program-
ming language contains constructs that have arbitrary control flow
such as conditional exit from a loop or procedure. Control depen-
dency is computed via post-domination relationship [20].

104

Program Size Optimization Algorithms Call Graph Complexity
Stmts Comp Procs BB Dead Globs Locals #Nodes #SCCs Max

Prog1 2,053 4 109 2,513 15% 174 51% 366 330 28
Prog2 11,582 41 455 12,096 19% 2,513 86% 1,721 1,344 142
Prog3 28,646 39 843 23,965 31% 4,856 85% 1,721 1,344 9
Prog4 61,394 107 1,437 48,347 25% 14,156 88% 5,697 5,582 29
Prog5 83,954 74 1,972 67,286 28% 9,946 78% 6,904 6,702 138
Prog6 141,109 221 3,579 119,513 32% 25,246 83% 12,862 1,2534 223
Prog7 194,436 171 4,557 171,078 20% 16,988 76% 20,184 19,142 358
Prog8 195,113 258 5,368 160,769 46% 30,918 83% 17,879 17,430 223
Prog9 211,423 227 5,021 175,222 16% 19,602 79% 22,031 21,144 470
Prog10 244,090 264 7,212 216,822 32% 41,564 86% 25,966 25,366 138
Prog11 264,054 194 5,517 226,579 17% 21,999 80% 26,072 24,296 358
Prog12 273,362 122 7,847 306,095 16% 21,175 82% 42,251 39,993 851
Prog13 480,248 311 11,998 457,908 14% 38,094 77% 53,937 48,839 1,445
Prog14 890,159 512 19,686 808,820 16% 63,111 78% 94,983 88,661 1,445

Table 3: Size (counted as statements, compilation units, procedures, and CFG basic blocks), optimization algorithms (unreachable
code and localization) and call graph complexity measurements of the benchmark programs.

5.3.4 Slicing
The impact analysis algorithms are all implemented via a para-

metric slicing framework. The framework is parametric as to which
dependencies to use during the slicing and when to stop. Zero al-
ternations implies the naive algorithm. To achieve scalability and
precise inter-procedural slicing, procedure summary information is
computed [13]. The summary phase computes for each procedure
the control and data dependency from each formal-in of the proce-
dure to the formal-outs. The next phase is a slicing algorithm that
starts from the SQL select statements in the programs. It utilizes the
summary information when the slicing reaches an actual-in argu-
ment and continues with the dependent actual-out arguments. The
result of the slicing are written into a repository. In the case of up-
date change customization, where one column is modified, it is es-
sential to report the slice that is relevant for the specific column and
not the slice for the complete table. There are various alternatives
in order to achieve this precision. In PanayaIA, a field sensitive
analysis is implemented by propagating relevant field names along
flow and control dependencies.

6. EMPIRICAL RESULTS
This section presents our empirical study of algorithms. First, we

study and compare the three basic algorithms: naive, column-usage
and slicing. The aim of this study is to understand the differences in
terms of time and in terms of impact results. In addition we present
our study of precision for end-users of the application, which uses
the balancing algorithm.

6.1 Comparing the Basic Algorithms
The experiments presented in this section are on a selected bench-

mark of 14 programs which vary in size, complexity, and associated
SAP component. Table 3 lists the selected programs. Columns 2–5
provide information regarding the size of the programs: (i) num-
ber of lines of code, (ii) number of compilation units, (iii) number
of procedures, and (iv) number of basic blocks in the control flow
graph. Columns 6–8 indicate the percentages of dead basic blocks,
the number of declared global variables, and the percentage of vari-
ables that are localized by the localization algorithm. The localiza-
tion savings are high and have a positive effect on the scalability of
the impact analyses in terms of time and space.

Since we learned that program size is not the only factor for the
impact analyses run time, we study the complexity of programs.
We measure complexity by building the strongly connected com-
ponents (SCC) [4] of the call graph. The call graph comprises of
procedures and procedure call statements. Columns 9–11 in Table 3
report the number of nodes, the number of SCCs, and the number
of nodes in the largest SCC. The reason for the rather large SCCs
is the dialog invocations which are sometimes recursively called.

Table 4 lists a comparison of the naive, column-usage, and slic-
ing algorithms by counting the number and size of slices obtained
for each program. The balancing algorithm is not compared using
these metrics since it is on a system level and not per program. The
second column lists the number of database tables that have at least
one database column which affects the program. This result is the
same in all algorithms. For each analysis, the table lists: (i) The
total number of database columns (from all customization tables)
that impact the program; (ii) The average number of affected out-
put identifiers per impacting column. These vary between the algo-
rithms. For the naive algorithm, the number of database columns
is the greatest (on average 9.3 columns per table) as all syntacti-
cally retrieved columns are regarded as impacting the program. All
output identifiers of the program are regarded as affected since this
analysis can not distinguish between affected and non-affected out-
put identifiers. The number of output identifiers increases with the
size of the program, and on average is more than 5,000 elements.
The column usage analysis reduces the number of columns impact-
ing a program to an average of 5.2 per table. This is due to the fact
that for a large portion of SQL select statements a whole record is
retrieved (via the select * command) but not all columns are used.

The results of two slicing algorithms are presented, the first is
slicing with 2-alternation limitation. The 2-alternation analysis re-
ports the fewest affected output identifiers. However, the number of
columns impacting a program is rather low (on average 3.7), caus-
ing false negatives. The last pair of results are for the full slicing al-
gorithm, which reports that more columns are impacting a program
(on average 4.4). The number of average affected output identifiers
is higher by about 35% ,from 17 to 23 in the 2-alternation algorithm
vs. the full slice, respectively.

Elapsed time comparison of the algorithms is displayed in the
last part of Table 4. Clearly, the naive and column usage analy-

105

sis are efficient especially when taking into account that a non re-
dundant portion of the elapsed time is on writing the results to the
repository. The full slicing algorithm’s elapsed time is about 25%
longer as compared to the 2-alternation algorithm. Although the
number of statements in a program is highly influential on the run-
ning time, there are additional factors. The number of customiza-
tion tables retrieved and the total number of SQL select statements
from customization tables (it is rather common to have more than
one statement as the seed statement) affects the running time. For
example, the analysis time of Prog12 is comparably lower due to
the lesser number of tables and impacting columns. The complexity
of the program is another factor; Large SCCs may cause the anal-
ysis to perform additional iterations until a fixed point is reached.
For example, Prog7 has rather large SCCs, requiring a three-fold
analysis time as compared to Prog8 being approximately the same
size. Memory consumption, which is less of a concern, is usually
around the 1GB 3. The memory peak for the analysis of the largest
program in our benchmark is 12GB.

6.2 Understating Precision
In general it is not trivial to measure precision of static analy-

sis algorithms. Moreover when the algorithm may contain both
false-positives and false-negatives. We presents studies conducted
and our ongoing effort at obtaining an accurate measurement for
precision as well as increasing precision. These studies have been
performed on analysis results of the production run as describes in
Section 3.

In order to measure the precision of the different algorithms,
we performed a human experience test to the results. Five inter-
nal expert SAP professionals have worked with the tool and pro-
vided feedback concerning the precision. The experts applied a
few customization change queries upon repositories from different
analyses. The common feedback from the 2-alternation algorithm
is that the reported affected output identifiers are correct but there
is an under-approximation as some affected programs are missing.
For the full slicing analysis, the general impression was of exces-
sive noise in the results. The results from the balancing algorithm
yielded the best feedback.

In order to assess the precision of the production results, obtained
via the balancing algorithm, we performed two independent stud-
ies. The first consist of external expert SAP professionals build-
ing a set of expectations without prior viewing the results of the
PanayaIA tool and the second obtained by end-users of PanayaIA.
We have asked external expert SAP professionals to create cus-
tomization changes and provide a set of expected results for each
change. Overall, we obtained 291 customization changes with a
total 2657 expected results. The expected results were only at pro-
gram level, as providing expectations regarding output identifiers is
much more complicated. When utilizing this information for deter-
mining false-positives and false-negatives, the following complica-
tions evoked: (i) Some results reported by PanayaIA that were not
in the expectations were counted as false positives but turned out
to be correct and overlooked by the SAP professionals; (ii) Some
false-negatives on output identifiers were not counted as such, due
to other expectations on the same program. In order to increase pre-
cision, we have an ongoing effort in which we are iteratively fixing
issues resulting from studying false-negatives and false-positives
and have the experts update the expectations. Currently, we have
reach a ratio of 113% false-positives and 11% false-negatives.

Our second study is obtained by allowing PanayaIA users to pro-
vide feedback regarding the results. A user may indicate for an im-
3We run all analyses on a 64-bit system to overcome limitations to
the Java heap size.

pacted program whether it is a correct impact or a wrong impact
(implying a false-positive). In addition, users may add the miss-
ing impacted programs (implying false-negatives). On collected
feedback from 10 customers regarding a total of 61 customization
changes that yields a total of 559 impacted programs, we measure
false-negative and false-positive ratios. The false-negative ratio,
measured as the amount of missing programs with respect to the
expectation (missing + correct) is 15%. This implies that six out
of seven expected programs are reported by the tool. The false-
positives, measured as the amount of wrong information with re-
spect to the expectation, is 71%, implying that on every three cor-
rect programs there are two additional false-positive programs.

7. RELATED WORK
The contribution of this paper is in two main dimensions and has

related work in the area of customization change impact analysis
and in the field of application and utilization of program slicing.

Customization Change Impact Analysis.
The process of customization change is risky and costly. Orga-

nizations need to put a significant amount of human resources on
change management [26]. There are limited tools that aid in under-
standing and verifying a customization change. Intellicorp support
package [14] provides impact analysis for support packages (up-
grade of code changes) to aid in determining which parts of the
system need regression testing. The underlying technique used by
the tool is unclear but believed to be rather syntactic. The tool re-
ports impacts only on a program level.

The SAP development environment provides a set of tools for
aiding in understanding programs [15]. These tools, which include
dynamic traces of SQL statements and syntactic references lookup,
can be used by ABAP programmers to understand the impact of
a source or customization change. Our solution differs drastically
from the above works, as we aim at aiding SAP professionals and
not programmers in customization change without observing pro-
grams’ source code or traces.

Utilizing Slicing Algorithms.
Slicing and subsequent manipulation of slices shows great promise

for supporting many software-engineering tasks: It has applications
in program understanding, maintenance [7, 8], debugging [17], test-
ing [3, 2], semantic differencing [10], specialization, reuse [18],
and merging [11]. More applications of slicing are described in [27].
PanayaIA uses slicing to identify potential impacts of customiza-
tion changes, which is a new application for slicing.

One of the major limitations of employing slicing for perform-
ing software engineering tasks in general and identifying impacts
in particular is the size of the slices that may be very large. Deter-
mining which statements are most relevant to the user is non-trivial.
In [23] a solution for reducing the slice to relevancy data computa-
tion statements is presented. Another possibility is to limit the slice
traversal. For example, in [5] a depth-limited slice over a value de-
pendency graph is presented. Another possibility is to specialize
the slice to a given set of inputs [6].

8. CONCLUSION
This paper presents a new tool that enables ERP professionals

to easily perform customization changes. This is a novel approach
for aiding ERP professionals in one of their most risky and costly
tasks. The PanayaIA tool consists of a collection of adaptations
of well-known static analysis techniques in order to achieve scala-
bility on large code base and balance between false-positives and

106

Program Tables Naive Usage 2-Alter Full Elapsed time (min)
Cols IDs Cols IDs Cols IDs Cols IDs Naive Usage 2-Alter Full

Prog1 5 69 139 22 139 23 7 24 11 0.1 0.1 0.3 0.3
Prog2 37 548 454 211 454 69 6 123 9 0.4 0.7 0.6 0.8
Prog3 28 412 454 212 454 125 18 129 18 0.3 0.4 1.1 1.5
Prog4 122 1,223 1,597 831 1,597 442 38 599 59 0.8 1.4 3.7 4.0
Prog5 55 852 1,339 328 1,339 134 8 205 15 0.6 0.6 2.9 3.4
Prog6 183 1,908 3,009 1,115 3,009 627 7 664 15 1.5 1.9 7.9 9.6
Prog7 198 2,032 4,759 1,300 4,759 956 39 1,032 33 1.4 2.3 23.3 26.8
Prog8 293 2,029 4,401 1,265 4,401 628 8 759 17 1.4 2.1 7.4 8.5
Prog9 175 1,691 4,948 1,138 4,948 596 9 784 14 1.3 1.9 8.6 11.0
Prog10 274 2,492 6,603 1,808 6,603 800 9 1,135 14 1.8 2.8 9.7 14.1
Prog11 228 2,084 6,237 1,342 6,237 999 28 1,164 36 1.5 2.5 39.4 42.4
Prog12 205 1,432 10,230 735 10,230 554 6 606 9 1.4 2.1 20.6 37.3
Prog13 284 2,888 10,346 1,828 10,346 1,462 27 1,621 38 2.3 3.9 44.5 50.6
Prog14 442 3,962 21,363 2,818 21,363 2,031 26 2,230 32 4.4 5.9 87.8 118.5

Table 4: Elapsed time and result comparison: The number of customization tables which are impacting a specific program; The
number of columns impacting a program and the average number of affected output identifiers per column, for each analysis.

false-negatives. The paper also provides evidence of the applica-
bility of the method and tool for end-users on real customization
change cases.

9. REFERENCES
[1] R. Arnold and S. Bohner. Software Change Impact Analysis.

Wiley-IEEE Computer Society Pr, 1996.
[2] S. Bates and S. Horwitz. Incremental program testing using

program dependence graphs. In Symp. on Principles of Prog.
Lang., 1993.

[3] D. Binkley. Using semantic differencing to reduce the cost of
regression testing. In Conf. on Soft. Maintenance, 1992.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. MIT Press and
McGraw-Hill, 2001.

[5] M. D. Ernst. Practical fine-grained static slicing of optimized
code. Technical Report MSR-TR-94-14, 1994.

[6] J. Field, G. Ramalingam, and F. Tip. Parametric program
slicing. In Symp. on Principles of Prog. Lang., 1995.

[7] K. Gallagher. Using program slicing in software
maintenance. PhD thesis, Comp. Sci. Dept., Univ. of
Maryland, Baltimore Campus, 1990. Tech. Rep. CS-90-05.

[8] K. Gallagher and J. Lyle. Using program slicing in software
maintenance. IEEE Trans. on Soft. Eng.g, 1991.

[9] J. Hatcliff, T. Æ. Mogensen, and P. Thiemann, editors.
Partial Evaluation - Practice and Theory, DIKU 1998
International Summer School, Copenhagen, Denmark, June
29 - July 10, 1998, volume 1706 of Lecture Notes in
Computer Science. Springer, 1999.

[10] S. Horwitz. Identifying the semantic and textual differences
between two versions of a program. In Conf. on Prog. Lang.
Design and Impl., 1990.

[11] S. Horwitz, J. Prins, and T. Reps. Integrating non-interfering
versions of programs. Trans. on Prog. Lang. and Syst., 1989.

[12] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. Trans. on Prog. Lang. and Syst.,
1990.

[13] S. Horwitz, T. Reps, M. Sagiv, and G. Rosay. Speeding up
slicing. In Symp. on the Foundations of Soft. Eng., 1994.

[14] Intellicorp Inc. http://www.intellicorp.com. 2007.
[15] H. Keller and S. Krüger. "ABAP Objects: ABAP

Programming in SAP NetWeaver. Addison-Wesley, 2002.
[16] H. Keller and S. Krüger. "ABAP Objects: Introduction to

Programming SAP Applications. Addison-Wesley, 2002.
[17] J. Lyle and M. Weiser. Experiments on slicing-based

debugging tools. In Conf. on Empirical Studies of
Programming, June 1986.

[18] J. Ning, A. Engberts, and W. Kozaczynski. Automated
support for legacy code understanding. Commun. ACM, 94.

[19] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and
M. Harrold. An empirical comparison of dynamic impact
analysis algorithms. In Int. Conf. on Soft. Eng., 2004.

[20] K. Pingali and G. Bilardi. Optimal control dependence
computation and the Roman chariots problem. Trans. on
Prog. Lang. and Syst., 1997.

[21] G. Ramalingam, J. Field, and F. Tip. Aggregate structure
identification and its application to program analysis. In
Symp. on Principles of Prog. Lang., 1999.

[22] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti:
a tool for change impact analysis of java programs. In Conf.
on Object-oriented Prog., Syst., Lang., and App., 2004.

[23] M. Sridharan, S. J. Fink, and R. Bodik. Thin slicing. In Conf.
on Prog. Lang. Design and Impl., 2007.

[24] B. Steensgaard. Points-to analysis in almost-linear time. In
Symp. on Principles of Prog. Lang., 1996.

[25] M. Themistocleous, Z. Irani, R. O’Keefe, and R. Paul. ERP
problems and application integration issues: An empirical
survey. In Hawaii Inter. Conf. on System Sciences, 2001.

[26] M. Themistocleous, Z. Irani, R. O’Keefe, and R. Paul.
Change management underpins a successful ERP
implementation at Marathon Oil. In Journal of
Organizational Excellence, 2004.

[27] F. Tip. A survey of program slicing techniques. Journal of
programming languages, 3:121–189, 1995.

[28] M. N. Wegman and F. K. Zadeck. Constant propagation with
conditional branches. In Trans. on Prog. Lang. and Syst.,
1991.

107

