2008 International Conference on Software Testing, Verification, and Validation

Prioritizing User-session-based Test Cases for Web Applications Testing

Sreedevi Sampath{, Renée C. Bryce,
Gokulanand Viswanath’, Vani Kandimalla®, A. Gines Koruf

" Department of Information Systems
University of Maryland, Baltimore County

{sampath, gokull, gkoru} @umbc.edu

Abstract

Web applications have rapidly become a critical part of
business for many organizations. However, increased us-
age of web applications has not been reciprocated with cor-
responding increases in reliability. Unique characteristics,
such as quick turnaround time, coupled with growing popu-
larity motivate the need for efficient and effective web appli-
cation testing strategies. In this paper, we propose several
new test suite prioritization strategies for web applications
and examine whether these strategies can improve the rate
of fault detection for three web applications and their pre-
existing test suites. We prioritize test suites by test lengths,
[frequency of appearance of request sequences, and system-
atic coverage of parameter-values and their interactions.
Experimental results show that the proposed prioritization
criteria often improve the rate of fault detection of the test
suites when compared to random ordering of test cases. In
general, the best prioritization metrics either (1) consider
frequency of appearance of sequences of requests or (2)
systematically cover combinations of parameter-values as
early as possible.

1. Introduction

Web applications are a critical component of many busi-
nesses. Failures in this domain result in losses of millions
of dollars to organizations [17, 21]. Web applications of-
ten have a large and dynamic user base that demands a high
level of robustness and reliability. Most web applications
must be available 24/7. This requires testers to fix bugs
in an application and deploy a new version within a short
time frame. In such situations, testers execute regression
test suites to ensure that the new version of the application
is working as expected. With quick turnaround time being
critical for web applications, testers can benefit from test
suites that can detect faults early in the test execution cycle.

Unlike other application domains, in web applications,

978-0-7695-3127-4/08 $25.00 © 2008 IEEE
DOI 10.1109/ICST.2008.42

141

tSchool of Computer Science
University of Nevada Las Vegas
{reneebryce, kandimal } @cs.unlv.edu

logs of actual usage data are easily available to testers. Con-
verting usage data into test cases is known as user-session-
based testing [9, 26]. These user-sessions provide testers
with information on exactly how users interact with a web
application, making them ideal for test development. A
user-session-based test case is a sequence of base requests
and parameter-value pairs (also called name-value pairs).
Cookies and the originating IP address information are used
to convert requests in a web server log into a sequence
of user-session-based test cases. Requests with parameter-
values specified by a user may access back-end code or re-
treive/store data in the database, thus exercising complex
interactions between application components. Further, user
sessions identify the most frequently accessed parts of an
application. This is important in testing because frequently
accessed components of a system have significant impact
on the user-perceived reliability of an application.

In [26], Sampath et al. reduce user-session-based test
suites while maintaining their effectiveness. In this paper,
we expand upon Sampath et al.’s [26] previous work. How-
ever, instead of further reducing the size of test suites, we
prioritize user-session-based test suites with the goal of im-
proving the rate of fault detection. Prioritizing test cases
is particularly significant in user-session-based testing be-
cause limited resources make it difficult to execute all of
the test cases that can accumulate for a frequently-used ap-
plication in the logged or originally recorded order.

Several strategies exist to prioritize test cases for C pro-
grams [6, 7, 11, 24] and Java programs [4, 5, 11]. We ex-
pand upon previous work to develop criteria specifically
for web application testing. In particular, we consider
frequency of user requests and interactions of parameter-
values in requests. The main contributions of this paper are:
(1) Strategies to prioritize user-session-based web applica-
tion test suites, (2) Empirical evaluation of the strategies
using user-session-based test suites, and (3) Guidance to
testers based on the results of our empirical evaluation.

Section 2 presents background in web application test-
ing, user-session-based testing, and test case prioritization.

IEEE
computer
psoue

ty

Section 3 presents the prioritization metrics that we use
to order user-session-based tests. Section 4 describes our
subject applications and experimental methodology. We
present and analyze the results in Section 5. Section 6 con-
cludes.

2. Background
2.1. Web Applications

A web application is a set of web pages that are accessi-
ble through a browser over a network. A web page can be
either static—in which case the content is the same for all
users—or dynamic, such that content depends on user in-
put. Web applications may include integration of numerous
technologies; third-party reusable modules; a well-defined,
layered architecture; dynamically generated pages with dy-
namic content; and extensions to an application framework.
Large web-based software systems can require millions of
lines of code, contain many interactions between objects,
and involve significant interaction with users. Changes in
user profiles and frequent maintenance changes also com-
plicate automated testing [13].

While several approaches exist for model-based web ap-
plication test case generation [1, 14, 16, 23], to our knowl-
edge there is little work in the area of test case prioritization
for web applications.

2.2. User-session-based Testing

Web applications often rapidly evolve. With each evo-
lution, testers need to run regression tests. One source
of regression tests for web-applications is that of user-
sessions captured from previous releases of the software.
A user-session-based test case is a sequence of HTTP re-
quests containing base requests and name-value pairs that
are recorded when a user accesses the application. In the
example test case in Table 1, for the following request: Lo-
gin.jsp&name=“john” &pswd=“doe”, the base request is
Login.jsp and the parameter-value pairs are name= “john”
and pswd=“doe”. Base requests can be HTTP request ac-
cesses to both static and dynamic web page content. In pre-
vious work, Sampath et al. [26] and Sprenkle et al. [28] gen-
erate user-session-based test cases from usage logs. When
available, cookies were used to generate a user-session-
based test case. Otherwise, a user-session-based test case
begins when a request from a new IP address arrives at the
server and ends when the user leaves the web site or the
session times out. A 45 minute gap between two requests
from a user is considered equivalent to a session timing out.
Different strategies can construct test cases for the collected
user sessions [9, 20, 22, 27].

142

Elbaum et al. [9] show that using usage data as test cases
is efficient at detecting faults, but unscalable with larger
numbers of user sessions. Sampath et al. [26] reduce the
size of user-session-based test suites and empirically evalu-
ate the effectiveness of the reduced suites.

The reduction techniques are based on criterion, such as
covering all base requests in the application while main-
taining the use case representation. The criteria create a test
suite smaller than the original suite, but tests are in no par-
ticular order. Indeed, test suite reduction techniques strive
to reduce the size of a test suite, while maintaining overall
fault finding effectiveness. Whereas, test suite prioritization
uses the entire test suite for execution, but the test cases are
ordered based on pre-determined criteria that attempt to de-
tect faults as quickly as possible in the test execution cycle.

2.3. Test Case Prioritization

In the life cycle of an application, a new version of the
application is created as a result of (a) bug fixes and (b) re-
quirements modifications [19]. A large number of test cases
may be available from testing previous application versions
which can be reused to test a newer version of the appli-
cation. However, running such tests may take a significant
amount of time. Rothermel et. al. report an example for
which it can take weeks to execute all of the test cases from
a previous version [24]. Due to time constraints, a tester
must often select and order these test cases for execution.

One approach to selecting test cases is to schedule the
test cases according to some criterion to satisfy a perfor-
mance goal; scheduling test cases in this manner is known
as test case prioritization. Examples of criteria include
code coverage, fault likelihood, and fault exposure poten-
tial [6, 7, 24]. Binkley uses the semantic differences be-
tween two programs to reduce the number of tests that must
be run during regression testing [3]. Jones et al. reduce and
prioritize test suites that are MC/DC adequate [12]. Lee et
al. reduce test suites by using tests that provide coverage
of the requirements [15]. Offutt et al. use strategies that
reorder tests to select a smaller number of test cases [18].

Additional criteria exist for GUI-based programs. For in-
stance, Bryce and Memon prioritize pre-existing test suites
for GUI-based programs by the lengths of tests (i.e., the
number of steps in a test case, where a test case is a se-
quence of events that a user invokes through the GUI), early
coverage of all unique events in a test suite, and early event-
interaction coverage between windows (i.e., select tests that
contain combinations of events invoked from different win-
dows which have not been covered in previously selected
tests) [4]. In half of their experiments, event-interaction-
based prioritization results in the fastest fault detection rate.

Our work extends prior prioritization work for our spe-
cific application to web-based testing. We leverage actual

user-sessions that serve as our test cases and define and eval-
uate alternate criteria for test case prioritization.

3. Test Case Prioritization Strategies

The test suite prioritization problem is defined in [24].
Given (T, 11, f), where T is a test suite, II is the set of
all test suites that are prioritized orderings of 7" obtained by
permuting the tests of 7', and f is a function to evaluate the
orderings from II to the real numbers, the problem is to find
a permutation, w € II such that Vz’ € I1, f(7) > f(n').

Prioritization can be based on any criteria. Examples in-
clude code coverage, cost estimates, event coverage, and
others [4, 7, 8, 24, 30]. In this work, we exploit the char-
acteristics of user-session-based test cases and examine the
following functions (or criteria) for web-based applications
(each described in more detail in Sections 3.1-3.4):

o Test length based on number of base requests (Req-
LtoS, Req-StoL): order by the number of HTTP re-
quests in a test case

e Frequency-based prioritization (MFAS, AAS): or-
der such that test cases that cover most frequently ac-
cessed pages/sequence of pages are selected for execu-
tion before test cases that exercise the less frequently
accessed pages/sequences of pages.

e Unique coverage of parameter-values (1-way): or-
der tests to cover all unique parameter-values as soon
as possible

e 2-way parameter-value interaction coverage (2-
way): order tests to cover all pairwise combinations
of parameter-values between pages as soon as possible

e Test length based on number of parameter-
values(PV-LtoS, PV-StoL): order by number of
parameter-values used in a test case

e Random: randomly permute the order of tests
3.1. Test Lengths

Prioritization of length by base requests selects a next
test with the maximum count of base requests, counting du-
plicates. Since the number of requests in a test case partially
determines how much of the application code is exercised
by the test case, ordering test cases based on their length
can affect the rate of fault detection of the ordered test suite.
We order test cases in descending (Req-LtoS) and ascend-
ing (Req-StoL) order of length, where length of a test case
is defined as the number of base requests the test case con-
tains. For the example test case tc/ in Table 1, the length of
tcl is the number of base requests in #c/, i.e., four.

143

Test case tcl
Register.jsp&name=john&pswd=doe&fname=John&lname=Doe
Login.jsp&name=john&pswd=doe

Search.jsp&bookid=10

Logout.jsp

Base request | Parameter-value pairs

Register.jsp name=john, pswdl=doe, fname=John, Iname=Doe
Login.jsp name=john, pswd=doe

Search.jsp bookid=10

Logout.jsp null

Table 1. Example Test Case

3.2. Frequency-based Prioritization

In this prioritization methodology, we prioritize test
cases based on the count of the most-frequently accessed se-
quences of pages that appear in the test case. Since failures
in frequently accessed application components have more
impact on user-perceived reliability of the application, we
hypothesize that by favoring test cases that exercise fre-
quently accessed application components, the rate of fault
detection of the ordered test suite can be improved.

We identify the total number of times that each unique
sequence of pages is accessed in the entire test suite and
construct a frequency table. We consider sequences in terms
of base requests (i.e., ignoring the parameter-value pairs)
and only sequences that involve interactions between JSP
and Java servlet pages, i.e., we do not include sequences that
contain static HTML pages. We assume that faults will exist
in the application code and thus consider only sequences
between pages that access application code. In this paper
we consider page sequences of size 2. Using the frequency
table to identify the most frequently accessed sequences, we
then prioritize the test cases in two ways.

Most Frequently Accessed Sequence (MFAS). This ap-
proach identifies the most frequently accessed request se-
quence, s;, in the test suite and orders test cases in decreas-
ing order of the number of times that s; appears in the test
case.

All Accessed Sequences (AAS). In AAS, the frequency
of access of all sequences is used to order the test suite.
For each sequence, s;, in the application, beginning with
the most frequently accessed sequence, test cases that have
maximum occurrences of these sequences are selected for
execution before other test cases in the test suite. Figure 1
describes the AAS test case prioritization algorithm.

Consider the example shown in Table 2. Sequences s/,
52, s3, and s4 represent all the sequences of pages in the test
suite, ordered in decreasing order of frequency of access.
Starting with sequence s/, one test case, say fc/ is selected
at random. Then, all of the other sequences that 7c/ covers
are marked satisfied and removed from further considera-
tion, in this example the only other sequence that fc/ cov-

Algorithm: All Accessed Sequences
Input:set of sequences in web application, S,
set of test cases 1"
Output: Prioritized order of test cases, P
OS = Sequences s; € S ordered in
decreasing order of frequency of access
foreach sequence os; € OS
T (os;)=test cases t € T such that ¢ has
maximum occurrences of os; in T
end foreach
do
Select sequence os; not yet satisfied
Select test case ¢ from T'(os;) at random and add to P
Mark all other sequences that ¢ covers as satisfied
until all sequences os; € O.S have been satisfied
Randomly order test cases ¢ € 71" not yet selected and add to P

Figure 1. All Accessed Sequences Algorithm

ers is s4. Then, the test cases that cover s2 are considered
and one is selected at random, assume tc3. Since fc3 does
not cover any sequence other than s2 maximum number of
times, only s2 is marked as satisfied in this step. The algo-
rithm continues selecting test cases until all of the test cases
from the table are ordered. Remaining test cases that do not
appear in the table are randomly ordered and appended.

Sequence Tot. No. of Tests with max.
Name Occurrences occurrences of sequence
sl:< Register, Login > 10 tel, tc2

s2:< Login, Default > 7 tc3, tcd

$3:< Default, Regsiter > 5 tc2, tc5

s4:< Register, Shop > 4 tel, tcd

[Prioritized Order: tcl-tc3-tc2-tc5-tc4

Table 2. AAS Example

3.3. Systematic Prioritization by Parameter-Values

Web applications contain pages that contain parameters
for which users may specify values. For instance, consider
the example test case in Table 1. The Login.jsp page ac-
cessed in the test case has two parameters, “name” and
“pswd” that can take on values. The user sessions that we
prioritize include a discrete number of values that have been
specified for these parameters. For instance, test case, fc/ in
Table 1 has the parameter “name” set to the value “john”.
We refer to this as a parameter-value.

Log-in Member | Discount Shipping
Type Status Method
New Member Basic None Standard
Member (logged in) Silver $10 off Express
Member (not logged in) | Gold Free Ship. | Overnight

Table 3. Four parameters can take on one of
three values each

Unique parameter-value coverage. The 1-way criterion

144

Test | Log-in Member | Discount Shipping
‘ No. ‘ ‘ Type Status Method ‘

1 New Member Basic None Standard

2 New Member Basic $10 Off Express

3 New Member Basic Free Ship. | Overnight

4 Member (logged in) Silver None Overnight

5 Member (logged in) Gold $10 Off Standard

6 Member (not logged in) | Basic $10 Off Overnight

Table 4. A set of test cases

selects a next test that maximizes the number of parameter-
values that have not appeared in previously selected tests.
Parameter-value Interaction Coverage. The 2-way cri-
terion selects a next test that maximizes the number of ¢-
way parameter-value interactions between pages that occur
in a test. In this paper, we set t=2 for pairwise coverage
of parameter-values. Consider the example of 4 parameters
that can each take on one of three values from Table 3. Ta-
ble 4 shows an example of parameter-values that occur in
a set of test cases. Table 5 lists the six pairwise parameter-
value interactions that occur in Test 1. In our experiments,
we count the number of previously uncovered parameter-
values in each test and prioritize by selecting the test with
the maximum count.

Test No. 1 ‘
Pair | Parameter-values |
(New Member, Basic)
(New Member, None)
(New Member, Standard (5-7))
(Basic, None)
(Basic, Standard (5-7))
(None, Standard (5-7))

QN | B W 1| —

Table 5. 2-way Parameter-Value Interactions

Length by parameter-value counts. During a user-
session, a user may specify any number of parameter-
values. We prioritize tests by the number of parameter-
values in a test case (duplicates included). This includes
selecting those tests with the largest number of parameter-
values in a test first, called PV-LtoS. We also prioritize in
the opposite manner by selecting those tests with the small-
est number of parameter-values first, called PV-StoL.

3.4. Random
Prioritization by Random selects a next test at random.

In this work, we randomly select test cases for the priori-
tized test suite until there are no more test cases to select.

4. Experimental Evaluation

In our experiments, we study the effectiveness of the pri-
oritization strategies by evaluating their fault detection rate.

Independent and Dependent Variables. Independent
variables in our study are the user-session-based test suites,
the seeded faults and the test case prioritization techniques.
Dependent variables are rate of fault detection, average per-
cent of faults detected (APFD) [24], and test execution time.
Subject Applications and Test Suites. We used three web-
based applications and their pre-existing test suites, where
test suites are the previously recorded user-sessions in ex-
periments by Sampath et al. [26] and Sprenkle et al. [28].
The subject programs have different characteristics: an
open-source, e-commerce bookstore (Book) [10], a Course
Project Manager (CPM), and the web application used for
the Mid-Atlantic Symposium on Programming Languages
and Systems (Masplas). Table 6 shows the subject programs
and test suite characteristics.

Book. Book allows users to register, login, browse for
books, search for books by keyword, rate books, add books
to a shopping cart, modify personal information, and lo-
gout. Since our interest was in testing consumer functional-
ity, we did not include the administration code in our exper-
iments [26]. Book uses JSP for its front-end and a MySQL
database back-end. Sampath et al. [26] collected 125 test
cases by sending emails to local newsgroups and by posting
advertisements in the University of Delaware’s classifieds
web page asking for volunteer users.

CPM. In CPM, course instructors login and create grader
accounts for teaching assistants. Instructors and teaching
assistants create group accounts for students, assign grades,
and create schedules for demonstration time slots. Users
interact with an HTML application interface generated by
Java servlets and JSPs. CPM manages state in a file-based
datastore. Sampath et al. [26] and Sprenkle et al. [28] col-
lected 890 test cases from instructors, teaching assistants,
and students using CPM during the 2004-05 and 2005-06
academic years at the University of Delaware.

Masplas. Masplas is a web application developed at the
University of Delaware for a regional workshop. Users can
register for the workshop, upload abstracts and papers, and
view the schedule, proceedings, and other related informa-
tion. Masplas is written using Java, JSP, and MySQL. Sam-
path et al. [26, 25] and Sprenkle et al. [29] collected 169 test
cases that we use in our experiments.

Evaluation Metrics. For evaluating the prioritization tech-
niques, we assume that prior knowledge of the faults de-
tected by the regression test suites is available to the
testers. We evaluate the test suites with respect to their
rate of fault detection, the average percent of faults detected
(APFD) [24], and the test suite execution time. The rate of
Sfault detection is defined as the total number of faults de-
tected for a given subset of the prioritized test case order.
We present the average percent of faults detected (APFD)
using the notation in [24]. For a test suite, 7 with n test
cases, if F is a set of m faults detected by 7, then let T'F;

145

[Metrics [Book [CPM | Masplas |
Classes 11 75 9
Methods 319 173 22
Conditions 1720 1260 108
Non-commented Lines of Code 7615 9401 999
Seeded faults 40 135 29
Total number of user sessions 125 890 169
Total number of requests accessed 3640 12352 1107
Number of unique requests 10 69 24
Largest user session in number of requests 160 585 69
Average user session in number of requests 29 14 7
Number of unique parameter-values 1,415 4,146 645
% of 2-way parameter-value interactions 92.5% | 97.8% 96.2%
covered in pre-existing test suite

Table 6. Subject Applications and Test Suite
Characteristics

be the position of the first test case ¢ in 7”, where 7" is an
ordering of 7, that detects fault i. Then, the APFD metric
for T" is given as

TF; +TFQ+TF3—|—...—|—TFH 1

mn + 2n

APFD =1- ey

Informally, APFD measures the area under the curve that
plots test suite fraction and the number of faults detected by
the prioritized test case order.

In our empirical study we are interested in finding the
most faults in the earliest tests (i.e., in the first 10% of the
tests executed) and locating 100% of the faults earliest.

We also measure the time taken by each prioritized suite
to achieve 100% fault detection. From Sprenkle et al. [28]
and through recent experiments, we measured the execution
time for replaying the entire suite in the logged or originally
recorded order. We then compute the average time per re-
quest by dividing the total suite execution time by the total
the number of requests in the test suite. We use the aver-
age time per request to compute the execution time per test
case for each of the prioritized order of test cases. Note that
these execution times are the time taken for a replay of test
cases in the logged order and not the time taken for fault de-
tection replay (difference between the two types of replay is
described in Sprenkle et al. [28]).

Experimental Methodology. From previous work by Sam-
path et al. [26] and Sprenkle et al. [28, 29] we had informa-
tion on how many faults are detected by each test case, i.e.,
a fault matrix, mapping each test case to the faults detected
by test case. The fault matrices used in this paper are gen-
erated by using the struct oracle for CPM and Masplas and
the diff oracle for Book [28, 29]. As described in [26, 28],
faults were seeded manually by graduate and undergradu-
ate students. In addition, some naturally occurring faults
discovered during deployment were also seeded in the ap-
plications [26]. In general, five types of faults were seeded
into the applications—data store (faults that exercise appli-
cation code interacting with the data store), logic (applica-
tion code logic errors in the data and control flow), form

90

MFAS —
80 AAS
Random - £

3 70 | No. of Reg-LtoS 1
S 60| No. of Reg-StoL]
°©
© 4
2
=
2 |
k] |
o)
Z ot |

10 b]

100
Test No.
(a) Results using Frequency and Request
Length-based Metrics

No. of faults detected

90 TWay ——

80 | 2-way
Random

70 - PV-LtoS

60 | PV-StoL

20 t+ 4
10 +]

100
Test No.
(b) Results using Parameter-Value
Interaction-based Metrics

Figure 2. CPM: Rate of fault detection (log scale)

(modifications to parameter-value pairs and form actions),
appearance (faults which change the way in which the user
views the page), and link (faults that change the hyperlinks
location) [26]. Fault categories are not mutually exclusive.

In [28], Sprenkle et al. propose the with_state replay
mechanism used for collecting the fault matrices that we use
in this paper. In with_state test suite execution on a faulty
application version, the application state is restored before
each test case is replayed on the fault-seeded version so that
replay closely matches the clean (non-fault seeded) execu-
tion. Thus, faults that affect the underlying application state
do not propagate in the application state for latter test cases
to expose.

We implemented each of the prioritization techniques
as described in Section 3 in C++ and Perl. In all of
the implementations, in case of tie between two or more
tests that meet the prioritization criterion, a random tie-
breaking strategy is implemented. To account for the non-
determinism introduced by random tie breaking, we execute
each prioritization technique five times and report the aver-
age rate of fault detection, APFD, and execution time.
Threats to Validity. Threats to validity in this experiment
include our ability to generalize the results to all web-based
applications. While we examine three actual web-based ap-
plications, the trends observed may not be representative of
all web-based applications. Further, many of the faults were
manually seeded into the application. Due to challenges
faced in seeding faults in object-oriented code, in addition
to the challenges of detecting hand-seeded faults described
in [2], faults may not be evenly distributed in all the classes.
Though we tried to model the seeded faults similar to nat-
urally occurring faults—we even included a few naturally
occurring faults in CPM—some of the seeded faults may
not be representative of naturally occurring faults. The or-

146

acle comparators used in the study can have false positives
or false negatives [29]. The execution times reported in this
paper are an approximation based on the total time taken to
execute the entire test suite. Actual individual test case ex-
ecution times could vary depending on the test case’s char-
acteristics. Also, the test suites for the three applications
were not executed on the same machine—execution time
comparisons across applications would not be fair.

5. Results and Analysis
5.1. CPM

Figure 2, Table 7 and Table 8 show the results for CPM.
We show the rate of fault detection for different prioriti-
zation techniques in logarithmic scale. To better show the
trends between the prioritization techniques, for each ap-
plication we divide the prioritization techniques into two
sets and present them in two graphs. For CPM, Figure 2(a)
shows the rate of fault detection for the frequency-based
techniques (MFAS, AAS), length based on number of base
requests (Req-LtoS, Req-StoL), and Random. Figure 2(b)
shows the rate of fault detection for parameter-value inter-
action (1-way, 2-way, PV-LtoS, PV-StoL), and Random.
Table 7 shows the APFD in increments 10% of the number
of executed tests. The bold-faced numbers in Table 7 show
the prioritization technique with highest APFD for the cor-
responding percentage of the test suite run. Table 8 shows
the actual execution time of the subset of tests that identify
100% of the faults. We use the same notation for showing
the results for Masplas and Book.

Finding the most faults in the earliest tests. From Table 7
and Figure 2(a), if the APFD in the first 10% of the tests

Percentage of | MFAS | AAS | Req-LtoS Req-Stol. | Random 1-way | 2-way | PV-LtoS | PV-StoL

test suite run
10 65.43 | 85.28 78.17 75.14 48.63 83.79 83.72 83.53 16.38
20 74.16 | 88.52 80.34 77.76 57.55 87.78 90.8 88.77 25.6
30 717.75 89.4 81.77 80.27 64.51 91.54 91.72 88.77 26.44
40 79.61 89.86 84.58 81.39 69.19 94.79 95.64 92.71 28.76
50 80.92 | 91.04 85.58 82.95 73.03 94.79 95.64 92.71 30.33
60 81.71 91.58 87.14 84.44 75.37 94.79 95.64 94.26 34.64
70 82.73 92.1 87.74 85.15 77.37 94.79 95.64 94.26 39.15
80 84.28 | 92.35 88.27 86.21 78.24 94.79 95.64 94.26 39.58
90 84.57 | 92.37 88.3 86.31 78.45 94.99 95.64 94.26 42.18
100 84.64 | 92.45 88.36 86.35 78.49 94.99 95.64 94.26 43.09

Table 7. CPM: APFD Metric (in percentages). 10% of test suite = 89 test cases

[AAS | MFAS [Req-LtoS | Req-StoL | Random [1-way [2-way | PV-LteS [PV-StoL

CPM | 98.76 (382) | 990.44 (384) | 99.78 (887) | 97.64(873) | OL.46(817) | 83.26(813) | 38.88 (618) | 58.20 (746) | 100 (389)
Masplas 79.29 (60) 80.47 (61) 89.94 (67) 82.25 (45) 73.96 (55) 40.24 (35) 33.73 (36) 42.01 (46) 97.04 (71)
Book 80(994) | 99.20 (1169) | 92.80 (1121) | 100 (1177) | 99.20 (1172) | 57.60 (907) | 66.40 (1024) | 60.80 (1002) | 54.40 (300)

Table 8. Percentage of the test suite run (Execution Time in seconds) for 100% Fault Detection

that are run is of primary concern, the AAS prioritization
technique is the most effective technique.

Locating 100% of the faults earliest. From Table 7, after the
first 10% of the test suite is run, prioritization by 2-way has
the best APFD for the remaining 90% of the test suite. Also,
from Table 8 we see that 2-way finds all of the faults before
any of the other techniques (with 38.8% of the test suite
in 618 seconds). Prioritization by PV-StoL has the lowest
APFD among the different prioritization techniques. The
remaining prioritization techniques fall in between these
best and worst cases of APFD. For instance, prioritization
by 1-way and by PV-LtoS are generally the second most
effective techniques in the latter 90% of the tests run. Pri-
oritization by MFAS, Random, Req-StoL, Req-LtoS are
less effective than the other techniques.

5.2. Masplas

Finding the most faults in the earliest tests. Figure 3 and
Table 9 show that prioritization by Req-LtoS is the most
effective if APFD during the first 30% of the test suite is of
primary concern. The results for AAS, 1-way and 2-way
are slightly less competitive than Req-LtoS.

Locating 100% of the faults earliest. From Table 9, we
note that after the first 30% of the test suite is run, prior-
itization by 2-way has the best APFD for the remaining
70% of the test suite. From Table 8, 2-way finds all of the
faults with 33.3% of the test suite in 36 seconds, followed
closely by 1-way. From Table 9, in the last 70% of the test
suite, AAS, Req-LtoS, PV-LtoS are comparable in their
APFD. PV-StoL’s APFD suggests that it is the least effec-
tive prioritization technique. The remaining prioritization

techniques fall in between these best and worst cases.

25

20

el

2

[&]

Q

3 15

i)

= i

£ 0]

° o No. of Reg-LtoS

2 No. of Reg-StoL -~/

5f PV-LtoS -~ 1
PV-StoL -
1 10 100

Test No.

Results using All Prioritization Metrics (log scale)

Figure 3. Masplas: Rate of fault detection.

Finding the most faults in the earliest tests. Table 10 shows
that 1-way has the highest APFD in the first 20% of the test
suite’s execution. Figure 4 shows that PV-StoL and Req-
StoL are slow starters during the first 10% of tests run, i.e.,
the first test case in each technique detects only 6 faults,
whereas the first test case in the other techniques detects
between 15 and 24 faults.

5.3. Book

Locating 100% of the faults earliest. Table 10 shows that
prioritization by 1-way and MFAS have a high APFD.

147

Percentage of | MFAS | AAS | Req-LtoS Req-Stol. | Random 1-way | 2-way | PV-LtoS | PV-StoL

test suite run
10 78.54 | 92.17 95.12 81.5 76.33 89.6 90.98 86.05 4.44
20 84.28 | 92.88 95.12 91.06 80.51 93.04 90.98 89.74 4.44
30 88.86 | 94.19 95.12 91.06 85.57 93.04 94.28 89.74 26.61
40 90.42 | 95.86 95.68 91.59 87.59 95.56 97.06 93.38 30.08
50 91.34 | 95.86 95.68 91.59 89.91 95.56 97.06 94.84 50.16
60 91.7 95.86 95.68 91.59 90.69 95.56 97.06 94.84 53.91
70 91.99 | 95.86 95.97 91.89 90.69 95.56 97.06 94.84 57
80 92.16 | 96.21 96.14 92.08 90.91 95.56 97.06 94.84 58.1
90 92.16 | 96.21 96.22 92.17 90.91 95.56 97.06 94.84 58.85
100 92.16 | 96.21 96.22 922 90.91 95.56 97.06 94.84 58.85

Table 9. Masplas: APFD (in percentages). 10% of test suite ~ 18 test cases

From Table 8, PV-StoL detects 100% of the faults earliest,
with 54% of the test suite in 300 seconds but has the lowest
overall APFD. 2-way, PV-LtoS, AAS are the next best pri-
oritization metrics with respect to their APFD. Req-StoL
performs poorly, in general, indicating that the number of
base requests in the test case affect the fault detection rate.
Fault Detection Density. From Table 10, we note that Ran-
dom creates a reasonably effective test order with APFD
comparable to the other techniques. To study Random’s
behavior in Book, we define a metric called the fault detec-
tion density, which is a measure of the average number of
faults detected by each test case. Given a set of test cases,
t; € T and a set of faults F' detected by test cases in 7, let
tf; be the number of faults detected by ¢;, then the fault
detection density,

th+tfo+ .. +tfa
T+ | F|

FDD is the ratio of the sum of the total number of faults de-
tected by each test case and the total number of test cases,
normalized to the fotal number of faults detected. A fault
detection density of 1 for a test suite indicates that each test
case in the suite detects every fault. We found that Book’s
test cases have a FDD of 0.59 (compared to 0.056 for CPM
and 0.19 for Masplas). With a small test suite size (125 test
cases) and a high FDD, Random has a greater chance of
selecting a test case that detects several of the web applica-
tion’s faults and thus creates an effective test suite order.

FDD =

2

5.4. Summary of Results

Our experimental results show that none of our prior-
itization criteria is clearly the “best criteria” for all three
of our web-based applications. However, for two of our
three applications, prioritization techniques that consider
parameter-value counts or interactions find 100% of faults
before the other techniques. In particular 2-way prioritiza-
tion finds all of the faults with 38% of the test suite for CPM
in 618 seconds, and 33% of the test suite for Masplas in 36

148

seconds. In both these applications, 2-way has the highest
APFD values overall (after 100% of the test suite is exe-
cuted). In Book, however, MFAS has the highest overall
APFD, followed by 1-way.

In CPM, AAS is the best choice if effectiveness of the
first 10% of tests is considered. If the APFD during any of
the latter part of the test suite is considered, prioritization
by 2-way is most effective. In Masplas, Req-LtoS is the
best technique when the APFD during the first 30% of the
test suite is of primary concern. In the latter 70% of the test
suite, giving preference to covering every 2-way parameter-
value interaction creates the most effective test suite or-
der. In Book all the metrics other than Req-StoL, PV-
StoL, Random are good options if the goal is to achieve
good fault detection early (first 10%) in the test cycle. How-
ever, PV-StoL is the best prioritization technique, if the goal
is to achieve 100% fault detection with the smallest test
number of test cases but has the overall lowest APFD. The
frequency-based and the parameter-value interaction cover-
age techniques are better at detecting more faults early in
the test execution cycle. Though it appears that Random
creates an effective test suite ordering for Book, it is impor-
tant to note that with larger number of test cases and low
fault detection densities, Random’s effectiveness will de-
crease.

In terms of execution time, in CPM we observe that 2-
way detects 100% of the faults 30% faster than the worst
technique, PV-StoL, and in Masplas 2-way detects 100%
of the faults 40% faster than the worst technique PV-StoL.
PV-StoL in Book has the fastest rate of fault detection and
detects 100% of the faults 74.5% faster than the worst tech-
nique, Req-LtoS, but has the lowest overall APFD.
Guidance to Testers. From our results, we find that de-
pending on the tester’s goal and the characteristics of the
web applications, different prioritization strategies may be
useful to a tester. If a tester’s primary goal is to find 100%
of the faults as soon as possible, prioritization by 2-way
and PV-LtoS are good choices. This indicates that system-
atically covering parameter-values is important when pri-

35

30 - 1
©
i)
g 2 b 1
3
e 201 7 1
= <
£ 15t 1
5] MFAS —
2 10 t+ AAS i
Random -
5 [No. of Reg-LtoS |
No. of Reqg-StoL
1 10 100

Test No.
(a) Results using Frequency and Request Length-based Metrics

No. of faults detected

1-way —
2-way]
Random

10

PV-LtoS
PV-StoL

1 10
Test No.

(b) Results using Parameter-Value Interaction-based Metrics

Figure 4. Book: Rate of fault detection (log scale).

Percentage of | MFAS | AAS | Req-LtoS Req-Stol. | Random 1-way | 2-way | PV-LtoS | PV-StoL

test suite run
104 93.33 | 93.13 92.96 70.04 90.34 93.44 93.22 93.11 70.13
20 93.79 | 93.13 92.96 86.09 93.7 93.44 93.22 93.11 70.13
30 94.65 | 93.56 92.96 88.15 94.52 93.44 93.22 93.11 78.17
40 94.99 | 94.26 92.96 88.91 94.86 93.44 93.22 93.11 79.86
50 95.28 | 95.16 92.96 88.91 94.86 94.96 94.69 93.11 84.12
60 95.5 95.41 92.96 89.15 95.11 96.13 94.69 94.47 86.73
70 95.9 95.41 93.74 89.54 95.27 96.13 95.62 95.56 86.73
80 96.16 | 95.69 94.11 89.81 95.56 96.13 95.62 95.56 86.73
90 96.16 | 95.69 94.18 89.92 95.56 96.13 95.62 95.56 86.73
100 96.16 | 95.69 94.27 89.94 95.57 96.13 95.62 95.56 86.73

Table 10. Book: APFD Metric (in percentages). 10% of test suite ~ 13 test cases

oritizing these test suites. Similarly, if a web application
has a large number of parameter-values (similar to CPM,
in our study) the tester may benefit from using the system-
atic coverage of parameter-value interaction metrics. How-
ever, if an organization determines that certain pages or cer-
tain functionality is critical to the functioning of their web
application, and hence their business—then these pages or
sequences of pages can be identified (by either measuring
their frequency in the web logs, or by some other means)
and frequency-based prioritization metrics could be used.
Based on our results from the FDD metric for Book,
we believe that if a tester knows that their test suite has
a high fault detection density, they may benefit by order-
ing test cases randomly. Given no particular tester prefer-
ence/application characteristic, if the FDD values of pre-
existing test suites are low, our results suggest that longer
test cases achieve better fault detection than shorter test
cases. In this case, instead of random ordering, the tester
would benefit by prioritizing by number of base requests.

From the execution time results, we note that choosing
the right prioritization could help the tester find and fix

149

faults in the application quickly, which could translate into
thousands of dollars in cost savings. Though the actual exe-
cution times for our applications are small, since they repre-
sent only the time to replay the test suite and do not include
the time taken to manually or automatically identify and lo-
cate faults, our results indicate that choosing a prioritization
technique can have a big time, and thus cost, impact.

6. Conclusions and Future Work

The web-application domain has an advantage that ac-
tual user-sessions can be recorded and used for regres-
sion testing. While these tests are indicative of user’s in-
teractions with the system, selecting and prioritizing user-
sessions has not been thoroughly studied. In this paper, we
examine prioritization of such user-sessions for three web
applications. We apply several new prioritization criteria
to these test suites to identify whether they can be used to
increase the rate of fault detection. Results from the experi-
ments show that prioritization by frequency metrics and sys-
tematic coverage of parameter-value interactions may in-

crease the rate of fault detection for web applications.

In the future, we will consider the costs associated with
the prioritization strategies and extend these studies to con-
sider hybrid approaches to prioritization that combine more
than one strategy for prioritizing test cases. Finally, we
will extend our frequency-based metrics to consider other
metrics, such as critical components of the application as
determined by an organization using the web application,
or module size. Further, for some web applications, a se-
quence of size 2 may not be large enough to capture faults
in the application [25]. We plan to extend the frequency-
based metrics to include sequences of size greater than two.
We also plan to study whether the prioritization strategies
can be applied to other types of web application test cases
that are in the form of HTTP requests.
Acknowledgements. We thank Sara Sprenkle at Washing-
ton and Lee University for running experiments for CPM
and Masplas execution time results. We thank Richard
Kuhn, Raghu Kacker, Jeff Lei, Atif Memon and Sara Spren-
kle for providing feedback on the paper.

References

[11 A. Andrews, J. Offutt, and R. Alexander. Testing web ap-
plications by modeling with FSMs. Software and Systems
Modeling, 4(3):326-345, Jul. 2005.

J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an
appropriate tool for testing experiments? In the Intl. Conf.
on Software Engineering, pages 402—411, May 2005.

D. Binkley. Using semantic differencing to reduce the cost
of regression testing. In the Intl. Conf. on Software Mainte-
nance, pages 41-50, Nov. 1992.

R. C. Bryce and A. M. Memon. Test suite prioritization by
interaction coverage. In the Workshop on Domain-Specific
Approaches to Software Test Automation, pages 1-7, Sep.
2007.

H. Do, G. Rothermel, and A. Kinneer. Prioritizing junit test
cases: An empirical assessment and cost-benefits analysis.
In the Intl. Symp. on Software Reliability Engineering, pages
113-124, Nov. 2004.

S. Elbaum, A. G. Malishevsky, and G. Rothermel. Priori-
tizing test cases for regression testing. In the Intl. Symp. on
Software Testing and Analysis, pages 102—112, Aug. 2000.
S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case
prioritization: A family of empirical studies. [EEE Trans.
On Software Engineering, 28(2):159—-182, Feb. 2002.

S. Elbaum, G. Rothermel, S. Kanduri, and A. Malishevsky.
Selecting a cost-effective test case prioritization technique.
Software Quality Journal, 12(3):185-210, Sep. 2004.

S. Elbaum, G. Rothermel, S. Karre, and M. F. II. Leveraging
user session data to support web application testing. /[EEE
Trans. on Software Engineering, 31(3):187-202, May 2005.
Open source web applications with source code. http:
//www .gotocode . com, 2006.

D. Jeffrey and N. Gupta. Test case prioritization using rele-
vant slices. In the Intl. Computer Software and Applications
Conf., pages 411-418, Sep. 2006.

(2]

(10]

(11]

150

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. A.Jones and M. J. Harrold. Test-suite reduction and prior-
itization for modified condition / decision coverage. Trans.
on Software Engineering, 29(3):195-209, Mar. 2003.

E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz. Experi-
ences in engineering flexible web service. IEEE MultiMe-
dia, 8(1):58-65, Jan. 2001.

D. C. Kung, C.-H. Liu, and P. Hsia. An object-oriented web
test model for testing web applications. In The Asia-Pacific
Conf. on Quality Software, pages 111-120, Oct. 2000.

J. Lee and X. He. A methodology for test selection. Journal
of Systems and Software, 13(3):177-185, Nov. 1990.

G. D. Lucca, A. Fasolino, F. Faralli, and U. D. Carlini. Test-
ing web applications. In the IEEE Intl. Conf. on Software
Maintenance, pages 310-319, Oct. 2002.

Michal Blumenstyk. = Web Application Development—
Bridging the Gap between QA and Development. http:
//www.stickyminds.com.

J. Offutt, J. Pan, and J. M. Voas. Procedures for reducing
the size of coverage-based test sets. In Intl. Conf. on Testing
Computer Software, pages 111-123, Jun. 1995.

K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma.
Regression testing in an industrial environment. Communi-
cations of the ACM, 41(5):81-86, May 1988.

Parasoft WebKing. http://www.parasoft.com,
2004.

S. Pertet and P. Narsimhan. Causes of failures in web ap-
plications. Technical Report CMU-PDL-05-109, Carnegie
Mellon University, 2005.

Rational Robot. http://www.ibm.com/software/
awdtools/tester/robot/, 2006.

F. Ricca and P. Tonella. Analysis and testing of web appli-
cations. In the Intl. Conf. on Software Engineering, pages
25-34, May 2001.

G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Pri-
oritizing test cases for regression testing. /EEE Trans. on
Software Engineering, 27(10):929-948, Oct. 2001.

S. Sampath, S. Sprenkle, E. Gibson, and L. Pollock. Web
Application Testing with Customized Test Requirements—
An Experimental Comparison Study. In the Intl. Symp.
on Software Reliability Engineering, pages 266-278, Nov.
2006.

S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and A. S.
Greenwald. Applying concept analysis to user-session-
based testing of web applications. IEEE Trans. on Software
Engineering, 33(10):643-658, Oct. 2007.

J. Sant, A. Souter, and L. Greenwald. An exploration of
statistical models of automated test case generation. In the
Intl. Workshop on Dynamic Analysis, pages 1-7, May 2005.
S. Sprenkle, E. Gibson, S. Sampath, and L. Pollock. Auto-
mated replay and failure detection for web applications. In
The Intl. Conf. of Automated Software Engineering, pages
253-262, Nov. 2005.

S. Sprenkle, L. Pollock, H. Esquivel, B. Hazelwood, and
S. Ecott. Automated oracle comparators for testing web ap-
plications. In the Intl. Symp. on Software Reliability Engi-
neering, pages 253-262, November 2007.

A. Srivastava and J. Thiagarajan. Effectively prioritizing
tests in development environment. In the Int. Symp. on Soft-
ware Testing and Analysis, pages 97-106, Jul. 2002.

