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ABSTRACT
Framework evolution may break existing users, which need
to be migrated to the new framework version. This is a
tedious and error-prone process that benefits from automa-
tion. Existing approaches compare two versions of the frame-
work code in order to find changes caused by refactorings.
However, other kinds of changes exist, which are relevant
for the migration. In this paper, we propose to mine frame-
work usage change rules from already ported instantiations,
the latter being applications build on top of the framework,
or test cases maintained by the framework developers. Our
evaluation shows that our approach finds usage changes not
only caused by refactorings, but also by conceptual changes
within the framework. Further, it copes well with some is-
sues that plague tools focusing on finding refactorings such
as deprecated program elements or multiple changes applied
to a single program element.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.13 [Software Engineering]: Reusable
Software

General Terms
Design

1. INTRODUCTION
As any successful software, frameworks evolve with time.

In this process, framework elements (interfaces, classes, meth-
ods, fields) may change. If the changed elements are used
in existing instantiations (by being implemented, inherited
from, instantiated, called, overridden, or accessed), the in-
stantiations may need to be migrated to the new framework
version. This is a tedious and error-prone process that ben-
efits from automation.

Several techniques and tools [8, 9, 16, 19, 25, 27] have been
developed to discover the refactorings that a software system
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has undergone during an evolution step by analyzing two
subsequent versions of the evolved software system. By ap-
plying these approaches to framework code, one can use the
produced information to derive guidelines as how to change
clients in order to use the new framework version. However,
there are two problems with such techniques.

First, only usage changes that are caused by refactor-
ings can be derived. However, as our experiments show (cf.
Section 4), a significant number of usage changes (10-34%
for the three subject systems) were caused by framework
changes that go beyond refactorings. For instance, during
the evolution of the framework, concepts were changed or re-
placed, or the assignment of responsibilities to the building
blocks was altered in a way that the previous behavior was
not preserved. We refer to this kind of changes as conceptual
changes. Respective usage changes cannot be derived when
using the techniques that focus on discovering refactorings
only.

Second, our experiments also show that some specifics of
framework evolution complicate the process of discovering
framework refactorings and hence the process of deriving
usage changes. One the one hand, outdated framework code
is often not removed instantly for backward compatibility,
but rather documented as deprecated [9]; as the program
elements used in the old version are still available in the new
version, no refactorings are discovered and hence no usage
changes are derived. The analysis is further complicated in
situations where a single code element is affected by several
changes [25], e.g., a method may be renamed and moved to
a different class.

To address these problems, we propose an approach that
mines usage change rules by analyzing changes in the way
two subsequent versions of framework instantiations use the
framework. We use the term framework instantiation to
refer to any code that uses the framework. This includes
framework-based applications as well as test cases; for our
purposes, it is not necessary to distinguish between different
instantiations.

We argue that information encoded in ported instantia-
tion code is a useful source to understand the changes re-
quired for the migration to a new framework version. Our
approach in a nutshell is as follows. For each instantiation
class, we extract information about how the framework is
used in the two versions. By applying an association rule
mining algorithm to this data, we find rules of the form
“Calls to method Plugin.shutdown() in version 1 are replaced
by calls to method Plugin.stop() in version 2”.

Our evaluation shows that the approach exhibits a high
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recall in terms of changes identified by other state-of-the-art
tools. The evaluation results confirm our hypothesis that
it is beneficial to use instantiation versions for mining us-
age change rules. First, we show that our approach finds
a substantial number of usage changes that are caused by
conceptual changes of the framework rather than refactor-
ings. Second, we show that analyzing how instantiations
were adapted to a new framework version eases the detec-
tion of changes even when outdated program elements are
only documented as deprecated or when several changes are
applied to a single program element.

The remainder of this paper is structured as follows. Sec-
tion 2 briefly introduces association rule mining. The ap-
proach is presented in Section 3. Section 4 evaluates the
approach. Section 5 discusses open issues and Section 6
presents related work. Finally, Section 7 summarizes the
paper and discusses future work.

2. BACKGROUND
The approach presented in this paper is based on associa-

tion rule mining [1], a machine learning technique for finding
interesting associations among large set of data items.

Assume that we have a database of transactions, where
each transaction consists of a set of items. The problem
of mining association rules is to find all rules A → B that
associate one set of items with another set. A is referred
to as the antecedent and B as the consequence of the rule.
Two measures for the interestingness of a rule exist. The
support specifies how often the items appear together. The
confidence measures how many transactions that contain all
items of the antecedent also contain all items of the conse-
quence. To limit the result to most likely meaningful rules,
a minimum support and a minimum confidence can be spec-
ified for the mining process.

For illustration, consider the following market basket trans-
actions:
Transaction 1: [bread, butter, honey]
Transaction 2: [bread, butter, milk]
Transaction 3: [bread, sausages, ketchup]

An association rule mining algorithm with minimum sup-
port = 2 and minimum confidence = 0.5 finds two rules:
Rule 1: bread → butter; support = 2, confidence = 0.66
Rule 2: butter → bread; support = 2, confidence = 1.00

Market basket analysis is only one application of associ-
ation rule mining. The technique can also be used to ana-
lyze software data, e.g., to find programming rules [5,21] or
bugs [18]. The application of association rule mining to soft-
ware requires to determine (1) the properties of the software
to be considered as items, (2) how transactions are defined,
and (3) whether additional constraints exist for the rules to
generate.

3. MINING USAGE CHANGES
The process of mining usage changes takes two versions of

instantiation code as an input. A conceptual overview of the
process is depicted in Figure 11. In the first step, informa-
tion about how the instantiation code uses the framework is
extracted, e.g., which framework methods are called, which
framework classes are sub-classed, etc. (Section 3.1). Next,
transactions are built by combining usage information from

1For simplicity, the instantiation code in Figure 1 consists
of a single class.

the two versions of each instantiation class (Section 3.2).
Finally, an association rule mining algorithm is applied to
those transactions (Section 3.3).

3.1 Extraction of framework usages
For each usage of the framework found in an instantia-

tion class, a fact encoded as fact_type:program_element is
extracted. For instance, a call to a method m() declared in
framework class C is encoded as calls:C.m(). In the follow-
ing, we discuss the facts that are extracted and illustrate
the semantics of the extraction process by the example in
Figure 2.

In this example, the framework consists of classes C1 to
C3 and the interfaces I1 to I3. Of those, only I2, I3, C2 and
C3 contribute to the usage interface: they, respectively their
elements, are directly used by instantiation classes. C1 is not
directly used by any instantiation class: While C4 does over-
ride method m() and call method n(), the latter are actually
inherited from C2. Framework elements that are not used by
instantiations are considered internal implementation details
of the framework.

The extraction process is designed to be robust against
internal restructuring within the framework or within the
instantiation hierarchy. For illustration, consider the follow-
ing two change scenarios. In the first scenario, the frame-
work developers decide to remove the class C1 in Figure 2
and to push down all its features to C2. Such a change does
not affect the usage interface of the framework. Hence, it
should not affect the set of extracted facts. In the second
scenario, the instantiation developer decides to introduce a
new class between C2 and C4. Even though the framework
class C2 is now referenced within the new instantiation class,
the usage information for C4 should not change; C4 uses the
framework in a similar way as before.

To make the extraction process robust against internal
framework changes, extracted facts always reference the frame-
work type with the nearest distance to the instantiation class
in the inheritance chain (gray boxes in Figure 2). For in-
stance, we record the facts overrides:C2.m() and calls:C2.n()

when analyzing C4, even though m() and n() are originally
declared in C1. Also, only extends:C2 but not extends:C1 is
extracted when analyzing C4, since C2 is closer to C4 than C1

in the inheritance chain.
To make the extraction process robust against internal in-

stantiation changes, the set of facts extracted for an instan-
tiation class also includes facts “inherited” from its super-
types. For illustration, consider the facts extracted for C5 in
Figure 2. The fact implements:I2 is created as C5 directly im-
plements the framework interface I2. Further, implements:I3
is created, since I3 is indirectly implemented (via I4). Sim-
ilarly, the facts extends:C2, overrides:C2.m(), calls:C2.n(),
instantiates:C3 and calls:C3.o() are inherited from C4.

After having explained the rationales that drive the ex-
traction process in terms of the example in Figure 2, in the
following, the rules that guide the extraction of facts are
stated in general terms. Given T be the instantiation type
(class or interface) being analyzed, the following facts are
extracted for it, whereby FT stands for a framework type:

• extends:FT is created if T extends FT directly.

• implements:FT, is created, if the instantiation class T

either implements the framework interface FT directly,
or it implements some instantiation interface T1, which
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Code Facts Transactions Rules

Version 2

Version 1

IV2

extends:F1
calls:F3.x()
calls:F3.y()

extends:F6
calls:F4.z()
calls:F3.y()
calls:F2.a()

V1:extends:F1
V2:extends:F6

extends:F1
in version 1

extends:F6
in version 2

IV1

3.1 3.2 3.3

V1:calls:F3.x()
V2:calls:F4.z()

V1:calls:F3.y()
V2:calls:F3.y()
V2:calls:F2.a()

calls:F3.x()
in version 1

calls:F4.z()
in version 2

Figure 1: Change detection

in turn extends FT directly or indirectly via other in-
stantiation interfaces.

• overrides:FT.m() is created whenever the instantiation
class T overrides or implements a method m() declared
by the framework. FT is the nearest ancestor of T in
the framework from which T inherits an implementa-
tion/declaration of m().

• instantiates:FT is created when some method of the
instantiation class T instantiates objects of the frame-
work type FT, or of some instantiation type T1, whereby
FT is the most recent framework type that is an ances-
tor of T1 in the inheritance hierarchy.

• calls:FT.m() is created when the instantiation class
T contains a call to a method m() via some receiver
object known to be of the framework type FT, or of
some instantiation type T1, whereby FT is the most
recent framework type that is an ancestor of T1 in the
inheritance hierarchy.

• accesses:FT.f is created when the instantiation class
T accesses a field f of some object known to be of the
framework type FT, or of some instantiation type T1,
whereby FT is the most recent framework type that is
an ancestor of T1 in the inheritance hierarchy.

• Any fact f of any of the above types can also be ex-
tracted for T, if there is an instantiation type T1, T

extends T1 directly, and f can be extracted when ana-
lyzing T1. That is, T inherits facts from its supertypes,
which are part of the instantiation.

Note how the extraction rules for instantiates, calls, and
accesses take into consideration polymorphism. For illustra-
tion, consider the following code snippet2:

1 C5 c = new C5();
2 int x = c.f;
3 c.m();
4 c.n();

As C5 is a subtype of the framework class C2 (cf. Figure 2),
the following facts are created: instantiates:C2 (line 1), ac-
cesses:C2.f (line 2), calls:C2.m() (line 3), and calls:C2.n()

(line 4).
The result of the extraction process is an abstract rep-

resentation of the framework usage for both versions of an

2This code could be part of the implementation of a method
in an instantiation class.
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m()

C3

o()

<<calls>>

void m() {
this.n();
C3 c3=new C3();
c3.o();

}

Figure 2: Exemplified class hierarchy

instantiation class. In the remainder of Section 3, we will use
the instantiation code in Figure 33 rather than the example
in Figure 2. While Figure 2 has been conceived sophisticated
enough to illustrate the extraction process, it is too elabo-
rated for illustrating the remaining steps of our approach.
The example in Figure 3 is conceived simple enough to only
illustrate extends and calls facts; the process is similar for
all other facts.

1 class C1 extends F1 {
2 void a() { F3.x(); }
3 void b() { F3.x(); }
4 void c() { F3.y(); }
5 }
6

7

8 class C2 extends F2 {
9 void a() { F3.y(); }

10 void b() { F5.a();
11 F5.b(); }
12 }

Version 1

1 class C1 extends F6 {
2 void a() { F4.z(); }
3 void b() { F4.z(); }
4 void c() { F3.y();
5 F2.a(); }
6 }
7

8 class C2 extends F2 {
9 void a() { F3.y(); }

10 void b() { F5.a2();
11 F5.b2(); }
12 }

Version 2

Figure 3: Exemplary instantiation code

Table 1 lists facts that are extracted for each class in the
instantiation code. For instance, the first gray row in Table

3All classes with names starting with “F” are part of the
framework.
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1 shows that C1 calls method F3.x() in version 1, while a
call to method F4.z() is extracted for version 2. The second
gray row indicates that both versions of C2 extend framework
class F2.

Class (Line) Context Facts V1 Facts V2
C1 (1) C1 extends:F1 extends:F6
C1 (2) C1.a() calls:F3.x() calls:F4.z()
C1 (3) C1.b() calls:F3.x() calls:F4.z()
C1 (4/5) C1.c() calls:F3.y() calls:F3.y()

calls:F2.a()

C2 (8) C2 extends:F2 extends:F2
C2 (9) C2.a() calls:F3.y() calls:F3.y()
C2 (10/11) C2.b() calls:F5.a() calls:F5.a2()

calls:F5.b() calls:F3.b2()

Table 1: Extracted facts

3.2 Creating change transactions
In the next step, we create transactions that serve as in-

put to the data mining algorithm. A straightforward ap-
proach is to build one transaction per instantiation class,
consisting of the union of all facts from both versions of
that class. Such a “one-transaction-per-instantiation-class”
mapping has proved successful for mining framework usage
rules [5, 21] and for finding bugs [18]. Yet, it leads to many
false positives when finding framework usage changes be-
cause of the following problems:

P1. Imprecise change information: A“one-transaction-
per-instantiation-class” approach ignores details about the
structural context of usage facts, which may cause ambigu-
ities when deriving change rules. For illustration, consider
the facts for the instantiation class C1 in Table 1. Calls to
F3.x() in version 1 disappear in version 2; instead, two new
framework methods are called: F4.z() and F2.a(). However,
by using class-level transactions, we can not infer whether
calls to F3.x() were replaced by calls to F4.z() or by calls
to F2.a(). This is because the information about the spe-
cific context in which the calls happen (the methods within
which they are called) is lost, when all usage facts of a class
are mixed together into one transaction.

P2. Unwanted programming rules: With transac-
tions that combine all usage facts of a class into a single unit,
the mining algorithm would produce many rules that do
not represent usage changes. For illustration, consider the
facts for the instantiation class C1 in Table 1. One possible
output of the mining process based on an one-transaction-
per-instantiation-class approach is the rule “V1:extends:F1
→ V2:calls:F2.a()”4. This is because the facts involved in
the implication occur frequently together, if the transactions
are built per class. Such rules often correspond to API con-
tracts and thus are useful to understand the framework [5];
yet, most of them do not represent usage changes.

P3. Too much noise: Obviously, framework usages
that did not change between two versions are irrelevant; the
respective facts are noise in the data. For instance, given
the facts from Table 1, the mining algorithm would produce
a rule “V1:calls:F3.y()→ V2:calls:F3.y()”, which is useless
when trying to understand framework usage changes.

4A prefix Vx: denotes that a fact is extracted from instanti-
ation code of version x.

To address problems P1-P3, we apply (a) a more fine-
grained mapping of facts to transactions, described in items
1 and 2 below, and (b) some filtering described in item 3.

1. Taking structural context into consideration:
Our approach to create change transactions takes structural
context information into consideration: Instead of consider-
ing all framework usages of an instantiation class together,
we partition them into several contexts, one for the class
declaration, and one for each declared field or method.

The basic assumption is that usage changes are typically
localized within structural elements of the instantiation code,
e.g., usage facts extracted from some method m() of class C

in version 1 are not related to usage facts extracted from
method n() of the same class in version 2, or to usage facts
pertaining to the class declaration.

By creating a transaction per section, we encode more
detailed information about the structural context of usage
facts. This avoids ambiguous change rules discussed in P1.
One may raise the issue that in cases where the instantiation
code is heavily restructured, a change may involve facts that
are spread over different structural elements, hence, invali-
dating our assumption. In such cases, we may indeed not be
able to map corresponding framework usages of two versions.
However, we observed that such restructurings are very rare
for the subject systems analyzed in our evaluation; even if
they occurred in particular instantiation classes, their effect
is often compensated by many other instantiation classes
that did not change much.

2. Taking change patterns into consideration: By
analyzing migration guides, change logs, and the code of
evolving frameworks, we observed that changes typically
follow certain change patterns, regardless whether they are
caused by conceptual changes or refactorings of the frame-
work. For instance, the exchange of the plug-in life-cycle
concept in Eclipse required instantiations to override new
methods. Similarly, moving field x from class F1 to F2 results
in a usage change involving two accesses facts: accesses:F1.x

and accesses:F2.x. We derived the change patterns listed in
Table 2, which comprise the different kinds of framework
usages.

A transaction in our approach combines only facts that
belong to the same change pattern. This ensures that only
change rules that match one of the four pattern categories
can be created. While this significantly decreases the num-
ber of false positives, usage changes that do not correspond
to one of the defined patterns will not be found. To tackle
this problem, the set of change patterns is extensible in our
approach.

Pattern Antecedent Consequence
1 extends extends

extends implements
implements extends
implements implements

2 overrides overrides
3 calls calls

calls accesses
accesses accesses
accesses calls

4 instantiates instantiates
5 instantiates calls

calls instantiates

Table 2: Five categories of change patterns
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3. Removing unchanged usages: To avoid the gen-
eration of rules that only represent the unchanged usage of
the framework, we filter facts as follows: if a specific fact,
e.g., V1:calls:F.x(), is contained in a transaction twice, i.e.,
one fact for each version, both facts are removed from the
transaction. This filtering greatly reduces the number of
generated rules, as often large parts of the framework re-
main stable. Further, those facts would be noise in the data;
their removal also hinders the generation of other misleading
rules that contain one of the facts.

Algorithm: Putting all pieces together, the transaction
generation algorithm performs the following conceptual steps:

• Iterate over all instantiation classes that exist in both
version 1 and 2. For each instantiation class:

– Create an empty transaction for each possible com-
bination of a context and a change pattern. For
instance, a class declaration context may only
contain facts from change pattern 1. A method
context, however, may contain facts from change
patterns 2, 3, and 4; hence, three transactions
may be created for the same method context.

– The corresponding facts are added to the empty
transactions generated in the previous step.

• Remove facts representing unchanged usages from the
transactions created by the previous step.

• Remove all transactions that only contain facts from
version 2: no change rules can be learned from them.

Table 3 lists the four transactions (the numbered rows
with white background) that are created for the extracted
facts from Table 1. The structural context is used to parti-
tion the framework usages of a single instantiation class into
several transactions (cf. transactions 1-3 for class C1). Fur-
ther, each transaction only contains facts that match one of
the change patterns. After filtering facts that appear in both
versions (the stroked entries), the gray rows were removed
because they only contain facts from version 2.

# Context Pattern Facts V1 Facts V2
1 C1 1 extends:F1 extends:F6
2 C1.a() 3 calls:F3.x() calls:F4.z()
3 C1.b() 3 calls:F3.x() calls:F4.z()

C1.c() 3 calls:F3.y() calls:F3.y()
calls:F2.a()

C2 1 extends:F2 extends:F2
C2.a() 3 calls:F3.y() calls:F3.y()

4 C2.b() 3 calls:F5.a() calls:F5.a2()
calls:F5.b() calls:F5.b2()

Table 3: Created transactions

3.3 Mining change rules
The created transactions serve as the input to an associa-

tion rule mining algorithm. The algorithm generates all pos-
sible change rule candidates that fulfill three criteria. First,
the support of the rule is greater than a threshold minimum
support. Second, the confidence of the rule is greater than a
threshold minimum confidence. Third, the antecedent con-
sists of a single fact from version 1 and the consequence
consists of a single fact from version 2.

In most applications of data mining techniques, e.g., mar-
ket basket analysis, one often requires that the association
rules have both high support and high confidence: the goal
is to find frequently occurring patterns with a high signifi-
cance. For our purposes, we also accept rules that exhibit
low support, because changes may affect a small number
of framework users only. Further, we are also interested in
rules with a high confidence, but our evaluation shows that
the precision is good even with a low minimum confidence.

The third criterion constraints the results to rule can-
didates that describe changes from version 1 to version 2.
Most changes, and in particular refactorings, only affect two
program elements. For instance, in case of the refactoring
“change signature”, the two program elements correspond
to the method with the old signature (version 1) and the
method with the new signature (version 2). Hence, we only
accept rules whose antecedent and consequence are both
singletons. Yet, this restriction may result in undetected
changes; we will discuss this issue in Section 5.

# Change rule candidate Sup. Conf.
1 V1:extends:F1 → V2:extends:F6 1 1.0
2 V1:calls:F3.x() → V2:calls:F4.z() 2 1.0
3 V1:calls:F5.a() → V2:calls:F5.a2() 1 1.0
4 V1:calls:F5.a() → V2:calls:F5.b2() 1 1.0
5 V1:calls:F5.b() → V2:calls:F5.a2() 1 1.0
6 V1:calls:F5.b() → V2:calls:F5.b2() 1 1.0

Table 4: Mined association rules

The final step of our approach filters some rule candi-
dates if more than one rule with a specific antecedent or
consequence exists. We identify the one that most likely
represents a valid change; the other rules are considered as
misleading and filtered out. Again, the rationale for this
filtering is to focus on changes involving the exchange of a
single framework usage by a single different single usage.

The decision for the most likely valid change rule is based
on the assumption that the identifier of program elements
describe their responsibility and thus are relatively stable
during evolution. This is particularly true for many refac-
torings: e.g., when applying the “move method” or “change
signature” refactoring, the name of the method remains un-
changed.

Similarly to Xing and Stroulia [26], we use a heuristic
that measures the textual similarity of a rule’s antecedent
and consequence based on the Levenshtein distance, i.e., the
number of additions, deletions, and substitutions required to
transform one string into another string. We modify the
distance measure in such that we tokenize the rules and
count the edit operations per token, not per character. For
instance, the facts calls:x(String, int) and calls:x(int,

String) should only result in one edit operation to reflect the
parameter change. Next, for each token in the antecedent,
the consequence token with the minimum Levenshtein dis-
tance is determined. The distance of a rule corresponds to
the sum of the distances of its tokens in relation to the total
number of tokens.

Given the example code from Figure 3 and the generated
transactions from table 3, the mining algorithm produces six
association rules listed in table 4. The rule candidates 3/4
and 5/6 have the same antecedent. Intuitively, we would
assess rules 3 and 6 as valid change rules, while the other
two rules are misleading (gray rows). This would be also
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the result of applying our text-based rule filtering: the Lev-
enshtein distance of the two valid rules is lower than the
distance of the misleading rules; rules 4 and 5 would be fil-
tered.

4. EVALUATION
A prototypical implementation of the approach described

in Section 3 was evaluated with three subject systems. The
evaluation was set up to answer the following questions:
1. How many and which kinds of usage changes are found?
2. How do user-defined thresholds affect the results?

4.1 Prototype
The prototype enables to find usage change rules for Java

frameworks. The Eclipse JDT parser is used to create an
AST representation of the instantiation code, from which
all facts are extracted (step 1 in the process in Figure 1).
A custom module generates the transactions (step 2). The
apriori algorithm by Borgelt [4] is used to mine change rules
(step 3). Finally, the mined rules are filtered in a post-
processing step. A minimum support of 2 and a minimum
confidence of 33% are used as defaults; the thresholds are
determined empirically by performing a parameter analysis.
We did not take detailed performance measures, but the
whole algorithm run in less than half an hour for each of the
evaluated subject systems.

4.2 Setup
We performed three experiments on three different sub-

ject systems. First, our prototype was used to mine us-
age changes for the Eclipse UI framework [10] during its
evolution between versions 2.1.3 and 3.0. The subject of
the second experiment was the evolution of JHotDraw [12]5

between versions 5.3 and 5.4. The third experiment was
conducted with versions 1.1 and 1.2.4 of Struts [24]6. Our
evaluation setup is appropriate due to the following reasons.

First, an evaluation with three different frameworks en-
ables to judge whether the results gained for one framework
are corroborated for the other frameworks.

Second, the subject frameworks range from small to large
and are successful open-source frameworks with a large num-
ber of instantiations. Hence, mining their evolution changes
to support the migration of respective instantiations consti-
tutes a representative use case. The size characteristics of
the frameworks are listed in Table 5.

Size No. of No. of No. of
(KLOC) packages classes methods

Eclipse UI 2.1.3 222 105 1,151 10,285
Eclipse UI 3.0 352 192 1,735 15,894

JHotDraw 5.2 17 19 160 1,458
JHotDraw 5.3 27 19 195 2,038

Struts 1.1 114 88 460 5,916
Struts 1.2.4 97 78 469 6,044

Table 5: Size characteristics for the subject systems

Third, the setup allows assessing how the number of the
available framework users affects the mining results. The

5A GUI framework for technical and structured graphics.
6Struts is a controller framework for web-based applications

Eclipse experiment covers the situation where ported in-
stantiations are available. In addition to unit test cases,
the plug-ins shipped with Eclipse were used; in total, 1622
classes that use the framework functionality were available
in two versions, prior and after the migration to the new
Eclipse version. On the other hand, the Struts experiment
covers the situation where there is no access to ported in-
stantiations; instead, we used test cases of the project as the
learning basis (379 classes). For the JUnit experiment we
used both, the test cases and the examples shipped with the
framework.

Fourth, the systems have also been used for the evalua-
tion of RefactoringCrawler [9], a tool that finds framework
refactorings. This enables us to reason about the relation
between framework refactorings and usage changes. A direct
comparison between our approach and RefactoringCrawler
is not possible, as the output of our approach are usage
changes, whereas RefactoringCrawler outputs refactorings
of program elements and there is no one-to-one mapping
between the two sets. For instance, if a framework method
is renamed and also moved to another class, there are two
refactorings, but only one usage change. On the other hand,
if we rename a framework method that is overridden and
called by instantiations, a single refactoring corresponds to
two usage changes (one for the change of the overridden
method and one for the change of the called method). How-
ever, by analyzing which usage change rules are caused by
refactorings and which of those refactorings are found by
RefactoringCrawler, and by analyzing for how many refac-
torings found by RefactoringCrawler our approach outputs
corresponding usage changes, we can get an idea about the
strengths and limitations of our approach.

Finally, the authors of this paper are very knowledgeable
about the source code of all three frameworks and hence ca-
pable to judge whether change rules mined by the algorithm
are relevant or whether they are false positives.

4.3 Results
To assess their appropriateness, for each found rule we an-

alyzed whether it is (a) caused by a refactoring performed
on the framework, (b) caused by a conceptual change of
the framework, or (c) a false positive. For this purpose, we
consulted the framework documentation (Javadoc, migra-
tion guides, and release notes) and analyzed its source code.
Further, we checked whether a refactoring corresponding to
a usage change is found by RefactoringCrawler [9].

In the following, we present the quantitative results of our
experiments without much comments. An interpretation of
the results including the differences between the number of
rules found by our approach and the number of refactorings
found by RefactoringCrawler is given in Section 5.

An overview of the results of our experiments is given by
the gray columns in Table 7. For the three experiments con-
ducted with the default thresholds, a total of 255 correct
usage change rules were found. A usage change is correct
if it is either caused by refactorings of the framework code
(ΣR), or by a conceptual change relevant for the migration
according to documentation, migration guides, or our judg-
ment (CC).

Three observations can be derived from Table 7. First,
the majority of usage change rules found (193) are caused by
refactorings. Second, around a quarter of the found changes
that are relevant for the migration (62) are not caused by
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refactorings, but e.g., by the introduction of new concepts
within the framework. Obviously, such change rules can-
not be derived from findings produced by tools like Refac-
toringCrawler, focusing solely on refactorings. Finally, not
all change rules found by our algorithm are correct. In to-
tal, 39 false positives (FP) were found in the experiments.
However, the precision of our approach was high: 86,7%
of the rules found were correct. Note we can not state a
recall measure due to lack of knowledge about all valid us-
age changes. Column FN shows the number of refactorings
found by RefactoringCrawler, for which our algorithm was
not able to discover the respective usage change rules. These
refactorings can be considered as false negatives of our ap-
proach.

To give an idea about the quality of the correct change
rules proposed by our approach, we discuss representatives
of change rules for both, those that are caused by refactor-
ings and those that are not caused by refactorings.

Rules 1 and 2 in Table 6 show examples for usage change
rules caused by refactorings. The first change is caused by
a “move field” refactoring applied to the Eclipse framework:
class IWorkbenchActionConstants was split into a generic part
and an IDE specific part (class IDEActionFactory) and the
respective fields were moved into those classes. The sec-
ond change discovered for the Struts framework is neces-
sary as the functionality to retrieve a user’s locale is moved
from class RequestUtils to class TagUtils. Further, the name
of the method changed. Hence, two refactorings were per-
formed on the same program element.

Rules 3 and 4 in Table 6 correspond to usage changes
that are not caused by refactorings. For instance, in the old
version of JHotDraw it was possible to get the title of the
current drawing from a MDI_DrawApplication. The method
has been removed in the newer version; instead, clients need
to send a message to the Drawing directly. Rule 4 pro-
poses a usage change pattern for instantiation code needed
to absorb a change in the Eclipse framework documented
in the Javadoc comment as follows: In Eclipse 3.0, shut-
down has been replaced by Plugin.stop(BundleContext con-
text). Implementations of shutdown should be changed to ex-
tend stop(BundleContext context) and call super.stop(context)
instead of super.shutdown(). While the framework still con-
tains the old hook method to maintain backward compatibil-
ity, instantiations should migrate to the new plug-in lifecycle
concept.

Columns 2 to 8 in table 7 detail on the change rules
that correspond to refactorings: rename class (RC), pull up
method (PM), change signature (CS), move method (MM),
rename method (RM), replace constructor with factory method
(CF), and move field (MF). For each refactoring, the num-
ber of respective usage change rules found by our approach
is given. This is the first number in each cell. The second
number indicates how many of the change rules reference
a program element, to which a second refactoring has been
applied. The number in brackets shows how many of those
usage changes are caused by a refactoring that is found by
RefactoringCrawler. The numbers indicate that often the
refactorings causing the found usage changes are also found
by RefactoringCrawler; but, there are also several instances
of usage changes that are caused by refactorings which are
not found by RefactoringCrawler. Further, the figures show
that there are several changes that concern program ele-
ments which were subject to several refactorings.

5. DISCUSSION
In this section we elaborate on three questions:
1. Are the assumptions underlying our approach realistic?
2. What are the strengths and limitations of our approach?
3. What are the threats to validity?

5.1 Assumptions
Three assumptions underly our approach: (A1) Users of the
changed framework exist that are ported to the new version;
(A2) The instantiation code is stable: Transactions can be
only build for program elements that exist in both versions
of the instantiations; (A3) Usage changes replace a single
program element with another single one. In the following,
we reason about the validity of these assumptions.

Assumption (A1) is realistic for large open-source frame-
works. There are often early adopters of the changed frame-
work with detailed knowledge of the framework code. For
instance, when the Eclipse platform changes, the Java De-
velopment Toolkit is one of the first instantiations that is
ported. Further, the Struts experiment has shown that our
approach performs reasonably well, even if no instantiations
are available beyond test cases. The latter are available for a
large number of frameworks and they are typically ported to
new versions because they are maintained by the framework
developers.

To find out whether (A2) is realistic, we investigated the
respective versions of the Eclipse instantiations. We discov-
ered that overall 74% of the classes, 67% of the methods,
and 56% of the field declarations exist in both versions of
the instantiations. A further analysis revealed that in most
cases when a program element that existed in version 1 disa-
peared in version 2, the fully qualified name of the respective
element actually changed, e.g., because the program element
was renamed. This is a limitation of the prototype, as it uses
fully qualified names for mapping program elements between
two instantiation versions. To cope with with this issue more
advanced techniques for mapping program elements [14] can
be used. However, our evaluation showed that we can ex-
tract sufficient input data for our approach even using the
heuristic based on fully qualified names.

Assumption (A3) was valid for the rules found in our ex-
periments: for rules that have the same antecedent but dif-
ferent consequences, only one of the rules was correct. How-
ever, there may be cases were our assumption does not hold.
For instance, if a is replaced by a’ and b, our approach could
find the rule a → a’, but miss a → b. To cope with this
problem, it is worth investigating a combination of our ap-
proach with approaches to detect programming rules, e.g.,
CodeWeb [21] or FrUiT [5]. These approaches will derive a
rule a’ → b, if a’ and b always co-occur in the new instan-
tiation version.

5.2 Strengths and limitations
To assess the strengths and limitations of our approach,

we performed the following steps. First, we analyzed those
usage changes that are found by our approach for which
no respective framework refactorings are found by Refactor-
ingCrawler. Further, we analyzed why our approach misses
to detect usage changes for some refactorings found by Refac-
toringCrawler. Finally, we analyzed under which circum-
stances our algorithm produces false positives.

We identified several reasons for change rules that can be
found by our approach, but for which no refactorings are
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# Change rule
1 V1:accesses:IWorkbenchActionConstants.REBUILD_PROJECT → V2:accesses:IDEActionFactory.REBUILD_PROJECT

2 V1:calls:RequestUtils.retrieveUserLocale(PageContext,String) → V2:calls:TagUtils.getUserLocale(PageContext,String)

3 V1:calls:MDI_DrawApplication.getDrawingTitle() → V2:calls:Drawing.getTitle()

4 V1:overrides:AbstractUIPlugin.shutdown() → V2:overrides:AbstractUIPlugin.stop(BundleContext)

5 V1:extends:StatusTextEditor → V2:extends:AbstractDecoratedTextEditor

6 ImageRegistry.get(String) → IconAndMessageDialog.getWarningImage()

Table 6: Example rules found by our approach

Experiment RC PM CS MM RM CF MF ΣR CC FP FN Precision
Eclipse UI 1/0 (0) 7/0 (7) 22/4 (7) 6/4 (3) 1/0 (0) 0/0 (0) 34/0 (0) 67 34 16 13 86,3%
Struts 4/0 (4) 1/0 (1) 9/2 (4) 26/4 (12) 10/4 (4) 2/0 (0) 0/0 (0) 47 19 11 20 85,7%
JHotDraw 1/0 (0) 0/0 (0) 56/3 (18) 3/2 (0) 17/5 (9) 0/0 (0) 7/0 (0) 79 9 12 2 88,0%

Total 6/0 (4) 8/8 (8) 87/9 (29) 35/10 (15) 28/9 (13) 2/0 (0) 41/0 (0) 193 62 39 35 86,7%

Legend: RC = Rename Class; PM = Pull up Method; CS = Change Signature; MM = Move Method;
RM = Rename Method; CF = Replace Constructor with Factory Method; MF = Move Field;
ΣR = Changes caused by Refactorings; CC = Conceptual Change; FP = False Positives; FN = False Negatives

Table 7: Usage change rules found

found by RefactoringCrawler. First, not all usage changes
that are relevant for the migration to a new framework ver-
sion directly correspond to refactorings. For instance, the
new plug-in concept of Eclipse led to a change described in
rule #4 in Table 6, which is not a refactoring. Second, two
refactorings may be applied to a single program element at
once. An example is presented in change rule #2 in Table 6.
It has been shown that multiple refactorings typically cause
problems when analyzing the framework code [25]. Third,
tools that rely on code similarity to judge whether a program
element in version 1 matches another program element in
version 2, such as RefactoringCrawler, have problems with
program elements that do not have a body, e.g., fields or
interface declarations. For instance, change rule #1 in Ta-
ble 6 involves moving a field to another class. When usages
are not taken into account, the only information that can
be used to match the program element is the field’s name,
which may actually change, too.

Next, we consider refactorings found by RefactoringCrawler,
for which we did not find respective usage changes. The
reason for such false negatives was that the analyzed instan-
tiations did not use the respective parts of the framework.
For instance, 16 refactorings of Struts found by Refactor-
ingCrawler involved signature changes of methods respon-
sible for the validation of the user input. As none of the
analyzed instantiations used the validation part of Struts,
we did not find usage changes for these refactorings. For
such cases, it seems beneficial to combine our analysis with
existing techniques that analyze the framework code, as dis-
cussed in Section 7.

Finally, we consider the results of analyzing the false pos-
itives produced by our algorithm. The source of such false
positives are situations, where a program element is used by
only few instantiations. For example, consider rule #6 in
table 6. Searching for the source of this false positive, we
discovered that the fact V1:calls:ImageRegistry.get(String)
was contained in only two transactions, i.e., it was extremely
rarely used by instantiations. Accidentally, both transac-
tions containing this fact also contained the fact V2:calls:

IconAndMessageDialog.getWarningImage(). As a result, our
prototype produced rule #6 in table 6. In other words, if
few transactions exist that exhibit a common pattern, a cor-

responding rule is derived even if it only applies to a specific
instantiation and cannot be generalized for all framework
users.

The findings that we derive from the results of our ex-
periments can be summarized as follows. Many changes are
found by both, our approach and RefactoringCrawler. An-
alyzing the use of the framework within instantiation code
enables to cope with issues of current tools, such as dep-
recated elements, multiple refactorings applied to the same
code elements, changes of body-less elements, and changes
that are not caused by refactorings. However, those changes
can only be found if instantiation code that uses different
parts of the framework exists. Further, our algorithm only
outputs change rules; it does not infer the concrete cause
of the change as RefactoringCrawler does. We conclude
that our approach complements rather than replaces exist-
ing work; an investigation of the effectiveness of combining
different approaches remains for future work.

5.3 Threats to validity
There are three threats to the validity of our findings.

First, although we used frameworks from different domains,
written by different developers, they may not be representa-
tives for all kinds of frameworks: All three are implemented
in Java as open-source projects and these characteristics are
not shared by all frameworks.

Second, a similar threat concerns the selection of instan-
tiations. We used real-world instantiations for the Eclipse
study, example instantiations for the JHotDraw study and
test cases delivered with the framework for the Struts study.
However, we cannot claim that these examples are represen-
tative for all kinds of framework instantiations.

Third, the manual investigation to assess the quality of
the change rules found – based on the investigation of the
API, the release documentation, and the framework source
code – is subject to evaluator bias. As a measure against
this threat, we make all rules publicly available7 to enable
other researchers to assess the results independently.

7
http://www.st.informatik.tu-darmstadt.de/Frameworks
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6. RELATED WORK
Reverse engineering changes occurring during framework

evolution has been subject of research for several years. The
overall goal has been to make changes explicit in order to (a)
ease migration of existing framework instantiations, or (b)
understand the evolution of the framework. In the following,
we classify related work in two categories.

The first category of related work targets the first goal: fa-
cilitating the migration of existing framework users. Early
approaches in this category suggest to publish a new ver-
sion of the framework together with a description of the
changes required to adapt existing instantiations. For exam-
ple, Chow and Notkin [6] introduce a change specification
language and a tool that uses change specifications to trans-
form existing framework instantiations. A similar approach
is presented by Balaban et al. [3]. To ease the creation of
such specifications, Henkel and Diwan [11] propose to record
framework refactorings and to enable developers to repeat
them on the instantiation code.

Other approaches [13, 17, 20, 23] propose different tech-
niques for specifying, checking, and enforcing explicit spe-
cialization interfaces for frameworks. By imposing confor-
mance to the specialization rules upon both instantiations
and new versions of the framework, these approaches aim at
mitigating the framework evolution problem.

The approaches discussed so far minimize the migration
costs for instantiations: The effort is needed only once from
the framework developer, while the migration of all instan-
tiations can be performed automatically. The prerequisite
for these approaches is that the framework developer uses
some special tools and manual techniques in the process of
evolving the framework. This requirement is not always fea-
sible since it puts some extra burden on framework devel-
opers. Furthermore, for many legacy frameworks for which
change descriptions are not available, means to reverse en-
gineer such changes are needed.

Approaches in the second category analyze changes of a
software to understand its evolution. They differ primarily
in the technique used to find the changes. Malpohl et al. [19]
find software elements that have been renamed in their life-
cycle using a programming language-aware difference algo-
rithm. Demeyer et al. [8] show that specific refactorings
can be found by analyzing the differences of several software
metrics. Van Rysselberghe and Demeyer [22] visualize the
results of a code clone detection algorithm as dotplots and
derive refactorings from visual patterns. Xing and Strou-
lia [27] present UMLDiff, an algorithm for detecting refac-
torings that analyzes design-level models of the software.

Further, several approaches enable tracing the evolution
of classes, e.g., by detecting renamings, splittings or merges.
Antoniol et al. [2] map all classes into a vector space and
detect class-level refactorings by vector comparison. Zou
and Godfrey [28] present a semi-automatic approach that
uses origin analysis. The technique is also used by Kim et
al. [16], who present a fully automated approach. Weißger-
ber and Diehl [25] use version history information to detect
refactorings.

In following the goal to analyze changes of a software to
understand its evolution, the approaches in the second cate-
gory assume that changes happen abruptly. In case of frame-
works, however, this assumption does not hold. To preserve
backward compatibility, outdated code is not removed in-
stantly, but marked deprecated. The coexistence of old and

new program elements makes it difficult to find changes by
using such algorithms.

RefactoringCrawler [9] addresses this issue for changes
that are caused by refactorings. The tool first applies a fast
syntactic analysis to detect refactoring candidates, i.e., code
elements that are similar to each other. Next, a slower but
more accurate semantic analysis is performed to refine the
results. Kim et al. [15] presented an algorithm that derives
minimal descriptions for higher-level changes by generalizing
low-level refactorings. These approaches have in common,
that they only use the framework code to detect changes.
In contrast, we derive changes describing how to use a new
framework version by analyzing the changed usage within
ported instantiation code.

Recently, Dagenais and Robillard [7] presented a tech-
nique to recommend adaptive changes for clients of an evolv-
ing framework by analyzing how the framework adapts to
its own changes. It is similar to our approach in such that
framework usage changes are analyzed, change rules are cre-
ated and ranked by their confidence. The main differences
are the input data and the kind of changes found. First,
in [7] multiple fine-grained change sets extracted from a
source code repository are analyzed instead of two course-
grained versions as in our approach. This enables to derive
usage changes with less noise. Second, the focus of the work
presented in [7] is on method call changes while our approach
finds different kinds of framework usage changes8.

7. SUMMARY AND FUTURE WORK
In this paper, we proposed an approach for finding usage

changes in evolving frameworks by analyzing instantiation
code. This is in contrast to current approaches, which only
analyze the framework code. However, often instantiation
code exists from which the usage of a new framework version
can be learned more directly. The approach uses association
rule mining to find patterns describing a changed usage of
the framework. We evaluated our approach by mining usage
changes of three real-world frameworks. The results show
that our approach has a high precision and finds several
usage changes that are not found by using refactoring tools.

An area of future work is to investigate in what extent
it is worth combining the approach presented in this paper
with tools for refactoring finding that analyze the framework
code. Such a combination may lead to even better results for
the following reasons. First, it would lead to a higher recall,
since there are rules that can be derived from refactorings,
which are not discovered by our approach and the other way
around. Further, if a change rule is detected by both ap-
proaches, it is most likely a correct rule: the rules found by
both approaches in our experiments were all correct rules.
Second, our algorithm does not produce information about
the kind of change made to the framework. For instance, the
rule V1:extends:A → V2:extends:B only indicates, that sub-
classes of A in version 1 should subclass B in version 2; but,
we have no information whether the framework class was re-
named, moved, or exchanged by a different implementation.
The technique used by other approaches (e.g., [9, 25]) could
be used to answer such questions and to get more detailed
change descriptions.

8According to the authors, it is possible to infer other kinds
of framework usage changes, but not as may as supported
by our approach.
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