
Predicting Accurate and Actionable
Static Analysis Warnings: An Experimental Approach

Joseph R. Ruthruff∗, John Penix†, J. David Morgenthaler†,
Sebastian Elbaum∗, and Gregg Rothermel∗

∗University of Nebraska–Lincoln
Lincoln, NE, U.S.A.

{ruthruff, elbaum, grother}@cse.unl.edu

†Google Inc.
Mountain View, CA, U.S.A.

{jpenix, jdm}@google.com

ABSTRACT
Static analysis tools report software defects that may or may not be
detected by other verification methods. Two challenges complicat-
ing the adoption of these tools are spurious false positive warnings
and legitimate warnings that are not acted on. This paper reports
automated support to help address these challenges using logistic
regression models that predict the foregoing types of warnings from
signals in the warnings and implicated code. Because examining
many potential signaling factors in large software development set-
tings can be expensive, we use a screening methodology to quickly
discard factors with low predictive power and cost-effectively build
predictive models. Our empirical evaluation indicates that these
models can achieve high accuracy in predicting accurate and ac-
tionable static analysis warnings, and suggests that the models are
competitive with alternative models built without screening.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Reliability, Statistical
methods; F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis; G.3 [Probability and Statistics]: Correlation and
regression analysis

General Terms
Experimentation, Reliability

Keywords
static analysis tools, screening, logistic regression analysis, experi-
mental program analysis, software quality

1. INTRODUCTION
Static analysis tools detect software defects by analyzing a sys-

tem without actually executing it. These tools utilize information
from fixed program representations such as source code, generated
or compiled code, and abstractions or models of the system. Even
relatively simple analyses, such as detecting pointer dereferences
after null checks, can find many defects in real software [5, 9].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

There are well-known challenges regarding the use of static anal-
ysis tools. One challenge involves the accuracy of reported warn-
ings. Because the software under analysis is not executed, static
analysis tools must speculate on what the actual program behav-
ior will be. They often over-estimate possible program behaviors,
leading to spurious warnings (“false positives”) that do not corre-
spond to true defects. For example, Kremenek et al. [13] report
that at least 30% of the warnings reported by sophisticated tools
are false positives. At Google, we have observed that tools can be
more accurate for certain types of warnings. Our experience with
FindBugs [1] showed that focusing on selected, high priority warn-
ings resulted in a 17% false positive rate [3].

A second challenge receiving less attention is that warnings are
not always acted on by developers even if they reveal true defects.
In the same study at Google, only 55% of the legitimate FindBugs
warnings were acted on by developers after being entered into a
bug tracking system [3]. Reasons for defects being ignored in-
clude warnings implicating obsolete code, “trivial” defects with no
impact on the user, and real defects requiring significant effort to
fix with little perceived benefit. Low criticality warnings such as
“style” warnings, for example, can be unlikely to result in fixes.

We are investigating automated tools to help address both of
these challenges by identifying legitimate warnings that will be
acted on by developers, reducing the effort required to triage tens
of thousands of warnings that can be reported in enterprise-wide
settings. Our reasons for focusing on legitimate warnings are clear.
We further focus on warnings that will be acted on by developers—
not because ignored warnings are unimportant, but because we seek
to maximize the return on investment from using static analysis
tools. The core elements of our approach are statistical models
generating binary classifications of static analysis warnings. One
unique aspect of these models is that they are built using screening,
an incremental statistical process to quickly discard factors with
low predictive power and avoid the capture of expensive data.

Sampling from a base of tens of thousands of static analysis
warnings from Google, we have built models that predict whether
FindBugs warnings are false positives and, if they reveal real de-
fects, whether these defects would be acted on by developers (“ac-
tionable warnings”) or ignored despite their legitimacy (“trivial
warnings”). The generated models were over 85% accurate in pre-
dicting false positives, and over 70% accurate in identifying action-
able warnings, in a case study performed at Google. Both represent
a notable improvement over previous practices at Google for Find-
Bugs, where 24% of triaged warning reports had been false posi-
tives and 56% had been acted on. The results from this study also
indicate that screening can yield large savings in the time required
to generate models, while sacrificing little predictive power.

Distinguished Paper

341

The primary contributions of this paper are:

1. a methodology for screening factors related to static analysis
warnings that provides an economical means of generating
accurate predictive models;

2. a set of measurable factors for static analysis warnings and
programs, and the results of screening these factors in this
context; and

3. logistic regression models for predicting both false positives
and actionable warnings.

After introducing FindBugs and logistic regression techniques,
we present the set of factors and describe their screening. We then
present an empirical evaluation of the accuracy of the resulting lo-
gistic regression models using three baseline controls.

2. BACKGROUND

2.1 FindBugs at Google
FindBugs [9] is an open-source static analysis tool for Java pro-

grams. The tool analyzes Java bytecode to issue reports for 286
bug patterns [1]. These patterns are organized into seven cate-
gories: Bad Practice (questionable coding practices), Correctness
(suspected defects), Internationalization, Malicious Code Vulnera-
bility, Multithreaded Correctness, Performance, and Dodgy (con-
fusing or anomalous code). FindBugs assigns reported warnings a
priority of “High,” “Medium,” or “Low” based on each warning’s
estimated severity and the tool’s confidence in its accuracy.

Evaluations of FindBugs on commercial software suggest that
bug patterns have different false positives rates, and are of varying
importance to developers when the warnings are accurate [3]. For
example, warnings about null dereferences are generally suscep-
tible to false positives because a tool cannot statically determine
infeasible control flow paths between null assignments and deref-
erences. However, in some cases, a null dereference is assured be-
cause there is a single path between a null assignment and a deref-
erence. This latter class of warnings is assigned a higher priority
by FindBugs and has a low false positive rate. Regarding fixes,
developers generally find null dereference defects important. But
when the null dereference occurs while constructing an Exception,
the observed fault is that the wrong exception is thrown. This may
impact only exception logs and may not be given a high fix priority.

At Google, we have deployed FindBugs using an enterprise-wide
service model [15]; this involves automatically collecting, building,
and analyzing various portions of the code base on a repeated basis.
The resulting warnings are triaged by a dedicated team and, when
appropriate, reported to developers. We performed a cost/benefits
analysis identifying this as a cost-effective approach for determin-
ing sufficiently interesting defects to report to developers. This
analysis also indicated that, on average, eight minutes were re-
quired to manually triage each static analysis warning.

The scale of enterprise-wide deployment is challenging in a large,
fast moving organization. Because static analysis tools perform
“whole program” analysis, the need to re-analyze large parts of a
software system could arise from small changes. Failure to do so
may result in missed warnings or, if the tool is conservative, an in-
crease in false positives. Running FindBugs frequently on a large,
evolving code base generates numerous warnings. Over the nine-
month period described in this paper, many tens of thousands of
unique warnings were generated by FindBugs.1Because large num-
bers of new warnings are likely to be a common occurrence in large
development settings, we believe that it is desirable that support for
these tools, such as methodologies to build predictive models for
incoming warnings, be adaptable, flexible, and scalable.

2.2 Logistic Regression Analysis
Logistic regression analysis is a type of categorical data analy-

sis for predicting dependent variable values that follow binomial
distributions [8]. Logistic regression models predict the value of
a dependent variable y for a unit i based on the sum of a series
of coefficients multiplied by the levels of particular independent
(i.e., design) variables. To mathematically characterize this, let
Xi = (Xi1, . . . , Xin) be a vector of independent variable values
for unit i. Let β = β0, β1, . . . , βn be coefficients that are esti-
mated by fitting the model to an existing “model building” data set,
where β0 is termed the model “intercept.” Logistic regression mod-
els predict the binary value Yi for i by calculating the probability
that Yi = 1 given Xi. This probability is:

P (Yi|Xi) =
eβ0+β1Xi1+β2Xi2+···+βnXin

1 + eβ0+β1Xi1+β2Xi2+···+βnXin
(1)

For details on logistic regression and how Equation 1 is derived, we
refer readers elsewhere [8, 10].

3. LOGISTIC REGRESSION MODELS
Triaging static analysis warnings in an organization as large as

Google is an expensive task. We aim to build statistical models that
classify incoming static analysis warnings to reduce the cost of this
process. We initially considered a number of potential factors to
build these models, which are presented in Section 3.1. To increase
the adaptability and scalability of our models and the process used
to create them, we systematically screen these factors according to
the procedures in Section 3.2 to incrementally filter out factors with
low predictive power.

3.1 Logistic Regression Model Factors

3.1.1 Selecting Factors
We chose our factors and associated metrics by drawing from our

own experiences with static analysis warnings at Google, as well
as the experiences of other researchers who have built regression
models in other software engineering domains. We draw primarily
from three related areas of application. First, we capture some code
complexity metrics as does the work of Nagappan et al. [16] for
predicting post-release defects. However, in this work, we decided
to focus on complexity measures that are more light-weight and can
be very quickly computed on large code bases.

Similarly, we utilize work by Bell et al. [4, 18, 19] in building
regression models for predicting fault counts within individual files
in software releases. Their work considered factors relating to the
size of the program, the recent change history of files, the recent
fault history of files, files’ age since the previous release, the pro-
gramming language, and the release number. Because we consider
only Java code here, and because we are interested in defects for
code irrespective of release, we do not consider programming lan-
guages and releases as factors. Many of our selections are related
to the first four aforementioned factors, however.

Finally, Kremenek et al. [13] consider factors related to the fault
history of files in an adaptive probabilistic technique for ranking
warnings, in addition to the files and directories themselves that
contain warnings. We do not consider factors directly related to
file and directory locality in this work, though many of our fac-
tors estimate other attributes of files and directories. Kremenek et
1The warnings are unique in that we used the FindBugs instance-
hash method to track warnings across file changes [21]. This serves
to identify previously-reported and duplicate warnings; however, it
would not identify cases where a single defect triggers multiple
unique warnings, which we currently must detect manually.

342

Factor Description
FindBugs warning descriptors

Pattern Bug pattern of warning
Category Category of warning
Priority FindBugs warning priority

Google warning descriptors
BugRank Google metric of warning’s priority
BugRank Range Category (range) of warning’s BugRank

File characteristics
File age Number of days that file has existed
File extension Extension of Java file

History of warnings in code
File warnings Number of warnings reported for file
File staleness Days since warning report for file
Package staleness Days since warning report for package
Project warnings Number of warnings reported for project
Project staleness Days since warning report for project

Source code factors
Depth How far down (%) in file is warning
File length Number of lines of code in file
Indentation Spaces indenting warned line

Churn factors: files, packages, and projects (6 × 3 factors)
Added Number of lines added
Changed Number of lines changed
Deleted Number of lines deleted
Growth Number of lines of growth
Total Total number of lines changed
Percentage Percentage of lines changed

Table 1: Factors for static analysis warnings and programs.

al. [13] also discuss the use of churn factors similar to our own; in
our work, we investigate churn factors in detail.

3.1.2 Original Factors
We selected 33 factors to incorporate into the experimental

screening methodology for generating our required models (Table
1), described in more detail below.

FindBugs Warning Descriptors. For a given static analysis warn-
ing, the FindBugs warning descriptor factors are taken directly from
the FindBugs tool. As discussed in Section 2.1, there were 286 pos-
sible warning patterns, seven categories, and three priorities.

Google Warning Descriptors. To help triage warnings, we devel-
oped a prioritization scheme that we call BugRank. BugRank ranks
warnings based on previous triage and bug-fix statistics. Specifi-
cally, it uses the empirical history of how often warnings on a given
pattern have been false positive and how often they have been acted
on by developers as a probability of each event happening. This in-
formation is blended with a default probability based on the Find-
Bugs category and priority. As warnings are triaged and acted on,
the weighting of the observed data increases. In this paper, we used
the BugRank associated with warnings at the end of May 2007.

BugRank is represented as a range from 0-100, where 0 indi-
cates a likely defect that will be fixed, and 100 indicates an incon-
sequential or spurious warning. BugRank categories are ranges of
BugRank values, where 0-10 is Very High, 11-20 is High, 21-50 is
Medium, 51-90 is Low and 91-100 is Very Low.

File Characteristics. We consider two factors related to character-
istics of files generating static analysis warnings. Our first factor

was inspired by Bell et al. [4, 18]: the age of files. Because we
do not use software releases here, we consider the number of days
since the file’s creation. Our second factor is related to Google de-
velopment practices: file extension. We use FindBugs to analyze
both standard and generated Java code, and many generated files
can be differentiated from standard Java files by file extension.

History of Warnings in Code. We consider five factors designed
to capture the history of static analysis warnings at three granulari-
ties of code: files, Java packages, and projects. The types of factors
we consider for these granularities are “number of warnings” and
“staleness.” The two number of warnings factors concern the to-
tal number of warnings that have been historically reported for the
files and projects in question at the time of screening. This factor is
in part inspired by those in related work [4, 13, 18] concerning the
history of prior defects. The staleness factors capture the number
of days that have passed since the most recent warning was first
reported for the file, package, or project at the time of screening.

Source Code Factors. We considered three simple factors that aim
to provide insight into the code generating static analysis warnings.
The first considers the depth of the implicated code in the file, in
terms of percentage of lines of code. Our second factor analyzes the
program to measure the number of spaces indenting the implicated
line of code. The notion behind this factor is that deeply nested
code is more complex than code in outer scopes. The third factor
considers file size in terms of total lines of code, which was another
factor considered in related work [4, 18].

Our source code factors are inspired by code complexity; how-
ever, they are purposefully not as sophisticated as traditional com-
plexity measures. In addition to the inconsistent predictive power
displayed in other work by some traditional complexity factors [16],
due to the frequency at which static analysis warnings can be re-
ported and our desire to make predictions about incoming warnings
quickly, we wanted to determine whether a few inexpensive factors
could provide sufficient predictive power in models.

Churn Factors. Code churn is a general measure for the amount
of changing code, and how the code has changed. We consider 18
churn factors at three levels of granularity; these three levels are the
file, package (including sub-packages), and project levels.

For each level of granularity, we consider six churn factors. The
“added” factor considers the number of lines that have been added
to the file, packages, and project in the three months prior to the
date on which the warning was reported. We selected three months
because we did not want too short a window (e.g., one week) that
might not consider enough churn; this is especially relevant for the
file granularity, as many files are not modified frequently. How-
ever, too long a window (e.g., one year) might be too noisy to have
predictive power. The “changed” factor considers the number of
changed (edited) lines in the prior three months for the three lev-
els of churn granularity. The “deleted” factor considers the number
of lines that have been deleted. The “growth” factor considers the
code’s growth in terms of lines of code; this can be either a positive
or negative number. “Total” considers the total number of churned
lines, and “percentage” considers the percentage of churned lines.

3.2 Experimental Screening Process
Screening experiments are designed to quickly yet systemati-

cally narrow down large groups of independent variables, or inde-
pendent variable levels (treatments), into smaller subsets to further
investigate. They are often used as formative, exploratory work to
focus the direction of research, and in settings where large numbers
of treatment combinations and interactions are of interest.

343

We have used the experimental program analysis framework [20]
to create a screening methodology for selecting, from many po-
tentially expensive factors, a subset that could be used as inde-
pendent variables in logistic regression models for static analysis
warnings and programs. The goal of the screening methodology is
to converge on independent variables for logistic regression models
that accurately predict false positives and actionable static analysis
warnings in a cost-effective manner.

One reason to seek a cost-effective approach is that it may be
desirable to re-build predictive regression models at various points
in time such as when a significant number of new warnings have
been reported, the codebase of interest has experienced substantial
change, or it is of interest to investigate new factors. The frequency
in which it may be desirable to re-build models due to such changes
would likely vary in different software development settings. How-
ever, we expect that many settings would use existing models to
predict static analysis warnings for at least a moderate length of
time before updated models are built.

In this work, we consider a screening methodology with up to
four stages that attempts to identify at least six predictive factors for
a predictive model. We selected four stages to accommodate ranges
of 5%, 25%, 50%, and 100% of the total warnings, the reasons and
goals of which are presented in the upcoming discussion. We chose
a cut-off of six factors because we wanted to ensure that we were
left with at least some factors for model building. Six factors is also
close to the number of factors considered in the models developed
by Nagappan et al. [16] and Bell et al. [4, 18].

The first stage of the screening methodology considers 5% of
static analysis warnings and source code. The goal of this stage is
to consider a small subset of warnings and eliminate factors that
appear to have little of the predictive power needed to build accu-
rate models. After gathering data for this small subset of warnings,
we build a logistic regression model from the resulting data and
perform an Analysis of Deviance for generalized linear models [6]
to individually evaluate each factor.

Because statistical models are designed to closely model the data
on which they were built, Analysis of Deviance considers how well
each factor in the model reduces the fitted model’s deviance from
the fitted data. As a logistic regression model, we expect our model
to fit data with a binomial dispersion, so Chi-squared tests are ap-
propriate for generating test statistics to evaluate each factor’s re-
duction in deviance [6]. We used these tests to evaluate each fac-
tor at each screening stage. In this first stage, we eliminated fac-
tors with effect sizes so small that the test statistics’ p-values were
greater than 0.80. These factors were judged to contribute little to
the model’s goodness-of-fit to the model building data.

If performing this elimination left six or fewer factors, we halted
screening, and gathered data using the remaining 95% of warnings
according to the remaining factors. Otherwise, we considered an
additional 20% of the static analysis warnings in a second stage,
bringing the total number of considered warnings to 25%. (We
chose 25% so that one-quarter of the total warnings would be con-
sidered after this stage.) An Analysis of Deviance is then used to
eliminate factors whose test statistics’ p-values were greater than
0.50. Because this stage considers a larger amount of data than pre-
vious stages, we chose an elimination criterion that was more strict
than in the first stage, but was still lenient enough to allow factors
to recover when more data is available in subsequent screening.

The third stage of our screening methodology considers the next
25% of warnings, for a total of half of all warnings. The elimination
criterion here is more strict: p-values greater than 0.20. This was
chosen because, by this point, a sizable amount of data has been
gathered with which to make informed judgments.

If more than six factors remain, then these factors are used to
gather data for the last 50% of the data. After this fourth and final
stage, factors with non-significant p-values greater than 0.10 are
eliminated. The logistic regression model is then fit in R using the
remaining factors as independent variables.

3.3 Building Models From Screening Factors
We used the screening methodology described in Section 3.2 to

filter out factors listed in Section 3.1 with insufficient predictive
power. For a set of static analysis warnings to use for collecting the
necessary data during screening, we chose a sample of 1,652 static
analysis warnings reported by FindBugs for Java code at Google.
(This sample is also the subject of our case study; see Section 4.)
We present the resulting model for predicting false positive warn-
ings, built using the R statistical package [2], followed by the mod-
els for predicting actionable warnings.

3.3.1 Model for Predicting False Positives
Examining just 5% of the static analysis warnings in the first

stage of the screening experiment eliminated 15 of the 33 factors
initially considered. The 15 eliminated factors were (1–6) all six
project churn factors, (7–10) the growth and total churn factors for
both files and packages, (11) the churn percentage factor for files,
(12) the churn factor for changed lines in files, (13–14) the staleness
factors for projects and files, and (15) the file extension. This stage
took 29 minutes and 57 seconds, with 62% of the time required to
screen the six project churn factors, 32% of the time required to
screen the six package churn factors, and 6% of the time for the
remaining 21 factors.

Five factors were eliminated in the second stage of screening:
(16–17) the churn factors for lines deleted in files and packages,
(18) the churn factor for lines added in packages, (19) the churn
percentage in packages, and (20) the number of warnings in the
project. Because an additional 20% of the sampled warnings were
considered, this stage required 45 minutes and 26 seconds to com-
plete, even though only 18 factors were screened. This amount of
time was largely due to the four remaining package churn factors,
which required 84% of this time to screen and happened to be elim-
inated in this stage.

The factors for (21) the file’s age and (22) number of warnings
in the file were eliminated in the third stage, which took nine min-
utes and seven seconds to complete. In the fourth and final stage,
the factors for (23) the FindBugs category and (24) the file churn in
terms of changed lines were eliminated. Although only 11 factors
remained in this stage, it took 14 minutes and 53 seconds to com-
plete since the last 50% of the sampled warnings were processed.

The nine factors selected by screening, as well as the intercept
(i.e., the β0 coefficient) of the regression model, are summarized in
Table 2. The significance of each factor on the model’s deviance
from the fitted data, as well as the coefficients of the fitted model
for each factor, are shown. The categorical variables such as the
BugRank range have coefficients for all but one level, which is
folded into the intercept.2 In Tables 2–4, the labels for the prior-
ity and BugRank range factors are as follows: VL stands for “Very
Low,” L for “Low,” M for “Medium,” and VH for “Very High.”

The adjusted R2 for this model, which describes the amount
of variation in the dependent variable that the model captures, is
0.3548. Although this might seem low, it is actually quite reason-
able given the complexity of what the models are predicting. It
also indicates that there may be room for improvement in the form
of additional factors that capture more variation. However, we also

2R alphabetically folds the first level of categorical factors into the
intercept, which is “High” for priority and BugRank ranges.

344

Factor P (> χ) Coefficients
Intercept -2.29064

FindBugs pattern < 0.01 (not shown)
FindBugs priority < 0.01 M: 1.67002, L: 0.83176
Package staleness 0.07 -0.00227

BugRank < 0.01 0.23924
BugRank range < 0.01 VL: -9.02230, M: -8.24013,

L: -15.12205, VH: 2.83218
File churn: Added 0.03 0.00088

Code: Warning depth 0.04 -0.00678
Code: Indentation 0.10 -0.02704
Code: File length 0.03 -0.00032

Table 2: Factors selected through screening for false positive
prediction models. Coefficients for pattern are not shown.

note that there is some inherit variation in the setting we are ob-
serving (e.g., triaging engineers may not always agree on whether
a warning identifies a real problem), which is likely to keep R2 low.

The coefficients indicate how each factor affects the predictions
made by the model. (For the value predicted in Equation 1, values
close to 0.0 correspond to false positive predictions, while values
close to 1.0 correspond to true defects.) For example, the coef-
ficient of the package staleness factor is negative. As more time
passes since the previous static analysis warning in the package or
sub-packages, the model is more likely to predict that the warning
is a false positive. In contrast, the coefficient for the churn factor
for lines of code added to files is positive; thus, the model is more
likely to predict that the warning is legitimate as the number of lines
recently added to files increases.

3.3.2 Models for Actionable Warnings
We consider two types of models to predict actionable warnings.

Our first model is built using only those warnings identified as true
defects. For building this model, 12 factors were eliminated after
the first screening stage: (1–6) all six project churn factors, (7–
10) the growth and total churn factors for both files and packages,
(11) file extension, and (12) BugRank. The second stage saw the
elimination of (13) file length complexity and (14) the number of
warnings in the project. The third stage eliminated (15) line in-
dentation and (16) the churn factor for changed lines in packages.
Four factors were eliminated in the fourth and final stage: (17–18)
the staleness of the packages and projects, (19) the churn factor for
changed lines in files, and (20) the FindBugs priority.

The 13 factors remaining after screening are summarized in Ta-
ble 3. For the category factor, C stands for “Correctness,” I for
“Internationalization,” MC stands for “Malicious Code,” MTC for
“Multi-Threaded Correctness,” P for “Performance,” and S for
“Style.” The adjusted R2 for this model is 0.2477.

Our second model is designed to predict actionable defects from
all warnings (i.e., both false positives and legitimate warnings).
Screening eliminated 18 factors: the six factors for project churn;
the changed lines, growth, and total lines churn factors for files
and packages; the package churn factor for added lines; indentation
complexity; file length; package and project staleness; and file ex-
tension. The 15 factors remaining after screening are summarized
in Table 4. The adjusted R2 for this model is 0.2611.

3.3.3 Discussion
It is interesting to observe trends in the factors that were con-

sistently selected and eliminated during screening. For example,
the project churn factors were consistently eliminated after the first
screening stage. Because many Google projects undergo a large

Factor P (> χ) Coefficients
Intercept -1.69250

FindBugs pattern < 0.01 (not shown)
FindBugs category < 0.01 C: 0.13550, MTC: 0.29493,

I: 13.41806, P: -0.44291,
MC: -13.52201, S: 0.29889

File age < 0.01 -0.00096
Warnings in file < 0.01 0.08125

File staleness < 0.01 0.00764
BugRank range < 0.01 VL: 16.44913, L: -0.35007,

M: -1.19761, VH: 1.16869
File churn: Added < 0.01 -0.00078
File churn: Deleted < 0.01 0.00083

File churn: Perc. < 0.01 0.00608
Dir churn: Added 0.02 0.00009
Dir churn: Deleted 0.01 -0.00013

Dir churn: Perc. < 0.01 0.01024
Code: Warning depth 0.03 -0.00623

Table 3: Factors selected for actionable prediction models con-
sidering only true defects. Coefficients for pattern are not
shown.

Factor P (> χ) Coefficients
Intercept -24.76222
Pattern < 0.01 (not shown)
Priority < 0.01 L: 1.17921, M: 1.87402

Category < 0.01 C: 1.58666, S: -0.21193
Warnings in file < 0.01 0.067965

File age < 0.01 -0.00107
File staleness < 0.01 0.00588

Project staleness 0.01 0.00488
BugRank 0.03 0.08894

BugRank range < 0.01 VL: 5.10045, M: -4.55509
L: -6.98454, VH: 2.66199

File churn: Added < 0.01 -0.00025
File churn: Deleted 0.01 0.00027

File churn: Perc. < 0.01 0.00408
Dir. churn: Perc. < 0.01 0.00894

Code: Warning depth 0.01 -0.00739

Table 4: Factors selected for actionable prediction models con-
sidering all warnings. Coefficients for pattern are not shown.

amount of churn, and because project churn operates at a high gran-
ularity, this factor may be too noisy to be useful in regression mod-
els for static analysis warnings, at least for three-month windows
of time. On the other hand, other factors such as bug pattern and
BugRank range were consistently selected by screening.

We also saw trends within particular models. For example, the
actionable warnings model for true defects included the added,
deleted, and percentage churn factors at both the file and package
level, and excluded the changed, growth, and total factors for the
same levels. All of these trends suggest areas for future work re-
garding additional factors that, we believe, could further improve
the precision of our models.

There could be benefit in investigating certain factors further, and
in considering new factors. For example, we considered a three-
month window for the churn factors, but larger or smaller windows
could be considered. Also, some factors, such as the number of
warnings and staleness factors, are measured at the point of screen-
ing rather than the time of the warning report. We measured at

345

this point primarily with actionable warnings in mind; such a fluid
factor allows us to measure whether warnings are actionable at par-
ticular points in time. (As time passes, for example, code may
become obsolete and older warnings may become less actionable.
On the other hand, a sequence of recent warning reports may spur
interest in a previously neglected file.) However, there is merit to
other approaches, which future work could investigate.

Some of our factors are collinear, and models fit with such fac-
tors can suffer from reduced precision due to increases in standard
errors. We investigated collinear factors in this work because, at
this early stage in the work, we wished to consider many factors to
determine those that are most preferable and should be pursued fur-
ther. Finally, some factors were captured through non-continuous
variables. For example, “bug pattern” is a categorical variable of
the nominal type. This type of variable requires some manipula-
tion before inclusion in a regression model. Throughout this study,
we used the default mechanism provided by R to mark and encode
this type of variable for usage in the regression models.

4. CASE STUDY
In this section we evaluate the models generated in Section 3 for

predicting false positive and actionable static analysis warnings. In
addition to evaluating the accuracy of these models, we also eval-
uate the time taken to collect the data according to the screened
factors, and to build the models in a statistical package. This evalu-
ation took place as a case study using a large set of FindBugs static
analysis warnings at Google. We compared the models generated
from our screening methodology against three “controls.”

4.1 Design

4.1.1 Setting and Warning Samples
Our case study was performed using static analysis warnings re-

ported against Google’s Java codebase. The data set consists of
1,652 unique warnings selected from a population of tens of thou-
sands of warnings seen over a nine-month period from August 31,
2006 to May 31, 2007. The warnings in the data set were manu-
ally examined and classified as either false positives or true defects
by two Google engineers from the triage team described in Section
2.1. The warnings deemed true defects were incorporated into bug
reports and assigned to developers judged responsible for the code.

These engineers generally focused on higher-priority warnings
because finding important bugs was the primary goal [3]. Some-
times, BugRank was used to prioritize warnings to be examined.
Other times, warnings were prioritized by project. Warning pat-
terns with only one or two total warnings were generally examined.
Our sample of warnings included 157 of the 286 FindBugs bug pat-
terns and all seven FindBugs categories. The distribution by Find-
Bugs priority was: 38% High, 60% Medium, and 2% Low. The
distribution by BugRank Range was: 27% Very High, 32% High,
28% Medium, 12% Low, and less than 1% Very Low priority.

We stopped considering warnings on May 31, 2007 to allow over
three months for the most recently reported warnings to be resolved
by developers; this step was taken to help prevent a warning’s report
date from influencing whether it was acted on within the context of
this study. The mean time to resolve defects reported by warnings
during this period was 34 days, with a median of 10 days.

4.1.2 Independent Variables
The independent variable evaluated in this case study was the

model used to make predictions about warnings. A conjoined fac-
tor is the methodology used to generate the models, as the method-
ology determines the data available for model building.

Screening models. As treatment variables, we considered the three
models for classifying warnings that were built from our screen-
ing methodology; we refer to these models as Screening. For
control variables, we compared each treatment model against three
baseline models and their accompanying design methodologies.

All-Data models. As our first control, we attempted to collect data
for every factor listed in Section 3.1 for every sampled warning.
This baseline helps us assess the gains in cost, as well as any loss
in precision, from screening factors. However, it is generally ill-
advised to build regression models using every factor without some
form of filtering. While many factors may be useful for predict-
ing false positives and actionable warnings, others will have little
predictive power due to little correlation to the sampled warnings.
Variable selection methods are often used to select the most predic-
tive factors that best estimate the dependent variable, or to eliminate
the least predictive factors [10].3 We selected backward elimination
for this first baseline, which we label All-Data.

Some factors were too expensive to collect data for even within
this study’s sample of warnings. Specifically, the project churn
metrics take an inordinate amount of time to collect due to the large
amount of code in some projects. Because collecting data for these
metrics would be a significant drain on the limited number of avail-
able shared resources used by many Google engineers, we decided
not to consider project churn in All-Data. (However, we note
that these factors were quickly eliminated in screening due to their
apparent noise and lack of predictive power.)

BOW models. As controls, we wished to consider regression mod-
els used by other researchers. Although we are not aware of pub-
lished models built for predicting characteristics of static analysis
warnings, they have been used in other software engineering do-
mains. Our next two controls are based on the work of Bell et
al. [4, 18], which we considered when designing our own factors.

Table 5 compares factors from [4, 18] with related factors from
Section 3.1. Our second control builds models using the factors
represented in the right-most column in Table 5. To build these
models, we collect data according to these six factors for the sam-
pled static analysis warnings. We refer to these models and their
data collection methodology as the BOW models.

Our third control is an extension of the BOW models. While the
factors in BOW are based on years of research and development,
they were considered in a different context: predicting fault counts
in released software systems. Because we are considering models
for predicting static analysis warnings, the BOW models may lack
the necessary context to provide accurate predictions in this setting.
To provide this context and set up a potentially more fair compar-
ison between BOW and Screening, we extended the BOW mod-
els in our third control by adding the “bug pattern” and “priority”
factors. We selected these because they are two standard factors
describing static analysis warnings that are provided directly by
FindBugs, and they are fine-grained, which may reduce the noise
in the factors’ data as compared to more coarse-grained factors like
“category.” We refer to these models as the BOW+ models.

4.1.3 Dependent Variables
We formulated two constructs to evaluate our models: the ac-

curacy of the logistic regression models’ predictions, and the cost
of building the models. We measure the time taken to build each
model as a dependent variable. This variable considers the sum of

3Such “post-mortem” elimination is actually the opposite of our
screening approach, which seeks to eliminate useless factors as
early as possible, rather than after all data has been collected.

346

Factor Ostrand et al. 2004 [18] Bell et al. 2006 [4] This work (Section 3.1)
Code size Lines of code Lines of code Lines of code in file

Change History File changes (new, changed, unchanged) Recent change history Churned lines (file: added, changed, deleted)
File age Number of releases file has appeared File age in a given month File age (# days file has existed)
Faults Number of faults in previous release Recent history of faults Number of previous warnings in file

Table 5: Relating factors from Bell et al. to similar factors in this work.

the time required to gather the needed data from the warnings and
Java programs, and to generate the models in R.

Our dependent variable for measuring accuracy compares the
predicted status of each warning to its known, triaged status, and
divides the number of correctly predicted warnings by the total
number of warnings. For false-positive-predicting models, we con-
sider the predicted and known false positive status of each warning.
For models predicting actionable warnings, we consider whether
each legitimate warning led to developer actions resulting in a de-
fect fix, and compare this status with the models’ predictions. In
Section 4.2.2, we examine the incorrect predictions made by the
models, and compare the R2 values of the All-Data models to
the Screening models.

4.1.4 Procedures
It is difficult to measure the accuracy of regression models in an

unbiased manner, and there are many designs for measuring model
precision. One common strategy is the “resubstitution” strategy,
where the models are used to classify the same data on which they
were fit. This design allows models to be evaluated using all avail-
able data, which would generally increase model precision, and
supports the evaluation of more representative models because the
models used in practice are generally built from the largest possible
sample of data. A disadvantage of this design is that it suffers from
bias, as it generally overestimates the probability of correct clas-
sifications; however, Johnson [10] says that this bias is relatively
low for large data sets. Given these trade-offs, we use resubstitu-
tion as our first design, and consider a second design to provide an
additional view of our study’s data.

Our second design uses holdout data, which is another common
strategy for evaluating regression models [17]. In holdout designs,
a percentage of the data set is withheld as a “validation” set, while
the remainder is used as a “model building” set. This approach
does not suffer from the bias of resubstitution; however, because it
does not maximize the amount of model-building data, intuitively,
it may underestimate model precision. There is also the issue of
how much data to withhold for validation. Withholding a small
amount of data allows the model to be built with more information;
however, a validation set that is too small increases the likelihood
of anomalous prediction measurements, and makes it more difficult
to draw meaningful conclusions about the accuracy of the models
in general cases. To find balance in the presence of these trade-offs,
we consider three ratios of model building data to validation data
in our holdout designs: 70% model building data to 30% valida-
tion data, 80% model building to 20% validation, and 90% model
building to 10% validation. Furthermore, to limit the possibility
of anomalous results from one particular data set, we randomly se-
lect three sets for each of our data ratios, and separately build and
evaluate models for each set of data within each ratio.

To collect the timing information regarding the cost of building
the prediction models for each independent variable, we measure
the time taken to gather the data according to the selected fac-
tors (or, in the case of screening, to screen the factors according
to the procedures in Section 3.2), and the time taken to build the
models in R. For the Screening models, the data gathering step

includes the periodic statistical analysis performed to analyze the
significance of the measured factors on the false positive or action-
able warning effect being measured. For the All-Data models,
this latter effort includes the time required to perform the backward
elimination to filter out factors with low predictive power.

Because the accuracy of the All-Data predictions are mea-
sured without the project churn factors, we consider both the time
required to build these models without the project churn data, and
the estimated time with project churn. Similarly, because we want
to compare Screening with All-Data to gauge the cost sav-
ings from screening factors, we measure the time required to build
the Screening models both with and without project churn.
(Project churn is not considered in the BOW models, so we mea-
sure time only once for these models.)

4.1.5 Threats to Validity
We consider three types of threats to the validity of this case

study’s results [22]: external validity, internal validity, and con-
struct validity. We took various measures to mitigate our study’s
external validity threats. In terms of our sample of warnings, we
sampled over 1,600 warnings over a nine-month period to help en-
sure that our study was representative of the setting at Google. This
sample considered 157 FindBugs bug patterns, and all seven Find-
Bugs categories. FindBugs is also one of the more sophisticated
and widely adopted static analysis tools available for Java.

We used the warnings examined by two engineers to help control
for variation in triaging decisions among similar warnings because
we wanted to isolate the effect of the models’ predictive power in
this study. In practice, we would expect greater variation in these
decisions due to triaging by additional engineers. Finally, different
results may be experienced in different software development set-
tings, with alternative factors for building logistic regression mod-
els, and with different static analysis tools other than FindBugs.
This threat can be addressed only by further empirical studies.

The bias in resubstitution designs is an internal validity threat
to the results from this methodology, though this concern is miti-
gated due to this study’s large sample of warnings. Another inter-
nal validity threat to the holdout designs is the particular validation
set used, as different validation sets may contribute to different re-
sults. This latter threat is stronger for the smaller validation sets.
For these reasons, we considered three ratios of model-building to
validation data, and three randomly selected assignments of data
within each ratio. Also, using two validation approaches reduces
the threats of drawing conclusions from just one approach.

Because engineers may classify warnings differently, to help en-
sure consistent classifications, we selected only warnings examined
by one of two engineers; however, this came at the cost of exter-
nal validity. The statistical generation of these logistic regression
models assumes that the occurrence of false positive and actionable
warnings are binomially distributed. If these assumptions are not
met in our data, then the power and precision of the models may
decrease. Finally, although FindBugs offers support to track du-
plicate warnings, a single defect could be responsible for multiple
unique warnings reported by the tool. We allowed for this possible
bias because this scenario is likely to also face real practitioners.

347

Model Type Data Gathering Model Building
False Pos. Actionable: Defects Actionable: All False Pos. Actionable: Defects Actionable: All

Screening 0:01:39:23 0:06:48:10 0:06:57:11 < 00:01 < 00:01 < 00:01
(0:00:42:36) (0:03:42:55) (0:03:55:02)

All-Data 5:05:50:06 03:38 00:22 00:39
(0:04:21:01)

BOW 0:00:39:00 < 00:01 < 00:01 < 00:01
BOW+ 0:00:39:05 < 00:01 < 00:01 < 00:01

Table 6: Cost of building the four types of models. For “data gathering,” the top row for Screening and All-Data is the time
with project churn; the second result is without project churn. The format of Data Gathering times is Days:Hours:Minutes:Seconds.
The format of Model Building times is Minutes:Seconds.

While we believe our constructs are reasonable, threats to con-
struct validity primarily derive from the legitimacy of the compar-
isons of our screening-based models to our controls. With regard
to the All-Data models, as described earlier, it was not feasi-
ble for us to gather the entirety of the data for every static analysis
warning for every factor; in fact, this scalability issue was a motiva-
tion for using screening in the first place. Excluding some factors
from All-Data was the most feasible way to design this control
to evaluate the cost-effectiveness of screening.

With respect to the BOW models, these models were designed
using factors similar, but not identical, to those used in related
work [4, 18]. Furthermore, the BOW models are used in a dif-
ferent context than the one they were created for. We attempted to
mitigate this concern by also evaluating the BOW+ model, which
considers static analysis factors to give the models context with re-
spect to the environment in which they are used in this study.

4.2 Results and Discussion
We first discuss results pertaining to the cost of building the mod-

els. We then discuss the accuracy of the models’ predictions and
the cost considerations required for this accuracy.

4.2.1 Cost
Table 6 summarizes the time taken to generate the logistic re-

gression models, which consists of both data gathering and model
fitting. Data gathering is performed once according to the models’
data collection methodologies. The model building times shown
are the times taken to build the models using the entire sample of
data, as was done in Section 3.3. Recall from this section that
Screening selected more factors for the models predicting ac-
tionable warnings than did the model predicting false positives, ac-
counting for the increased data gathering time for these two models.

It can take a large amount of time to collect the data needed to
build the All-Data regression models when expensive metrics
like project churn are considered. In this case, Screening was
effective at reducing the cost of collecting data according to these
factors by filtering out factors such as project churn and file age
that, according to the screening, did not have the predictive power
to be considered further. By doing so, Screening took only a
fraction of the time for data gathering as did All-Data. Even
when the expensive project churn metrics were not considered, the
savings experienced through screening was notable; for example,
screening 28 factors required only 42 minutes for the false-positive-
predicting models.

The BOWmodels required a reasonable 39 minutes to collect data
according to their six to eight fixed factors. It was more expensive
to build the Screening models than the BOW models—not sur-
prising considering the number of factors initially considered at the
beginning of screening, and the expense of many of those factors.
However, when the most expensive project churn metrics were not

considered in Screening, the time required to build the regres-
sion models, particularly the models predicting false positives, was
closer to that for the BOW models. Of course, Screening and
BOW reflect two different types of scenarios. The BOW models re-
flect a situation where there are fixed factors, known beforehand, to
be investigated. Screening factors, on the other hand, will generally
be more expensive than collecting data for the foregoing scenario,
depending on the cost of the factors being screened.

Finally, it is important to note that generating models is unlikely
to be a one-time cost. As new tools are added, existing tools are up-
dated with new bug pattern detectors, and factors for model build-
ing are added or updated. It can become necessary to gather data on
at least a subset of new warnings if updated models are to be built.
Our results indicate that Screening could be a cost-effective
means of collecting data in these types of scenarios.

4.2.2 Prediction Accuracy
Tables 7 and 8 summarize the accuracy of the logistic regression

models in predicting false positives and actionable static analysis
warnings. As can be seen, the Screening models were generally
the most accurate in predicting false positives and actionable warn-
ings based on true defects (Table 7 and the top of Table 8). The
results indicate that Screening did not lose predictive power as
compared to the All-Data models for these types of predictions,
even doing better than the All-Data models. The R2 values for
the All-Data models also indicate that the Screening mod-
els captured approximately the same amount of variation as the
All-Data models. The R2 values for the All-Data models
predicting false positives and actionable warnings from true de-
fects were 0.3586 and 0.2812, respectively, compared to 0.3548
and 0.2477 for the Screening models.

These results were surprising. We had expected the All-Data
models to be the most accurate due to their ability to leverage the
most available data when building models. It may be that incremen-
tally screening factors is preferable to performing stepwise elimi-
nation procedures following data collection. It may also be that
collecting too much data at once in this type of setting is not de-
sirable because it inherently leaves a greater amount of noise in
the data that procedures such as stepwise elimination must try to
reduce. Performing this elimination in a systematic manner while
data is being collected, as does Screening, may be the prefer-
able method for selecting design variables for logistic regression
models for static analysis warnings.
Screening was not as precise, as compared to All-Data,

for predicting actionable warnings based on both false positives and
true defects (bottom of Table 8). However, as discussed in Section
4.2.1, this minor loss of precision came with a substantial reduction
of cost in terms of building the models. Also, the R2 values indi-
cate that the Screening models actually captured slightly more
variation (0.2611) than the All-Data models (0.2511).

348

Model Type Resubstitution Holdout Data
70/30 80/20 90/10

Screening 85.29% 87.48% 87.09% 86.54%
All-Data 85.71% 83.48% 84.74% 85.47%

BOW 76.51% 77.96% 78.73% 79.32%
BOW+ 84.62% 82.24% 83.81% 83.06%

Table 7: Predicting false positive warnings. Holdout data shows
the average precision of the models from the three observations.

Model Type Resubstitution Holdout Data
70/30 80/20 90/10

True Defects
Screening 77.32% 71.82% 71.68% 71.95%
All-Data 71.37% 71.42% 69.95% 70.97%

BOW 60.19% 61.30% 63.47% 62.74%
BOW+ 70.90% 67.04% 67.41% 69.79%

All Warnings
Screening 77.42% 72.02% 71.36% 71.94%
All-Data 73.73% 72.90% 75.26% 75.68%

BOW 62.23% 59.35% 60.77% 61.12%
BOW+ 73.91% 67.76% 69.50% 69.26%

Table 8: Predicting actionable warnings.

The Screening models were also more precise than the BOW
and BOW+ models as shown in Tables 7 and 8. These two models
performed relatively well for having been built using factors from a
different software engineering domain. While they were not as pre-
cise as the Screening models, they were somewhat less expen-
sive to build. Although our area of interest was one where we have
many factors to investigate for static analysis models, this finding
suggests that practitioners who are not interested in investigating
many factors, and wish instead to use a fixed number of known
factors, may find some success if those factors are well selected.

In terms of the deployment of FindBugs at Google, the
Screeningmodels represent an improvement with respect to pre-
vious practices. We observed that 24% of examined warnings in
our sample, for all FindBugs bug patterns, were false positives. For
actionable warnings, only 56% of the static analysis warnings indi-
cating true defects were acted on by developers; the percentage of
actionable warnings drops to 42% when considering all static anal-
ysis warnings—not just those indicating true defects. However, our
results indicate that the deployment of the logistic regression mod-
els could decrease the number of false positives examined by en-
gineers from 24% to as low as 12.5%, and could ensure that over
70% of the warnings examined by developers would be acted upon.

Had these models been used within our sample of 1,652 warn-
ings, triaging engineers would have examined hundreds of fewer
spurious and non-actionable warnings—not an insignificant sav-
ings when the cost of triaging is estimated at eight minutes per
warning (as discussed in Section 2.1). However, this comes at a
cost due to the incorrect predictions made by the models.

Not shown in Tables 7 and 8 is a breakdown of where the mod-
els went wrong when incorrectly predicting warnings. For the false
positive models in the 70/30 holdout design in Table 7, 33% of the
incorrectly predicted warnings were predicted to be false positive
when the warnings were actually legitimate, while 67% of incor-
rectly predicted warnings were predicted to be legitimate when the
warnings were false positive. For the actionable models based on
true defects in the same design (top of Table 8), 40.3% of the incor-

rectly predicted warnings were predicted to be trivial warnings, but
were actually acted on by developers, while 59.7% of the warnings
were predicted to be actionable, but were not acted on.

Though not by intent, the models tended to be conservative. Be-
cause there were more false positives predicted to be legitimate
warnings, and more non-actionable warnings predicted to be ac-
tionable, triaging engineers would see more of the types of warn-
ings they wished to avoid (e.g., false positives) than important warn-
ings that should not be missed (e.g., warnings identifying true de-
fects). Generally speaking, the costs of examining more false posi-
tives versus missing legitimate warnings (and, similarly, non-
actionable versus actionable warnings) needs to be evaluated in the
context of the software being analyzed with static analysis, and the
development organization as a whole. In future work, improvement
in the areas where the models go wrong in terms of incorrectly pre-
dicted warnings is likely to come through more sophisticated static
analysis tools, additional factors with improved predictive power,
and a larger sample of warnings on which to build models.

5. RELATED WORK
To our knowledge, we are the first to look closely at predicting

developer response to static analysis warnings. There are several
threads of related work, however, that use statistical models to fil-
ter or prioritize static analysis warnings. Heckman [7] has recently
proposed the use of adaptive models that utilize feedback from de-
velopers to rank warnings in order to identify false positives. These
rankings are derived from models using factors whose coefficients
change after developer feedback, and were effective in favorably
ranking and identifying false positive warnings [7].

Kremenek and Engler developed a ranking algorithm (z-ranking)
to prioritize warnings for a single warning type (i.e., a single
“checker”) [14]. The algorithm is based on their observation that
clusters of warnings are usually either all false positives due to
tool limitations, or all true defects due to developer confusion. Z-
ranking was effective at prioritizing legitimate warnings above false
positives [14]. A generalization of this work produced an adaptive
ranking scheme called Feedback Rank [13]. This work used code
locality (function, file, and directory) to identify clusters of false
positives and legitimate warnings. The adaptive aspect of the algo-
rithm updates warning priorities as nearby warnings are classified.

Because we triaged priority warnings across an entire codebase
rather than focusing on all the warnings for particular files, our data
set appears to be too sparse to directly support correlation by file
locality: 85% of legitimate warnings and 80% of false positives ap-
pear as the only warning from a file. We do have a number of file,
package, and project factors that would be the same for warnings
reported at the same time, for the same file. If these factors account
for some of the file locality correlation observed by Kremenek et
al., our models should correlate warnings for different files that
have similar values, as measured by factor metrics. We also in-
clude the general notion of warning clustering by including warn-
ing counts for files; this factor was selected by screening for both
of our models predicting actionable defects. While our logistic re-
gression models are not adaptive, our BugRank factor is because it
incorporates observed, evolving data regarding false positives and
resolved warnings.

Kim and Ernst [11, 12] use fixed information mined from soft-
ware change histories to estimate the importance of warnings. They
use this information to improve the default priorities assigned by
the tools. For our data set, we have actual “fix data” from our
bug tracking system that should be more accurate than data mining
change histories. However, our data is then limited to the warnings
filed as defects against developers. In theory, we could expand our

349

data set to also include warnings that disappeared during changes.
However, the cost of mining version histories would be similar to
the cost of computing code churn, which is prohibitively expensive
in our setting. There were also notable differences in our obser-
vations that indicate the need for further study in this area. For
example, “equals used to compare unrelated types” is one of our
most frequently fixed warnings. However, Kim and Ernst observe
long delays in fixing these warning patterns and rank them low [11].
This is an interesting area for further study.

The models presented in this paper operate by classifying each
warning rather than ranking all warnings. It would be interesting to
see how classification and ranking models compare in practice.

6. CONCLUSIONS
The return on investment for static analysis tools like FindBugs

is limited by the cost of checking whether reported warnings corre-
spond to faults and, as important, of assessing whether such warn-
ings are worth further effort. The magnitude of this limitation is
evident both in prior work and in our study of 1,652 triaged warn-
ings, where approximately 24% of warnings were false positives,
and only 56% identifying true defects were acted on by developers.

In this paper we aimed to maximize static analysis tools’ return
on investment by developing models that predict whether reported
warnings constitute actionable faults. Given that our setting is char-
acterized by the possible need to regularly re-build and adjust mod-
els, and by constraints on large-scale metric collection, it was also
important to devise an approach that would enable efficient model
building. The proposed screening approach for model building ac-
complishes this by quickly discarding metrics with low predictive
power—avoiding their collection throughout a large code base.

In our empirical study we found that the predictive power of
the models built on screened data was, in general, at least as good
as that of the models utilizing the whole warning data sets, while
incurring significantly less data collection effort. The screening-
based models were able to accurately predict false positive warn-
ings over 85% of the time on average, and actionable warnings over
70% of the time. Furthermore, the screening models consistently
performed better than existing predictive models that we adapted
from a slightly different software engineering context. As expected,
however, such improvement required additional data collection.

Based on this experience, and more generally, we conjecture that
screening will be particularly useful at early stages of model build-
ing, when there are an abundance of factors considered to have an
effect on the target dependent variable, and especially appealing in
the presence of factors whose associated metrics are expensive to
collect. This work also indicates that regression models may be
effective in settings involving static analysis warnings, and shows
promise for future work in this area.

We have worked to deploy these models across our development
practices at Google in order to reduce the number of needlessly
examined warnings by triaging engineers. When generalized to
the tens of thousands of warnings that have been reported in our
software development environment, the savings from using these
models could be substantial.

7. ACKNOWLEDGMENTS
Joseph Ruthruff was an intern at Google Inc. when this work was

performed. YuQian Zhou, Simon Quellen Field, and Larry Zhou
contributed to the static analysis infrastructure at Google. William
Pugh greatly assisted in our use of FindBugs and suggested factors
to consider for our regression models.

8. REFERENCES
[1] FindBugs. http://findbugs.sourceforge.net/.
[2] The R project for statistical computing. http://r-project.org/.
[3] N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and

Y. Zhou. Evaluating static analysis defect warnings on
production software. In Proc. 7thACM Workshop on Prog.
Analysis for Softw. Tools and Eng., pages 168–179, 2007.

[4] R. M. Bell, T. J. Ostrand, and E. J. Weyuker. Looking for
bugs in all the right places. In Proc. ACM Int’l Symp. on
Softw. Testing and Analysis, pages 61–71, 2006.

[5] D. Engler, B. Chelf, A. Chou, and S. Hallem. Bugs as deviant
behavior: A general approach to inferring errors in systems
code. In Proc. 18th ACM Symp. on OS Principles, 2001.

[6] T. J. Hastie and D. Pregibon. Statistical Models in S.
Wadsworth & Brooks/Cole, 1992.

[7] S. S. Heckman. Adaptively ranking alerts generated from
automated static analysis. ACM Crossroads, 14(1), 2007.

[8] D. W. Hosmer and S. Lemeshow. Applied Logistic
Regression. John Wiley & Sons, 2nd ed., 2000.

[9] D. Hovemeyer and W. Pugh. Finding bugs is easy. In
Companion to Proc. OOPSLA, pages 132–136, 2004.

[10] D. E. Johnson. Applied Multivariate Methods for Data
Analysis. Duxbury Press, 1998.

[11] S. Kim and M. D. Ernst. Prioritizing warning categories by
analyzing software history. In Proc. Int’l Workshop on
Mining Softw. Repositories, 2007.

[12] S. Kim and M. D. Ernst. Which warnings should I fix first?
In Proc. 6th Joint ESEC/SIGSOFT Foundations of Softw.
Eng., pages 45–54, 2007.

[13] T. Kremenek, K. Ashcraft, J. Yang, and D. Engler.
Correlation exploitation in error ranking. In Proc. 12th ACM
Int’l Symp. Foundations of Softw. Eng., pages 83–93, 2004.

[14] T. Kremenek and D. Engler. Z-Ranking: Using statistical
analysis to counter the impact of static analysis
approximations. In Proc. 10th Static Analysis Symp., 2003.

[15] L. Z. Markosian, O. O’Malley, J. Penix, and W. Brew. Hosted
services for advanced V&V technologies: An approach to
achieving adoption without the woes of usage. In Proc. ICSE
Workshop on Adoption-Centric Softw. Eng., 2003.

[16] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to
predict component failures. In Proc. 28th Int’l Conf. on
Softw. Eng., pages 452–461, 2006.

[17] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman.
Applied Linear Statistical Models. Irwin, 4th edition, 1996.

[18] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Where the bugs
are. In Proc. ACM SIGSOFT Int’l Symp. on Softw. Testing
and Analysis, pages 86–96, 2004.

[19] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Automating
algorithms for the identification of fault-prone files. In Proc.
ACM SIGSOFT Int’l Symp. on Softw. Testing and Analysis,
pages 219–227, 2007.

[20] J. R. Ruthruff, S. Elbaum, and G. Rothermel. Experimental
program analysis: A new program analysis paradigm. In
Proc. ACM SIGSOFT Int’l Symp. on Softw. Testing and
Analysis, pages 49–59, 2006.

[21] J. Spacco, D. Hovemeyer, and W. Pugh. Tracking defect
warnings across versions. In Proc. Int’l Workshop on Mining
Softw. Repositories, pages 133–136. ACM Press, 2006.

[22] C. Wohlin, P. Runeson, M. Host, B. Regnell, and A. Wesslen.
Experimentation in Software Engineering. Kluwer Academic
Publishers, 2000.

350

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

