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ABSTRACT 
WS-BPEL applications are a kind of service-oriented application. 
They use XPath extensively to integrate loosely-coupled workflow 
steps. However, XPath may extract wrong data from the XML 
messages received, resulting in erroneous results in the integrated 
process. Surprisingly, although XPath plays a key role in workflow 
integration, inadequate researches have been conducted to address 
the important issues in software testing. This paper tackles the 
problem. It also demonstrates a novel transformation strategy to 
construct artifacts. We use the mathematical definitions of XPath 
constructs as rewriting rules, and propose a data structure called 
XPath Rewriting Graph (XRG), which not only models how an 
XPath is conceptually rewritten but also tracks individual rewritings 
progressively. We treat the mathematical variables in the applied 
rewriting rules as if they were program variables, and use them to 
analyze how information may be rewritten in an XPath conceptually. 
We thus develop an algorithm to construct XRGs and a novel 
family of data flow testing criteria to test WS-BPEL applications. 
Experiment results show that our testing approach is promising. 
Categories and Subject Descriptors 
D.2.5 [Software Engineering]: Testing and Debugging—Testing 
tools; D.2.8 [Software Engineering]: Metrics—Product metrics 

General Terms: Measurement, Reliability, Verification 

Keywords: WS-BPEL, XPath, service-orientation, workflow 
testing, testing, rewriting rules, SOA, XML, XML document model 

1. INTRODUCTION 
Software engineers often employ a collection of heterogeneous but 
closely related technologies, such as WS-BPEL [1], to develop a 
service-oriented workflow application [4]. They may design a 
company’s business workflow in BPEL [1], or source (external) 
web services [2] to provide functions of individual workflow steps. 
Furthermore, they specify the signatures and resource locators (such 
as URLs) of their web services as WSDL documents [1] so that 
BPEL can invoke these web services. To facilitate XML-based 
communications and data transfers among web services and 

individual BPEL steps, software engineers may define the required 
message types by using XML schema [11]. Any concrete messages, 
WSDL documents, or definitions of BPEL variables are, however, 
XML documents. XPath [3] is an indispensable means to 
manipulate these documents, such as extracting the required 
contents from an XML message returned by a web service, or 
keeping the extracted contents in a BPEL variable under the right 
variable definition. For instance, every WS-BPEL application in an 
IBM Repository [4] uses XPath. A mismatch among components 
(e.g., extracting the wrong contents or failing to extract any content 
from a correct XML message) may cause a WS-BPEL application 
to function incorrectly. 

Surprisingly, although WS-BPEL is strongly advocated by 
OASIS, IBM, Microsoft, BEA, SAP, and Oracle to be a platform 
for building enterprise applications, inadequate researches have 
been conducted to address their testing issues (see Section 6 for 
details). In particular, even though XPath plays such a crucial role in 
WS-BPEL applications, many existing verification and validation 
(V&V) researches (such as in modeling and verification [22][29], 
validation [25], unit testing [18], and test case generation [12][28]) 
simply do not consider XPath or merely model it as a function call 
without exploring deeply its implication from the V&V perspective. 
Some (e.g., [10][11]) simulate XPath expressions in another 
language using their styles of programming. The conceptual 
structure of XPath and how various parts of this structure may 
interact with BPEL remain unclear. 

In a typical WS-BPEL application, for instance, XPath may work 
in pair with a document model of XML messages (that is, an XML 
schema [3]) to extract the required contents. Depending on the 
structure of the XML schema, however, multiple paths may fulfill 
the same XPath, but extract different contents from the same XML 
message. Nevertheless, even different entities specified in an XML 
schema may share the same primitive data types such as string, they 
may serve distinct purposes. Using incompatible (in the sense of 
semantics) extracted messages to conduct follow-up workflow 
activities in a BPEL program may result in integration errors. We 
shall give a motivating example in Section 2.1 to elaborate our 
point. 

XPath should be studied deeply in testing research to improve the 
quality of WS-BPEL applications [16]. To our best knowledge, 
existing testing researches do not adequately address the 
interactions among XPath, XML schema, and XML messages, and 
their relationships with BPEL. In this paper, we study this problem 
and propose a solution to tackle the testing challenges. 

As the use of XPath is fundamental in developing a WS-BPEL 
application, we firstly study how to reveal the implicit structure of 
XPath, which should be close to its declarative semantics so that it 
will not be biased to a particular BPEL engine implementation, as 
well as study the interactions between BPEL and XPath. Gottlob et 
al. [13] have shown that such paths are generally not decidable. 
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They also propose a decidable fragment, and a set of definitions to 
capture the fragment. 

Our model for XPath is built atop this fragment and these 
definitions of XPath syntactic constructs. We treat the definitions as 
“left-to-right” rewriting rules (similarly to the application of axioms 
as rewriting rules in algebraic specifications [6]). Through a series 
of application of these rules, we rewrite an XPath into a normal 
form, which means that no more rewriting rules can be applied, or a 
fixed point for recursive definitions has been reached. 

Furthermore, instead of merely analyzing the (final) normal form, 
we record the series of (intermediate) rewriting results (see Section 
3). As such, our model captures how each applicable rewriting rule 
uses its “left” part to unify with an XPath sub-expression (of an 
intermediate result) to construct the next level of intermediate 
results or the corresponding normal form via the “right” part of the 
rule. 

We develop a data structure (dubbed XPath Rewriting Graph or 
XRG for short) to model an XPath in WS-BPEL. In the spirit of data 
flow testing and analysis [8][20][26], we further innovatively 
consider any variable generated as a variable definition, and the use 
of a variable provided by a preceding node as a variable usage. We 
note that such variables are conceptual in nature, and they are not 
program variables because they never appear in a program 
implementation. We thus term them as conceptual variables. 
Together with the inputs to an XPath from a BPEL program and its 
output variables defined to specify the data to be transferred back to 
BPEL, this data structure forms an explicit artifact to model 
different paths, conceptually defined in an XPath, on how to 
provide query values to BPEL programs. 

By also modeling a BPEL program as a control flow graph, we 
propose an approach to identify the data flow associations relevant 
to the conceptual variables in XPath and ordinary variables in the 
BPEL program, and then formulate a set of test adequacy criteria to 
measure the quality of test sets. 

The main contributions of this paper are multifold: (i) It 
demonstrates a novel strategy that transforms schema-based 
definitions, which are recursively defined, into explicit artifacts. (ii) 
A data structure, XPath Rewriting Graph, is proposed to model 
XPath at a conceptual level. (iii) This paper is among the first work 
on WS-BPEL testing that tackles the complexity of XPath. (iv) We 
identify a new type of dataflow entity to capture the characteristics 
of XPath. (v) We propose a family of test adequacy criteria to 
measure the quality of test sets. (vi) To our best knowledge, we 
provide the first set of experiments to evaluate the impact of XPath 
for services testing research using open-source programs. It shows 
that our approach is promising. 

The rest of the paper is organized as follows: Section 2 outlines 
the technical preliminaries and testing challenges for WS-BPEL 
applications. Section 3 presents the algorithm of constructing an 
XRG, and our effort to model WS-BPEL applications. Section 4 
introduces our data flow model and testing criteria to measure the 
comprehensiveness of test sets. Section 5 reports an experimental 
evaluation of our proposal, and followed by a literature review and 
conclusions in Sections 6 and 7, respectively. 

2. WS-BPEL APPLICATIONS 
This section presents a motivating example and introduces the 
technologies in typical WS-BPEL applications [1]. 

2.1 Motivating Example 
Our motivating example to illustrate the challenges in the testing of 

WS-BPEL applications is adapted from the Apache WSIF project 
[27]. It involves a Digital Subscriber Line (DSL) application that 
offers DSL query services. Since the code (in XML format) is quite 
lengthy, we use an activity diagram in Figure 1 to depict the 
business process (IsServiceAbailable) of the example, in which each 
node denotes a BPEL activity, and each link denotes a transition 
between two activities. We also annotate the nodes with additional 
information, such as the input and output parameters of the 
activities, or any XPath Query used by the activities in the BPEL 
code. We number the nodes as A1, A2, …, A8 to ease subsequent 
discussions. The service IsServiceAbailable is described as follows: 

(1) A1 invokes the service AddressBookLookup, which retrieves 
the address information from the address book by searching the 
given user name through the BPEL variable UserName, and stores 
the returned XML message in the BPEL variable UserAddress. 

(2) A2 extracts the city name from UserAddress via the XPath 
//city/ and assigns the city name to the BPEL variable City. 

(3) A3 invokes the service City2GeoService, which looks up the 
zip information based on the given City, and keeps the result in the 
variable ZipInforamtion. 

(4) A4 checks whether the city name in UserAddress is the same 
as that in ZipInformation by extracting their city fields through the 
XPaths //city/ and //*[local-name()='city'], respectively, where 
local-name() is an XPath function that returns the name of an 
element. 

(5) If A4 detects no problem, A6 further extracts the zip code from 
UserAddress via the XPath //zip/ and assigns it to the BPEL 
variable ZipCode. Then, A7 executes the service ServiceAvailable to 
obtain the service availability status, and finally A8 returns the 
ServiceAvailability information to the caller. 

(6) If A4 detects a problem, A5 will execute a fault handler. 

Input: 
ZipCode
Output: 
ServiceAbailability

ZipCode = 
XPath_Query

(UserAddress, / /zip/)

XPath_Query(UserAddress, //city/)
==

XPath_Query(ZipInformation, 
/ /* [local-name()=’city’])

Input:    UserName
Output: UserAddress

A4:
Validate

City

A5: Fault Handling

A6: Assign ZipCode

A7: Invoke ServiceAvailable

A8: Reply ServiceAvailability

City = 
XPath_Query(UserAddress, / /city/ )

Input:    City
Output: ZipInformation

No Yes

A1: Invoke AddressBookLookup

A2: Assign City

A3: Invoke City2GeoService

Figure 1. Business Process IsServiceAvailable 
The definition of the structure of any BPEL variable is kept in an 

XML schema. For example, the variables UserAddress and 
ZipInformation in Figure 1 are defined by the schemas address and 
LatLongReturn, respectively, in Figure 2. The elements state (lines 
2 and 10), city (lines 3 and 11), and zip (lines 4 and 12), defined in 
both the schemas address and LatLongReturn, record the state, city, 
and zip information, respectively. In addition, to indicate whether or 
not a city belongs to any state, it uses the schemas Municipality and 

372



 

 

City to define the elements state and city, where the element city 
may also be a child node of the element state (type: Municipality) in 
line 21. 

We give a scenario that reveals a fault in the application. Ziyi 
Zhang, living in the city HuangShan, wants to find the DSL service 
status of her city. Hence, she inputs her name for enquiry. By 
searching the database with the given input, the name HuangShan is 
retrieved. The service City2GeoSerivce then finds out the 
corresponding zip information of HuangShan. Finally, through the 
zip code, the service ServiceAvailable provides the DSL service 
status of HuangShan. 

In fact, there are two cities called HuangShan in Anhui, China. 
For the ease of discussion, we refer to them as HuangShanA and 
HuangShanB. Although Ziyi lives in HuangShanA, she may obtain 
the DSL service status of HuangShanB instead, because 
City2GeoSerivce merely uses the name of a city as the input to the 
zip information query. For HuangShan, it may return either of the 
two zip codes for HuangShanA and HuangShanB, and hence the 
XPath may select the wrong one and assign it to ZipCode. 

1 <xsd:complexType name="address"> 
2   <xsd:element name="state" type="xsd:Municipality"/> 
3   <xsd:element name="city" type="xsd:City"/> 
4   <xsd:element name="zip" type="xsd:string" /> 
5   <xsd:element name="StreetNum" type="xsd:int"/> 
6   <xsd:element name="StreetName" type="xsd:string"/> 
7   <xsd:element name="County" type="xsd:string" /> 
8 </xsd:complexType> 
9 <xsd:complexType name="LatLongReturn"> 
10   <xsd:element name="state" type="xsd:Municipality "/> 
11   <xsd:element name="city" type="xsd: City"/> 
12   <xsd:element name="zip" type="xsd:string" /> 
13   <xsd:element name="County" type="xsd:string" /> 
14   <xsd:element name="FromLongitude" type="xsd:decimal"/> 
15   <xsd:element name="FromLatitude" type="xsd:decimal"/> 
16   <xsd:element name="ToLongitude" type="xsd:decimal" /> 
17   <xsd:element name="ToLatitude" type="xsd:decimal" /> 
18 </xsd:complexType> 
19 <xsd:complexType name="Municipality" > 
20   <xsd:element name="name" type="xsd:string"/> 
21   <xsd:element name="city" type="xsd:City"/> 
22 </xsd:complexType> 
23 <xsd:simpleType name="City" typle="xsd:string"/> 

Figure 2. XML Schemas for address and LatLongReturn 

Intuitively, good application systems may provide a list of cities 
for users to choose under such a situation. However, given the 
application in the motivating example, and without revealing a 
relevant failure, it is difficult to identify the fault in the first place. 

Following [28], the business process in Figure 1 can be modeled 
as a control flow graph (CFG), as shown in Figure 3. The mapping 
between the two figures is omitted. In Figure 3, we use a more 
concise notation XQ to represent XPath_Query in Figure 1. 

In Figure 3, the XPath //city/ searches the targeted city based on 
the variable UserAddress. According to the address schema in 
Figure 2, some cities (such as Hong Kong and Beijing) may not 
belong to any state, whereas other cities may belong to some states. 
Two conceptual paths /state/city/ and /city/ may reach a city field 
in an address. Figure 4 shows four scenarios with different contents 
in UserAddress. 

ServiceAvailability =
ServiceAvailable(ZipCode);

XQ(ZipInformation, XPath1)  ==  
XQ(UserAddress, XPath2)

Yes

Fault 
Handling

ZipCode =
XQ(UserAddress, XPath3)

XPath1: //*[local-name()=’city’] XPath2: //city/ XPath3: //zip/
XQ(Variable, Exp): XPath Query with input variable and XPath expression

UserAddress= 
AddressBookLookup(UserName);N1

N2

N5

N6

N7

N8

ZipInformation = City2geo(City);

Return ServiceAvailability;

N3

City = XQ(UserAddress, XPath2);

N4

No

Ne

Ns

 
Figure 3. CFG for Business Process IsServiceAvailable 

<address>
<state>

<name>Beijing</name>
<city>Beijing</city>

</state>
<city>Beijing</city>
<zip>10001</zip>
……

</address >
Scenario 1 Scenario 2 Scenario 3 Scenario 4

<address>
<state />
<city>Beijing</city>
<zip>10002</zip>
……

</address >

<address>
<state>

<name>Beijing</name>
<city />

</state>
<city />
<zip>10003</zip>
……

</address>

<address>
<state />
<city />
<zip />
……

</address>

Figure 4. Scenarios for XQ(UserAddress, //city/) 
For scenario 1, either /state/city/ or /city/ returns “Beijing” as 

the city. For scenarios 3 and 4, both /state/city/ and /city/ return 
no result. For scenario 2, if /state/city/ is used, we obtain no result, 
but if /city/ is used instead, the value “Beijing” will be returned. 
They are different. 

We further study how the procedure of XPath affects the 
execution of workflow steps. Suppose there are three records for 
Beijing, as in scenarios 1 to 3. Considering the following two cases: 
(i) For scenarios 2 and 3, both XQ(UserAddress, XPath2) and 
XQ(ZipInformation, XPath1) may either return “Beijing” or no 
result, and hence the predicate at N4 is not decidable. (ii) For 
scenarios 1 and 2, even when the predicate at N4 is satisfied, if 
scenario 1 is used, the zip code will be 10001, and if scenario 2 is 
used, it will be 10002. This is an anomaly. It will pose an integrated 
problem if a follow-up service, e.g., ServiceAvailable, only uses the 
zip code to determine the availability of the DSL service. Suppose 
10001 is the correct zip code for “Beijing” while 10002 is wrong. 
Then ServiceAvailable will return correct information under 
scenario 1 but will fail under scenario 2. 

The testing challenge illustrated by the motivating example is that 
XPath may retrieve different data from XML messages according to 
XPath expressions as well as the structure of the XML schema. 
However, the interactions between these two types of artifact are 
not coded explicitly in a WS-BPEL application. In the next section, 
we review the preliminaries of WS-BPEL. Then, in Sections 3 and 
4, we present our proposal to address the issue. 

2.2 Fundamentals 
We use WS-BPEL (previously known as BPEL4WS) [1] in this 
paper. Three critical parts in WS-BPEL are BPEL, XPath, and web 
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services. In this paper, we focus on the interactions between XPath 
and BPEL, and treat web services as external services. The testing 
of web services is not within the scope of the paper. We introduce 
XPath in this section. 

We adopt the definition of XPath expressions in [21]. Thus, an 
XPath expression is defined recursively using the following 
grammar: 

][|//|/|.|*| qqqqqqnq →  

where n∈∑ is any label, “*” denotes a wildcard label, and “.” (the 
dot symbol) denotes the current node. The constructs / and // mean 
child and descendant navigations, respectively, and [] denotes a 
predicate. The symbols in ∑ represent element labels, attribute 
labels, and text values that can occur in XML documents. The set of 
all trees are denoted by T∑, and each tree represents an XML 
document satisfying an XML schema Ω. To simplify the 
presentation, we also use Ω to represent the set of labels that can 
occur in the XML schema Ω. An XML schema is also an XML 
document. An XPath Query q(t), which performs a query on a tree 
t∈T∑ using an XPath expression, returns a set of nodes in t. For a 
tree t∈T∑, NODES(t) and EDGES(t) denote the sets of nodes and 
edges, respectively. LABEL(x) is the label at node x, and 
LABEL(x)∈∑. EDGES*(t) denotes the reflexive and transitive closure 
of EDGES(t). By induction on the structure of q, reference [21] gives 
the following definitions to represent a fragment of XPath, and we 
label them as Rules 1 to 6. According to [21], this provides a 
representative XPath fragment sufficient as a basis for the study of 
XPath. 

n(x)
*(x)
.(x)

(q1/q2)(x) 
(q1//q2)(x) 
(q1[q2])(x) 

=
=
= 
=
=
=

Rule
1
2
3
4 
5
6 

…
…
…
…
…
…

{y | (x, y)∈ EDGES(t), LABEL(y) = n}
{y | (x, y) ∈ EDGES(t)}

{x}
{z | y∈ q1(x), z∈ q2(y)}
{z|y∈ q1(x), (y, u)∈ EDGES*(t), z∈ q2(u)} 
{y | y∈ q1(x), q2(y)≠ Ø}  

Figure 5. Syntax of a Representative Fragment of XPath [21] 

Each definition in Figure 5 is of the form left = right. We treat 
these definitions as left-to-right rewriting rules [6]. We further 
group these rules into two categories according to whether a rule 
can be recursively defined using other rules: A-Rules (namely Rules 
1, 2, and 3) and C-Rules (Rules 4, 5, and 6), representing atomic 
and complex XPaths, respectively. If an XPath expression q is a 
C-Rule expression, it may be rewritten into a composition of 
multiple sub-terms, each of which is an A-Rule, a C-Rule, or an 
atomic relation (such as {(y, u)∈EDGES*(t)} in Rule 5). For instance, 
the XPath expression //city/ can be considered as *//city/* or just 
*//city/ in practice. If q is an A-Rule, it cannot be further rewritten 
using other rules. To ease our discussion, we refer to q1(x) and q2(y) 
in Rules 4, 5 and 6 as the left and right sub-terms, respectively, of 
the rule. For Rule 5, besides the left and right sub-terms q1(x) and 
q2(u), there is also a middle sub-term {u | (y, u)∈EDGES*(t)}, which 
means all the nodes u in t reachable from y. We define Rule 7 as 

//(x) = {y | (x, y)∈EDGES*(t)}  … Rule 7 
Rule 7 is also an A-Rule. Since it is only used in Rule 5, we do not 
process it like other rules. 

3. OUR MODEL FOR WS-BPEL 
This section proposes our effort, using the X-WSBPEL model, to 
capture the interactions between BPEL and XPath. 

3.1 XPath Rewriting Graph (XRG) 
In the motivating example, we have illustrated that different paths 
taken by an XPath may result in integration problems to WS-BPEL 
applications. In this section, we propose an XPath Rewriting Graph 
(XRG), which forms an explicit artifact to represent different paths 
conceptually defined in an XPath expression over a schema Ω. 

An XPath expression over a schema Ω can be conceptually 
rewritten into another form (Section 2.2) by using Rules 1 to 6. 
Following the nature of rewriting rules, we model such a rewriting 
step as a directed edge (a, b) of a graph, which links up a node a 
that the rewriting rule will be applied to, and a node b that 
represents the result after applying the rule. 

< //city/, X={ROOT},(q1//q2)>

< city/*, V,(q3/q4)>

q3(U),q3=(city) q4(V), q4=*

q1(X), q1= * q2(U), q2=(city/*)

R1

R2R3 R4

R5 R6

XQ(UserAddress, //city/)

< *, X,Y, {y|(x, y)
∈ EDGES*(t), x∈ X }>

< city, U, V, {v|(u, v)∈ EDGES*(t),
LABEL(v)=city, u∈ U }>

< *, V ,W, {w|(v, w)
∈ EDGES*(t),v∈ V }>

Rewriting Node Rewritten Node

< //, Y, U, {u|(y, u)
∈ EDGES*(t), y∈ Y }>

 
Figure 6. Example of XPath Rewriting Graph 

Thus, there are two types of node in our model, as illustrated in 
Figure 6: (i) Rewriting node 〈q, Lc, rule〉, where q is a query 
expression; Lc (⊆NODES(Ω)) is the current set of nodes in Ω located 
by the previous query step; and rule denotes the rewriting rule used 
to generate the sub-terms in this node. Initially, Lc is assigned to 
{ROOT}, where ROOT is the root node of Ω. (ii) Rewritten node 〈q, 
Lc, Ln, S〉, where q and Lc carry the same meaning as in rewriting 
node; Ln (⊆NODES(Ω)) denotes the set of nodes in Ω to be located 
by q starting from some node in Lc; and S is a set-theoretic 
representation of the result of q (directly obtained according to the 
rules in Figure 5). 

For an XML document satisfying Ω (say, a returned message 
from a web service), Lc of a rewriting node or Ln of a rewritten node 
represents a set of tags, relevant to a query q, that may appear in the 
XML document. In Figure 4, for instance, the tag of the value 
“10001” is “zip”, which will be an element in Lc or Ln, depending 
on the given XPath query. Applying Rule 5, we obtain S as {z | 
y∈q1(x), (y, u)∈EDGES*(t), z∈q2(u)}, in which u, x, y, and z are 
called conceptual variables. 

The definition for XRG is given in Definition 1. It is followed by 
an algorithm to construct an XRG. 

Definition 1 (XPath Rewriting Graph) An XPath Rewriting 
Graph (XRG) for an XPath Query is a 5-tuple 〈q, Ω, Nx, Ex, Vx〉: 
(a) q is an XPath expression for the XPath Query, and Ω is an 

XML schema that describes the XML document to be queried 
on. 

(b) Nx is a set of rewriting and rewritten nodes identified by the 
algorithm Compute_XRG, and Vx is a set of conceptual 
variables defined at the nodes in Nx. 

(c) Ex is a set of edges (sc, sn), each of which represents a 
transition from sc to sn, where sc is a rewriting node and sn is 
either a rewriting node or a rewritten node. All the edges are 
also computed by the algorithm Compute_XRG. □ 
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The algorithm Compute_XRG is used to construct an XRG. It 
takes an XPath expression q, the schema Ω of some XML document, 
and a set of currently located nodes X of Ω as parameters, and 
outputs the corresponding XRG. X is initially assigned as a 
singleton set containing the root of the schema [21]. The query q 
starts with this value of X to search for other nodes. 

The following auxiliary functions are used: (i) Function 
Root(XRG) returns the root node of XRG. (ii) Function match(q, p) 
returns true when q can be rewritten in the form specified by the 
pattern p, and returns false otherwise. (iii) Function getLastNode(Z) 
returns the last rewritten node in Z, and function getLastChild(n, Z) 
returns the last rewritten child node of n in Z, both using standard 
inorder traversal [14]; (iv) Functions setLeftChild(n,nl), 
setMidChild(n,nm), and setRightChildNode(n,nr) set nl, nm, and nr as 
the left, middle, and right child nodes for n, respectively. As we 
shall explain in Section 4, the left, middle, and right child labels are 
important for identifying the conceptual paths of an XPath 
expression over Ω. In our algorithm, each label in a set is associated 
with the variable that locates it. (v) Functions LabelVarDef(X, x, n) 
and LabelVarUse(X, x, n) mark the variable x as the definition and 
use occurrences at node n, respectively, and associate such 
occurrences of the variable to every element in X. In addition, we 
define “xοy” as the attribute y of x. 
1 Global Variables Nx, Ex, Vx. /* Initially, Nx ← Ø, Ex ← Ø, Vx ← Ø. */ 
2 Algorithm Compute_XRG 
3 Input XPath expression q, XML schema Ω, 
  Set of located nodes X 
4 Output XRG 
5 let XRG be 〈q, Ω, Nx, Ex, Vx〉. 

/* Process A-Rule (rules that cannot be further rewritten) */ 
/* Process Rule 1 */ 

6 if match(q, “n”) { 
7   New variables x, y.  Vx ← Vx∪{x, y}. 
8   Y ← {y | (x, y)∈EDGES(Ω) ∧ LABEL(y) = q, x∈X }. 
9   n ← 〈q, X, Y, {y | (x, y)∈EDGES(Ω) ∧ LABEL(y) = q}〉. 
10   LabelVarUse(X, x, n).  LabelVarDef(Y, y, n). 
11   Nx ← Nx∪{n}.  /* New rewritten node */ 
12 } 

/* Process Rule 2 */ 
13 else if match(q, “*”) { 
14   New variables x, y.  Vx ← Vx∪{x, y}. 
15   Y ← {y | (x, y)∈EDGES(Ω), x∈X }. 
16   n ← 〈q, X, Y, {y | (x, y)∈EDGES(Ω)}〉. /* New rewritten node */ 
17   LabelVarUse(X, x, n).  LabelVarDef(Y, y, n). 
18   Nx ← Nx∪{n}. 
19 } 

/* Process Rule 3 */ 
20 else if match(q, “.”) { 
21   n ← 〈q, X, X, {x | x∈X}〉.  /* New Rewritten Node */ 
22   LabelVarUse(X, x, n).  LabelVarDef(X, x, n). 
23   Vx ← Vx∪{x}.  Nx ← Nx∪{n}. 
24 } 

/* Process C-Rule (rules that can be further rewritten) */ 
/* Process Rule 4 */ 

25 if match(q, “q1/q2”) { 
26   New variable y, z.  Vx←Vx∪{y, z}. 

27   n ← 〈q, X, Rule 4〉.  /* New rewriting node */ 
28   if (nl ← CheckRecursion(q1, X, Nx)) =Ø then { 
29     XRG1 ← Compute_XRG(q1, Ω, X). 

30     nl ← Root (XRG1).  nlast ← getLastNode(XRG1). 
31     Ex←Ex∪XRG1οE.  Nx←Nx∪XRG1οN.  Vx←Vx∪XRG1οV.  } 
32   else { nlast ← getLastChild(nl, XRG).  } 
33   let Y be nlastοLn. 
34   if (nr←CheckRecursion(q2, Y, Nx)) =Ø then { 
35     XRG2 ← Compute_XRG(q2, Ω, Y). 
36     nr ←Root (XRG2). 
37     Ex←Ex∪XRG2οE.  Nx←Nx∪XRG2οN.  Vx←Vx∪XRG2οV.  } 
38   LabelVarUse(X, x, nl).  LabelVarDef(Y, y, nl). 

  LabelVarUse(Y, y, nr).  LabelVarDef(Z, z, nr). 
39   setLeftChild(n, nl).  setRightChild(n, nr). 
40   Ex ← Ex∪{(n, nl), (n, nr)}.  Nx← Nx∪{n, nl, nr}. 
41 } 

/* Process Rule 5 */ 
42 else if match(q, “q1//q2”) { 
43   New variable y, u, z.  Vx←Vx∪{y, u, z}. 

44   n ← 〈q, X, Rule 5〉. /* New rewriting node */ 
45   if (nl ← CheckRecursion(q1, X, Nx)) = Ø then { 
46     XRG1 ← Compute_XRG(q1, Ω, X). 
47     nl ← Root(XRG1).  nlast ← getLastNode(XRG1). 
48     Ex ← Ex∪XRG1οE.  Nx ← Nx∪XRG1οN.  Vx ← Vx∪XRG1οV.  } 
49   else { nlast ← getLastChild(nl, XRG).  } 
50   let Y be nlastοLn. 
51   U ← {u | (y, u)∈EDGES*(Ω), y∈Y}. 
52   nm← 〈“//”, Y, U, {u | (y, u)∈EDGES*(Ω), y∈Y}〉. 
     /* New rewritten node */ 
53   if (nr ←CheckRecursion(q2, U, Nx)) =Ø { 
54     XRG2 ← Compute_XRG(q2, Ω, U). 
55     nr ← Root(XRG2). 
56     Ex ← Ex∪XRG2οE.  Nx ← Nx∪XRG2οN.  Vx ← Vx∪XRG2οV.  } 
57   LabelVarUse(X,x,nl). LabelVarDef(Y,y,nl). LabelVarUse(Y,y,nm). 

  LabelVarDef(U,u,nm). LabelVarUse(U,u,nr). LabelVarDef(Z,z,nr). 
58   setLeftChild(n, nl).  setMidChild(n, nm).  setRightChild(n, nr). 
59   Ex ← Ex∪{(n, nm), (n, nl), (n, nr)}. 
60   Nx← Nx∪{n, nm, nl, nr}. 
61 } 

/* Process Rule 6 */ 
62 else if match(q, “q1[q2]”) then { 
63   New variable y, z.  Vx ← Vx∪{y, z}. 
64   n ← 〈q, X, Rule 6〉.  /* New rewriting node */ 
65   if (nr ← CheckRecursion(q1, X, Nx)) = Ø then { 
66     XRG1 ← Compute_XRG(q1, Ω, X). 
67     nr ← Root(XRG1).  nlast1 ← getLastNode(XRG1). 
68     Ex ←Ex∪XRG1οE.  Nx ← Nx∪XRG1οN.  Vx ←Vx∪XRG1οV.  } 
69   else { nlast1 ← getLastChild(nr, XRG).  } 
70   let Y be nlast1οLn. 
71   if (nl ← CheckRecursion(q2, Y, Nx)) = then { 
72     XRG2 ← Compute_XRG(q2, Ω, X). 
73     nl ← Root(XRG2).  nlast2 ← getLastNode(XRG2). 
74     Ex ← Ex∪XRG2οE.  Nx ← Nx∪XRG2οN.  Vx ← Vx∪XRG2οV.  } 
75   else { nlast2 ← getLastChild(nl, XRG).  } 
76   let Z be nlast2οLn. 
77   Y ← Y – {y | ∄z∈Z, (y, z)∈EDGES*(Ω), y∈Y }. 
78   LabelVarUse(X, x, nr).  LabelVarDef(Y, y, nr). 
   LabelVarDef(Z, z, nl).  LabelVarUse(Z, z, nl). 
79   setLeftChild(n, nl).  setRightChild(n, nr). 
80   Ex ← Ex∪{(n, nl), (n, nr)}. 
81   Nx ← Nx∪{n, nl, nr}. 
82 } 
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83 return XRG.  /* XRG is finally returned */ 

84 Function CheckRecursion(q, L, Nx) 
85   if ∃n∈Nx, q = nοq ∧ L⊆nοLc then { return n.  } 
86   else { return Ø.  } 

The algorithm Compute_XRG processes Rules 1 to 6 in lines 
6–12, 13–19, 20–24, 25–41, 42–61, and 62–83, respectively. Since 
Rules 1, 2, and 3 are A-Rules, only one rewritten node n is created 
in each case (lines 9, 16 and 21). Rules 4, 5 and 6 are more complex. 
We use Rule 4 as an example to illustrate the processing. Rules 5 
and 6 are processed similarly. 

Rule 4 is processed as follows: Firstly, a rewriting node n is 
created (line 27). Then, the algorithm recursively processes q1 and 
q2. Since there may be recursions when rewriting a node, we check 
the occurrence of recursions using the function CheckRecursion 
(lines 84–86) for both q1 (lines 28–32) and q2 (lines 34–37). If there 
is a node nl or nr for q1 or q2 (lines 28 and 34) involving recursions, 
then nl or nr is set as the left or right child node for n (line 39). If 
there is no recursion for q1 or q2, then the algorithm generates XRG1 
and XRG2 (lines 29 and 35), and the root nodes of XRG1 and XRG2 
(lines 30 and 36) will be denoted as nl and nr and are set as the left 
and right child nodes of n (line 39). Note that the input parameter X 
to compute XRG2 comes from the output of the computation of 
XRG1. The algorithm uses the function getLastNode to find the last 
rewritten node nlast in XRG1 (line 30) when there is no recursion for 
q1; and uses the function getLastChild to find the last rewritten child 
node nlast in XRG (line 32) when there is a recursion. nlast is assigned 
as 〈qlast, Lc

last, Y, Sn
last〉, and Y denotes the set of nodes used as an 

input parameter for constructing XRG2. We associate each label of X 
with the variable definition of x at node nl (line 38). Other variable 
definitions and usages are processed similarly. Hence, the XRG for 
an XPath Query satisfying Rule 4 is generated. 

We also use XQ(UserAddress, //city/) at N2 in Figure 3 to 
illustrate the algorithm. The output of the algorithm is depicted in 
Figure 6. To ease readers’ understanding, we annotate the edges 
with rewriting sub-terms in Figure 6. XQ(UserAddress, //city/) is 
firstly identified by Rule 5 (q1=* and q2=city/*) (line 42), and 
hence rewriting node R1 is generated (as n in line 44). Next, the 
algorithm recursively processes three sub-terms: //, *, and city/*. 
The middle sub-term // matches Rule 7, but the conceptual 
variables have been discovered by processing q1 and q2, and so R2 is 
generated (as nm in line 52). The left sub-term * matches Rule 2, 
and hence rewritten node R3 is generated (as n in line 16). The right 
sub-term city/* matches Rule 4, and therefore rewriting node R4 is 
generated (as n in line 27). R4 is further rewritten into R5 (as nl in 
line 28 or 30) and R6 (as nr in line 34 or 36). R5 and R6 are the left 
and right children nodes of R4, respectively. R5 and R6, which match 
Rule 1 and 2, respectively, are both rewritten nodes. Since there is 
no recursion for //, *, and city/*, R2, R3 (the root node of XRG1, 
line 47), and R4 (the root node of XRG2, line 55) are set to be the 
middle, left, and right child nodes of R1 (line 58), respectively. We 
thus finish constructing the required XRG. 

We can also use Figure 6 to illustrate Definition 1. The XRG 
〈q, Ω, Nx, Ex, Vx〉 for XQ(UserAddress, //city/) is as follows: q is 
//city/, and Ω is the schema address (Figure 2) for the variable 
UserAddress. Vx is constructed by the algorithm directly, and Vx = 
{x, y, u, v, w}. Nx is {R1, R2, R3, R4, R5, R6}. Ex is {(R1, R2), (R1, R3), 
(R1, R4), (R4, R5), (R4, R6)}. The rewriting nodes are R1 and R4 while 
the rewritten nodes are R2, R3, R5, and R6. 

Let us further use Figure 6 to illustrate how we handle the two 
paths (/state/city/ and /city/) of //city/ in the XRG. We first 

obtain {state, city}⊆Y (Y∈R3) from schema address. Then, if the 
value of y in R2 is state, u will be city; whereas if the value of y is 
city, u will be undefined. Since u is the child node of y in the 
schema, we thus obtain the two paths /state/city/ and /city/. 

We note that such rewriting can be stopped at some upper bound 
(say, for a huge XPath or for fragments that are not decidable). This 
tracks XPath at a conceptual level in a stepwise and hierarchical 
fashion. 

3.2 X-WSBPEL Model 
The structure of an XPath is denoted by an XPath Rewriting Graph 
in our model. We associate each control flow graph [8] of a BPEL 
program (e.g., the CFG for IsServiceAvailable in Figure 3) with a 
set of XRGs to represent a WS-BPEL application. 

Definition 2 (X-WSBPEL Model) An X-WSBPEL Model is a 
couple 〈CFGB, XPATH〉 such that 
(a) CFGB is a control flow graph representing a BPEL program P; 

CFGB = 〈Nb, Eb, Vb, sb, eb〉, where: Nb is a set of nodes that 
represent the program nodes of P; Eb is a set of edges that 
represent the transitions between two nodes, Vb is a set of 
variables defined or used in BPEL; sb is the entry node of P, and 
eb is the exit node of P, sb, eb∈N. 

(b) XPATH is a set of XPath Rewriting Graphs denoting the 
occurrences of XPath in CFGB. □ 

We use Figure 3 to illustrate CFGB in the X-WSBPEL model of 
IsServiceAvailable: sb is Ns; eb is Ne; Vb = {UserAddress, UserName, 
City, ZipInformation, ZipCode, ServiceAvailablity}; Nx = {Ns, Ne, N1, N1, 
N2, N3, N4, N5, N6, N7, N8}; and Eb = {(Ns, N1), (N1, N2), (N2, N3), (N3, 
N4), (N4, N5), (N4, N6), (N6, N7), (N7, N8), (N5, Ne), (N8, Ne)}. We also 
have XPATH = {XRGXPath1, XRGXPath2, XRGXPath3}, where XRGXPath2 
means the XRG for XPath2 //city/ (such as Figure 6), and 
XRGXPath1 and XRGXPath3 are interpreted similarly. In X-WSBPEL, 
we assume that either CFGB or XRG starts with a unique entry node 
and ends at a unique exit node. 

4. DATA FLOW ENTITIES & CRITERIA 
4.1 Data Flow Associations for WS-BPEL 
4.1.1 Conventional Data flow Associations 
This section recalls the data flow definitions from [8][20]. A CFG is 
a couple (V, E), where V is a set of nodes representing statements in 
a program unit and E is a set of directed edges representing the 
transitions among statements. A complete path in a CFG is a path 
starting from the entry node and ending with an exit node. A 
variable x is defined or has a definition occurrence at node n if the 
value of x is stored or updated at n. A variable x is used or has a use 
occurrence at n if the value of x is fetched or referenced at n. A 
sub-path 〈ni, …, nj〉 is said to be definition-clear with respect to the 
variable x when none of ni, …, nj defines or undefines x. A def-use 
association is a triple 〈x, nd, nu〉 such that the variable x is defined at 
node nd and used at node nu, and there is a definition-clear sub-path 
(possibly empty) with respect to x from nd to nu, exclusively. 

In an X-WSBPEL model, a WS-BPEL application consists of a 
CFGB associated with a set of XRGs. Def-use associations on CFGB 
in the X-WSBPEL model can be identified in the same style as [8]. 
In Figure 3, for instance, the variable City has a definition 
occurrence at node N2 and a usage occurrence at N3. Since there is 
no definition between N2 and N3, the path from N2 to N3 is 
definition-clear, and hence there is a def-use association for the 
variable City, denoted by 〈City, N2, N3〉. 
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4.1.2 Conceptual Paths in XRG 
In the Compute_XRG algorithm, we have explicitly marked some 
child nodes as left child, right child, and middle child. This marking 
is important. For example, let us consider the children nodes (R2, R3, 
and R4) of R1 in Figure 6. The output set Y, which is defined by the 
variable y at R3, will be used at R2 as a part of a condition to define 
U. The set U is used by the child graph (actually R5) with R4 as the 
root. The traversal of the graph is important; otherwise, a proper 
conceptual relationship among variables cannot be obtained. 

To apply data flow analysis and testing to an XRG, we should, 
therefore, respect such ordering of nodes; otherwise one may 
construct illegitimate data flow associations or miss legitimate ones 
[8]. We have designed the Compute_XRG algorithm to support the 
inorder traversal algorithm of [14] for constructing the path sets of 
a given XRG so that path sets can be treated as if they were paths in 
the CFG of a program unit [8]. We note, however, that a path in an 
XPath Rewriting Graph is only a model of an XPath and will never 
be executed by any actual program. Hence, we call them conceptual 
paths. Despite such philosophical difference, data flow associations 
[8] can be computed from a CFG transformed from an XRG based 
on the inorder traversal algorithm, where nodes of the CFG are 
nodes of the XRG, and there is an edge (a, b) in the CFG if (a, b) is 
a subsequence of a conceptual path of the XRG. 

4.1.3 Special Handling for XRG 
This section discusses def-use associations in XRGs. In an XRG, a 
rewriting node is used to identify a rewriting rule, where any left, 
right, or middle sub-term of an XPath expression will be rewritten 
to one or more rewritten nodes. Hence, a rewritten node contains the 
rule matching information. Also, since every rewriting node 
contains no variable definition or usage, we choose to hide them in 
the CFG constructed from an XRG. For instance, Figure 7 shows an 
example path of Figure 6 obtained by inorder traversal starting 
from R1 without showing any rewriting nodes. One may observe 
that, in such a conceptual path, the variables on each node are 
captured in set-theoretic notation. Also, every label on a rewritten 
node is marked as a definition, usage, or both. At run-time, when 
the set Ln of a preceding node (e.g., Y in R3) is empty, the variables 
in the succeeding node (e.g., R2) as well as the variable y at R3 will 
be undefined. When the XPath query is completed, it will assign 
values (probably empty in this case) to N2 for the BPEL program. 
Hence, a path in Figure 7 actually represents 4 paths that may be 
taken by an XPath Query at runtime: 〈R3, N2〉, 〈R3, R2, N2〉, 〈R3, R2, 
R5, N2〉, 〈R3, R2, R5, R6, N2〉. In other words, there are implicit 
predicates in the conceptual path to decide the legitimate path to be 
taken. In Figure 7, if no element in the XML document can be 
selected as “y” in R3, the set Y will be empty. This will result in the 
selection of path 〈R3, N2〉. 

City = w

City = XQ(UserAddress, //city/)

R3

R2

R6

R5

< //, Y, U, {u|(y, u)∈ EDGES*(t), y∈ Y }>
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Figure 7. Example Conceptual Path of XRG 

In a rewritten node, we treat each unique occurrence of a variable 

associated with the label sets Lc as a variable usage, and each unique 
occurrence of a variable associated with the label set Ln as a variable 
definition. The latter is defined through the last element S of each 
node in standard set-theoretic notation {A | predicate(A)}. In 
addition, any occurrence of a variable in A is a variable definition, 
and any occurrence of a variable in predicate(A) but not in A is a 
variable usage. For example, the occurrence of y in R3 is a use and 
the occurrence of x in R3 is a definition. Based on the above, we 
present variable definitions and usages for conceptual variables in 
XRGs. Since they are related to an XPath Query at runtime, we call 
them q-def and q-use, respectively. 

Definition 3 (Q-DEF OF VARIABLES) Given an X-WSBPEL 
〈CFGB, XPATH〉, a q-def (or defq for short) of a variable v is either 
(i) an occurrence of v at node n in CFGB such that v is assigned by 
the return value of the XPath Query, or (ii) a definition occurrence 
of v at node n of an XRG∈XPATH. □ 

For simplicity, a variable definition in an X-WSBPEL such that it 
does not satisfy Definition 3 is named as defb. We denote the set of 
all defq in a WS-BPEL application by Defq, and the set of all defb by 
Defb. In Figure 3, for instance, the definition occurrence of the 
variable ZipInformation at N3 is a defb. The variable City is assigned 
by XQ(UserAddress, //city/) at N2 and, according to Figure 7, 
XQ(UserAddress, //city/) returns the conceptual variable w. Hence, 
we further determine that the variable City is defined by w (so that it 
is a defq). We also find in Figure 7 that the conceptual variable y at 
R3 is defined by “y | (x, y)∈EDGES*(t)”. This definition occurrence 
is also a defq. 

Definition 4 (Q-USE OF VARIABLES) Given an X-WSBPEL 
〈CFGB, XPATH〉, a q-use (or useq for short) of a variable v is either 
(i) an occurrence of v at node n of CFGB such that v is the input 
parameter of an XPath Query in n, or (ii) a use occurrence of v at 
node n of an XRG∈XPATH. □ 

Similar to variable definitions, a variable usage that does not 
satisfy Definition 4 is named as useb. We denote the set of all useq in 
an X-WSBPEL by Useq, and the set of all useb by Useb. For 
example, the use occurrence of the variable UserName at N3 is a 
useb. In Figure 7, the conceptual variable x at R3, as used by “y | 
(x, y)∈EDGES*(t)”, is also a useq. Based on the definitions of q-def 
and q-use, we proceed to define def-use associations in our model. 

Definition 5 (QUERY-DU) A query-def-use (or query-du) 
association α for a variable v is a triple 〈v, nd, nu〉 such that v is a 
q-def at nd and a q-use at nu, and there is a definition-clear sub-path 
(using inorder traversal) with respect to v from nd to nu.□ 

We note that, by a simple and mechanical translation, the 
definitions and usages for an ordinary BPEL variable can be 
expressed using XPath. Consider the following example, in which 
UserAddress.ZipCode is assigned by ZipOnly.ZipCode. 

<assign><copy> 
<from variable="UserAddress" part="ZipCode" query="."/> 
<to variable="ZipOnly" part="ZipCode"/> 

</copy></assign> 
We can use the XPath Query “.” to denote the fetching of the 
value(s) of the variable UserAddress.ZipCode, that is, 
“.(UserAddress.ZipCode) = {UserAddress.ZipCode}”. In this way, in 
addition to XPath expressions, our approach can be applied to other 
BPEL variables. We further distinguish variable occurrences in a 
predicate (such as Rule 6 in Section 2.2) (in the sense of p-use in 
standard terminology [8]) from the rest in the set of query-du 
associations. We call them query-pu associations. 
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4.2 Test Adequacy Criteria for WS-BPEL 
This section proposes a set of testing criteria to measure the quality 
of test sets to test WS-BPEL applications. 
  Our first test criterion is to exercise each XRG at least once. Such 
an adequate test set should cover all XRGs in the WS-BPEL 
application under test. 

Criterion 1 (ALL QUERIES) A test set T satisfies the all-queries 
criterion for an X-WSBPEL 〈CFGB, XPATH〉 if and only if, for each 
XRG∈XPATH, the complete path of at least one test case t∈T 
executes XRG at least once. □ 

Nevertheless, executing an XPath Query at least once may not 
evaluate all conceptual variables. In Figure 6, for instance, 
exercising XQ(UserAddress, //city/) once may not execute the 
definition for the variable w at R6 because, when V at R5 is empty, 
R6 will not be evaluated. In other words, a test set that satisfies the 
all-queries criterion may not cover all the def-use associations of 
variables in X-WSBPEL. Our next criterion explores the structure of 
XPath. It requires a test set to cover all query-du associations. 

Criterion 2 (ALL QUERY-DU) A test set T satisfies the 
all-query-du criterion for an X-WSBPEL 〈CFGB, XPATH〉 if and 
only if, for each query-du association α, there is at least one test 
case t∈T such that def_clear(α) is evaluated to be true. □ 

As predicates are important for identifying conceptual paths in an 
XRG, we require a test set to cover all predicates and call the 
criterion all-query-pu. We note that all-query-du subsumes [8][15] 
all-query-pu because all p-uses and c-uses are evaluated in 
all-query-du. Also, any query should have at least one query-pu 
occurrence because each query may encounter a scenario in which 
the required value cannot be extracted by the query from an XML 
document. Hence, all-query-pu subsumes all-queries. 

Criterion 3 (ALL QUERY-PU) A test set T satisfies the 
all-query-pu criterion for an X-WSBPEL 〈CFGB, XPATH〉 if and 
only if, for each predicate query-def-use association α, if the 
variable usage occurs in a predicate, then for each branching of the 
predicate, there is at least one test case t∈T that exercises the 
definition-clear path. □ 

We generically treat host programs as CFGs. Flow-based testing 
criteria on these programs (see [8][9][15][28]) can readily be 
integrated with the control flow structures or data flow entities 
captured by an XRG to construct other testing criteria. 

5. EVALUATION 
This section reports the experimentation of our proposal. 

5.1 Design of Experiment 
We use eight open-source WS-BPEL applications [4][24][27] to 
evaluate our work, as shown in the second column of Table 1. 
These programs are frequently used in WS-BPEL studies such as 
[10][18][28]. Furthermore, LoanApproval and BuyBook are the 
sample projects that IBM and Oracle, respectively, shipped with 
their BPEL modeling tools. The columns “Element” and “LOC” 
show the number of XML elements and lines of code of each 
application. We implement a tool to automate the evaluation. It 
reports that, in total, there are 23 XPath expressions, 87 query-p-use, 
and 209 query-du associations. Their breakdowns are shown in the 
rightmost three columns of Table 1. Although the numbers of XPath 
in the subject programs are small, as we shall show later, the 
differences in effectiveness exhibited in the experiment are already 
significant. 

Table 1. Subject programs and their descriptive statistics 

Ref. Applications Element LOC Query Query-pu Query-du
A ATM [4] 94 180 3 12 35 
B BuyBook [24] 153 532 3 15 26 
C DSLService [27] 50 123 3 11 47 
D GYMLocker [4] 23 52 2 9 23 
E LoanApproval [4] 41 102 2 11 19 
F MarketPlace [4] 31 68 2 9 17 
G Purchase [4] 41 125 2 6 9 
H TripHandling [4] 94 170 6 14 33 

Next, we generate different faulty versions by seeding one fault 
into each copy of the original subject program. To our best 
knowledge, these faulty versions do not exist in repositories. We 
(members of our research group who have experience in SOA 
development and are non-authors) follow [15][20] to seed faults. In 
total, we create 60 faulty versions. 

Our tool then generates test suites for our testing criteria and for 
random testing [8][18]. When generating each test suite for our 
testing criteria, the tool randomly selects a test case from a test pool 
and executes a target version over the test case. The test case is 
added to the test suite for a testing criterion only if it improves the 
coverage specified by the criterion. After a number of trials, we set 
the process to terminate if either 100% coverage of a criterion has 
been attained, or an upper bound of 50 trials has been reached. (We 
note from the experiment that the tool has consistently achieved 
100% coverage for all criteria (except the all-query-du criterion) at 
the termination of the process.) For each version, we repeat this 
process 100 times. A similar approach is adapted by [15][20]. For 
random testing, we randomly select a test suite whose size should 
be the same as the maximum number of test cases in all test suites 
for our testing criteria on the same program version. We choose the 
fault detection rate [15] as the effectiveness measure in the 
experimentation, which is defined as the proportion of the number 
of test suite that can expose the fault(s) in a version to the size of the 
test suite. 

5.2 Data Analysis 
We present the results of the experiment in this section. We first 
calculate the coverage percentages of the test suite on the faulty 
versions for the respective testing criteria. The minimal, mean and 
maximal coverages that have been achieved by the test suites are: 
all-queries (100%, 100%, 100%), all-quer-pu (100%, 100%, 100%), 
and all-query-du (94.8%, 97.7%, 100%). When a test suite cannot 
yield 100% coverage, we deem the outstanding coverage 
requirements infeasible. 

We partition the 60 faults into three categories (in-BPEL, 
in-XPATH, and in-WSDL) according to the type of artifact that 
each fault resides, as shown in Table 2. Columns A–H correspond 
to the respective references of these applications in Table 1. There 
are 21 faults in BPEL programs, 21 faults in XPath expressions or 
XML schemas, and 18 faults WSDL documents. 

Table 2. Distributions of faults 

Category A B C D E F G H
in-BPEL 3 2 3 3 3 2 2 3 
in-XPath 3 2 3 3 3 2 2 3 
in-WSDL 2 3 2 1 2 2 3 3 

Total 8 7 8 7 8 6 7 9 

Table 3 summarizes the fault-detection rates of the three 
categories of faults and the aggregated results of the experiment. As 
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shown in the overall section of the table, random testing exhibits the 
worst mean effectiveness among all four criteria. It is around 
20%–24% less effective than our criteria. As expected, our 
all-query-du criterion shows the best mean fault detection ability, 
with a fault detection rate of 97.6% in the experiment. The 
all-query-du criterion also performs well in each category. 

Table 3. Fault-detection rates of testing criteria by categories 
Fault-detecting rates Box-whisker usage Category 

Criterion Min. Mean Max. Median 25% 75% 
Random 0.286 0.843 1.000 0.910 0.730 0.980 
All-queries 0.524 0.928 1.000 0.930 0.860 1.000 
All-query-pu 0.524 0.938 1.000 0.950 0.880 1.000 in-BPEL 
All-query-du 0.667 0.976 1.000 1.000 0.990 1.000 
Random 0.095 0.722 1.000 0.740 0.660 0.770 
All-queries 0.524 0.932 1.000 1.000 0.870 1.000 
All-query-pu 0.524 0.937 1.000 1.000 0.880 1.000 in-XPath 
All-query-du 0.571 0.977 1.000 1.000 0.960 1.000 
Random 0.167 0.621 1.000 0.650 0.470 0.763 
All-queries 0.556 0.904 1.000 0.970 0.803 1.000 
All-query-pu 0.556 0.915 1.000 0.975 0.823 1.000 in-WSDL 
All-query-du 0.778 0.974 1.000 1.000 1.000 1.000 
Random 0.183 0.734 1.000 0.745 0.615 0.910 
All-queries 0.533 0.922 1.000 0.970 0.860 1.000 
All-query-pu 0.533 0.931 1.000 0.975 0.870 1.000 

Overall 

All-query-du 0.667 0.976 1.000 1.000 0.980 1.000 

The all-query-du criterion, taking q-def and q-use (including both 
computation-use and predicate-use) into account, detects more 
faults than the all-query-pu criterion in the in-XPATH category 
(0.977 vs. 0.937) and in the in-WSDL category (0.974 vs. 0.915). 
We also compare random testing with our testing criteria, as shown 
in the three rightmost columns in Table 3. It shows that, in terms of 
box-whisker standards (the median and the 25% and 75% ranges), 
our criteria are more effective in detecting faults specified with 
XPath and WSDL. The average times to construct test sets for our 
criteria are in the range 0.45s–1.2s, running on an Intel 2.4 GHz 
CPU with 512 MB memory. 

To compare the effectiveness of different criteria based on 
comparable cost [9][20], we increase the size of every test suite for 
random testing so that the expanded test suite will give the same 
mean effectiveness as the base test suite of a compared testing 
criterion (or when an upper bound of 200 trials has been reached). 
We repeat this experiment 10 times to obtain the average result in 
each case. The results are listed in Table 4. Columns 2 to 4 list the 
average size of the expanded test suite for random testing (X) 
against that of the base test suite for our criterion (Y), that is X / Y. 
Table 4 shows that our criteria use only about 20% of the mean 
number of test cases for random testing to attain the same 
effectiveness. 

Table 4. Comparable test suite sizes of various criteria 

Subject Random 
/ all-queries 

Random 
/ all-query-pu 

Random 
/ all-query-du 

Atm 2.16 2.13 1.81 
BuyBook 9.84 9.66 8.91 

DSLService 3.61 3.59 2.78 
GYMLocker 2.38 2.37 2.18 

LoanApproval 8.13 8.01 7.97 
MarketPlace 13.40 13.13 12.06 

Purchase 3.31 3.18 2.85 
TripHanding 3.47 3.40 2.48 

Average 5.13 5.05 4.29 

In summary, the experimental results show that our approach 
detects over 90% of all faults and uses much fewer test cases than 
random testing to achieve the same effectiveness. In the future, we 
shall study how to detect subtle faults more effectively. 

5.3 Threats to Validity and other Discussions 
We have carefully developed a tool to perform instrumentation and 
collect statistical information for evaluation. We only use a limited 
number of programs and certain types of fault in our experiments. 
Like most other empirical studies, the result of our empirical study 
may not be generalized to cover all cases. WS-BPEL applications 
support program concurrency. We apply the notion of forced 
deterministic testing for concurrent programs to conduct the 
experiment. 

XPath has been included in Java 6 (see javax.xml.xpath). By 
modeling Java as a CFG and XPath as an XRG, our approach can 
readily be applied to a host language with such XPath support. 

One may wonder how program instrumentation can be done in 
BPEL programs. The following is a sample solution: the web 
service instrument is used to output the value of the variable 
ZipOnly.ZipCode and the XPath expression “.” at runtime. With 
such instrumentation, necessary information for computing the 
coverage of test suite can be obtained. 

<from variable="UserAddress" part="ZipCode" query="."/> 
<to variable="ZipOnly" part="ZipCode"/> 
<invoke name="instrument".variable="UserAddress.ZipCode" query="."/> 

6. RELATED WORK 
Broy and Krüger [5] study an interacting component and a service 
in the system as total behavior and partial behavior, respectively. 
They model a service having dual properties based on the notion of 
processes and partial functions. They do not study testing, however. 
Ye et al. [29] models a service as a process, and studies the 
encapsulation effects of actions on atomicity to support service 
transactions. Neither work considers XPath in services. 

Modeling BPEL and web service components using a state model 
is popular. Mongiello and Castelluccia [22] translate a BPEL 
program into such a model and apply model checking to verify 
temporal properties. Schmidt and Stahl [25] model it using Petri 
nets instead. Apart from using a state model to represent a BPEL 
program, Foster et al. [7] further analyze and verify the interactions 
between BPEL programs and web services based on WS-BPEL 
specifications. Fu et al. [10][11] translate web services into Promela 
for formal verification using their tool WSAT. Their approach 
differs from ours. We cover different fragments of XPath, and it is 
unclear to us whether their fragment is decidable. Secondly, we 
translate an XPath strictly according to the definition of XPath 
expressions in [13][21], while they translate an XPath into a 
Promela procedural routine that uses self-proposed variables and 
codes to simulate XPath operations. Intuitively, a test suite covering 
the data flow associations in a translated routine would test the 
implementation rather than the declaration as expressed in the 
WS-BPEL application. Our testing approach addresses the 
interactions captured in various artifacts: BPEL programs, WSDL 
documents, XML schemas, and XPath expressions. The above work 
complements ours. 

García-Fanjul et al. [12] treat a WS-BPEL application as a finite 
state machine and use mutation analysis to generate faulty versions. 
They then check each faulty version against a given temporal 
property using SPIN, and any counterexample thus generated will 
be treated as a test case. Yan et al. [28] model a WS-BPEL 
application as a set of concurrent finite state machines, use a 
heuristic approach to conduct reachability analysis to find 
concurrent paths, and use such paths as test cases. 

Many previous papers [8][9][17][26] on data flow testing are 
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based on information derivable from program statements. Although 
it is emerging to consider the effect of pervasive computing 
environment on programs [19][20], to our best knowledge, none of 
them explores the integration of heterogeneous sorts of technique 
such as program representation, dataflow analysis, and declarative 
semantics on diverse types of artifact as we do in this paper. 

7. CONCLUSIONS 
WS-BPEL applications are a type of service-oriented workflow 
application. In these applications, a business process is specified as 
a BPEL program, and individual loosely-coupled workflow steps 
are linked up via the exchange of XML-based messages. Failing to 
extract a right piece of data from an XML message, for instance, 
will pose an integration error in such an application. On the other 
hand, XML is fundamental to many service-oriented workflow 
applications, and XPath is the means to query on XML documents. 
The extensive usage of XPath poses a demand to study how to test 
these applications effectively. 

The paper has proposed a novel approach to studying XPath at a 
conceptual level, developed a data structure known as XPath 
Rewriting Graph (XRG) to capture how an XPath can be rewritten 
from one form to another in a stepwise fashion, and proposed an 
algorithm to construct XRGs. An XRG captures the mathematical 
variables to support stepwise rewriting of XPath. We also use these 
conceptual variables as if they were program variables to determine 
the def-use associations in an XRG, and integrate them with the 
ordinary ones in a host program. We make no particular assumption 
about the host program and generically treat it as a control flow 
graph. Based on the extended variables, we propose a family of 
testing criteria to test WS-BPEL programs. The experimental results 
confirm that our proposal is promising. 

Our paper demonstrates a new strategy that transforms 
schema-based definitions into external artifacts and then use these 
derived artifacts for analysis, design, and testing. This strategy is 
applicable to undecidable programs in general (albeit with an 
upper-bound setting to avoid infinite rewriting), and XPath is only 
one example. In the future, we shall proceed along this line to study 
the application of our novel approach to other forms of 
(un)decidable artifacts. 
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