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ABSTRACT
Programmers seek to answer questions as they investigate the func-
tioning of a software system, such as “which execution path is be-
ing taken in this case?” Programmers attempt to answer these ques-
tions, which we call conceptual queries, using a variety of tools.
Each type of tool typically highlights one kind of information about
the system, such as static structural information or control-flow in-
formation. Unfortunately for the programmer, the tools seldom di-
rectly answer the programmer’s conceptual queries. Instead, the
programmer must piece together results from different tools to de-
termine an answer to the initial query. At best, this process is time
consuming and at worst, this process can lead to data overload and
disorientation.

In this paper, we present a model that supports the integration of
different sources of information about a program. This model en-
ables the results of concrete queries in separate tools to be brought
together to directly answer many of a programmer’s conceptual
queries. In addition to presenting this model, we present a tool
that implements the model, demonstrate the range of conceptual
queries supported by this tool, and present the results of use of the
conceptual queries in a small field study.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments; D.2.12
[Software Engineering]: Interoperability

General Terms
Algorithms, Theory

Keywords
Software Representation Models, Tool Integration

1. INTRODUCTION
When performing evolution tasks to a software system, a pro-

grammer asks many different questions, such as “where is this
method called or type referenced?” [27], “which execution path is
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being taken in this case?” [27], or “who last changed this code?”
[31]. We refer to these questions that a programmer wants an-
swered as conceptual queries.

Programmers use a variety of tools to answer these conceptual
queries, such as cross-reference engines (e.g., Masterscope [30])
and dynamic profilers (e.g., gprof [15]). These tools represent dif-
ferent sources of information about the same software system. How-
ever, as observed by Sillito et al. [27], many of a programmer’s con-
ceptual queries are either poorly or only indirectly supported by the
concrete queries provided by the tools. This mismatch places up to
three additional cognitive burdens on the programmer.

First, the programmer becomes responsible for mapping a con-
ceptual query onto the available concrete queries and in scoping
the possible broad results to just those of interest. For example,
to search for the program locations where a particular exception is
thrown, a programmer using commonly available searching tools in
an integrated development environment (IDE) must search for ref-
erences to the exception type (mapping) and then must manually
examine the results (scoping) to find those performing a throw, as
compared to those in which a variable is declared of the exception
type or some other use.

Second, the programmer may need to compose the results of
multiple concrete queries to answer a conceptual query. The con-
crete queries might each need to be performed in a separate tool.
Typically, the programmer must then merge the sets of results pro-
duced by the different concrete queries to answer the original con-
ceptual query. For example, answering a conceptual query about
where instances of a particular Java interface are created requires
searching for the instantiators of each of the interface’s implement-
ing classes.

Third, answering a conceptual query may require a programmer
to integrate and reason across several sources of information about
the software system. This burden takes two forms. The first form
arises when two (or more) information sources have some overlap
in the types of information represented. For example, a program-
mer can choose to consider a program either from its actual run-
time behaviour as represented by a dynamic trace, or from the pos-
sible behaviours as represented in the source code. In this situation,
the programmer must choose between two descriptions of the pro-
gram’s behaviour that differ in the precision provided by their con-
crete queries [26]. The second form of this burden arises when two
(or more) information sources maintain different internal represen-
tations for what a programmer would plausibly consider to be the
same element. The programmer is then responsible for establishing
and carrying this correspondence when making further queries. Es-
tablishing such correspondences is trivial for the programmer when
there is an exact one-to-one relationship between the tool represen-
tations; for instance, it is easy to map between representations of a
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method declaration in two static Java cross-reference tools. Other
correspondences, such as when an element bears some similarity to
another or when an element corresponds to a group of elements, can
be more difficult to make. For example, in examining a dynamic
execution trace, a programmer wishing to reason about the callers
of a method defined on a Java interface must extend his reasoning
to the callers of the implementations of that method.

Each of these cognitive burdens takes the programmer away from
her core goal of answering a particular conceptual query. Each of
these burdens can be time consuming and distracting. Each of these
burdens can lead to data overload [34] and disorientation [8].

At first glance, it is surprising that these problems persist de-
spite significant efforts that have been devoted to tool integration
and query languages to support software development. On closer
examination, efforts in these two areas have not focused on the
core need of composing the results of multiple concrete queries,
each of which may return results from a different perspective on
the software system. Efforts in tool integration, for example, have
typically focused on sharing artifacts between independent tools
(e.g., [28]), or triggering transformations upon a change to an arti-
fact (e.g., [35]), rather than on formulating inquiries across tools.
Query languages, and tools based on query languages, provide sig-
nificant power to express and compose queries. But the few im-
plementations that support cross-artifact querying assume an exact
correspondence between elements from different artifact domains.

To enable direct support for expressing conceptual queries, this
paper introduces a model that supports the composition and inte-
gration of different sources of program information to form a sin-
gle queryable knowledge-base suitable for answering conceptual
queries. We call a particular source of information a sphere. We
provide an implementation of this model in a new software explo-
ration tool, named Ferret. Ferret summarizes how particular pro-
gram elements relate to the system, structured as answers to dif-
ferent conceptual queries about those elements. We have imple-
mented 36 different conceptual queries. Directly answering con-
ceptual queries means our tool, Ferret, deals with issues of map-
ping, scoping and composition. Relieving these burdens does not
come for free; the spheres over which queries occur must be config-
ured. This configuration is straightforward. We describe the results
of a small field study showing promise that the tool will be useful
in practice.

We begin in Section 2 where we describe our approach for rep-
resenting and integrating different sources of program information,
the sphere, and describe a framework for establishing the corre-
spondences between elements of different spheres, and how spheres
can be combined to produce interesting results. In Section 3, we
describe how this model is implemented in Ferret, and discuss how
the results may be used to answer the questions. We report on a
brief diary study involving four professional programmers in Sec-
tion 4. We discuss some of the issues that arose from the imple-
mentation in Section 5. We examine related work in Section 6, and
conclude in Section 7.

2. THE SPHERE MODEL
Core to supporting a useful set of conceptual queries is the need

to combine information from different sources about the program.
We call different sources of program information spheres. For in-
stance, the static Java relationships represented in the source code
form a sphere, the revision history recorded in a software repository
forms a sphere, and the calls information embodied in a dynamic
execution trace forms a sphere. The expression of a conceptual
query corresponds to resolving relations against a sphere, which
may be a composite sphere (as described in this section).

Table 1: Examples of some possible elements and relations
from different spheres (indicated in italics) in a Java-based soft-
ware system.

Type Example

Elements static: classes, interfaces, methods, fields, packages
dynamic: classes, methods
evolution: programmers, files, revisions, elements, trans-
actions
Eclipse plug-ins: extension points, extensions, plug-ins,
identifiers, Java types

Relations static: implements, extends, declares, calls, instantiates,
overrides, returns, has-argument, throws, catches, tests-
instanceof, casts, declared-type, gets, sets
dynamic: calls, instantiates, was-invoked, was-instantiated
evolution: modified-by, modified-in-transaction
Eclipse plug-ins: specifies, extends, depends

2.1 Spheres
We define a sphere using the relational algebra. A sphere pro-

vides a view of a source providing information about a software
system. A sphere S is a tuple

S = (E,L,R)

where
• E is the set of elements represented in the source;
• L is a set of relation labels describing the types of relationships

represented in the source that may exist between the elements;
• R⊆ L×E×E is a set of labelled relations. There may be multi-

ple relations between two elements, but each is treated as a dis-
tinct relation with different labels.

Information accessible through existing tools is easily transformed
into the relational form of a sphere by expressing the information
available in terms of relations between distinct elements. Consider
the example of a Java cross-reference tool that displays information
based on the static structure of the system. The distinct objects
in the tool’s domain correspond to the sphere’s elements (e.g., the
elements in Table 1), and the tool-provided queries correspond to
the sphere’s relations (e.g., the relations in Table 1). Spheres are
used to integrate information from different tools.

Information provided by some tools is best represented by mul-
tiple spheres. For example, the results from a dynamic Java tool is
highly dependent on the particular dynamic runtime traces that is
has been configured to use.

2.2 Composing Sphere Relations
The model supports composing spheres, such as using the results

of one sphere to replace the information from another. As a simple
example, consider a situation where a programmer has been exam-
ining the source code for a Java interface and asks “which of the
implementations of this interface were actually instantiated in this
last run?” Composing the static information about the software
system with the dynamic information from a run-time trace allows
a tool to answer such a conceptual query. When the composition
is over multiple dynamic spheres, this same query can answer the
query over several scenarios of use of the program.

There are several ways to compose spheres which we express as
using a function f . We express the composition of sphere S1 by S2
using function f as:

S2 ◦ f S1 = (E1∪E2, L1∪L2, f (R1,R2))

We treat the composition of the elements and labels as simple unions
of sets as the two spheres may have common elements (i.e., the two
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spheres share a common representation, such as many tools use the
Java model from the Eclipse Java Development Tools (JDT)), or
the two spheres share common labels (i.e., the two spheres provide
common operations, such as the static and dynamic spheres both
describe calls relations between methods). This definition pushes
the effect of composition to the function on the relations.

We have found use cases for four particular composition func-
tions. Composition functions f are not required to be commuta-
tive. We adopt the notation and semantics as described by Schmidt
& Ströhlein [25]: ∪ and ∩ are respectively union and intersection
of elements; and t, u, − are respectively union, intersection, and
difference of relations. We provide simple illustrative examples of
each function in terms of the static and dynamic spheres.

Union: Union includes all relations from each sphere involved in
the composition:

f (R1,R2) = R1tR2

The union can be used to combine dynamic profiles resulting
from different runs of a program. Union is commutative.

Replacement: Replacement causes those relations of R1 with a
label from R2 to be removed and replaced with the relations from
R2:

X = {(l,x,y) ∈ R1 | l 6∈ L2}
f (R1,R2) = X tR2

Replacement can be used when composing a static sphere with a
dynamic sphere, replacing the calls relations with what actually
happened during the execution. Replacement is not commuta-
tive.

Transformation: Transformation performs a join of the relations
of R1 by a subset of R2 for a particular label lr in R2.

f (R1,R2, lr) = {(l,x,z) |(l,x,y) ∈ R1∧ (lr,y,z) ∈ R2}

Transformation can be used to apply blanket restrictions to all re-
lations. For example, the relations of a static sphere (R1) can be
restricted to those methods actually invoked in a dynamic trace
(represented in R2), by defining lr = was-invoked to be an iden-
tity relation where (x,was-invoked,x) ∈ R2 if x is either not a
method, or x is a method invoked in the trace.

There are other possible composition functions, such as intersec-
tion, subtraction, and symmetric difference, but we have not found
a use case to consider their inclusion at present.

2.3 Composing Sphere Elements
Our definition of sphere composition defines elements of the

sphere resulting from the composition as being the union of the
sets of elements from the composing spheres. However, there are
occasions where a programmer would consider an element from
one sphere to correspond to some otherwise seemingly-different
elements from the other spheres for the purpose of making a query.
Consider the following situations:

1. A class C in the static source code should correspond to the
occurrence of the class C′ in the dynamic trace, and vice versa.
Similarly a method m defined on C in the static source should
correspond to the method m′ on C′ in the dynamic trace.

2. An interface I in the static source has no direct correspondence
to any element in a dynamic trace resulting from execution of
the program, but it may be considered to have a correspondence
to any classes C′ in the dynamic trace that correspond to any
class C in the source that implements I. Similarly a method

m declared by interface I has no direct correspondence to any
element of a dynamic trace, but may have an correspondence to
a method m′ of class C′ where C′.m′ corresponds to the method
C.m, where C implements I.

3. The body of a method as defined in a particular file revision
as committed to a repository may have a correspondence to the
representation for that method in the static source.

In each of these examples, the programmer is mentally converting
from one particular representation to another, to treat one object
from one representation as one or more equivalent objects in an-
other representations.

We model this process of establishing correspondences using an
adaptation of Wing and Ockerbloom’s notion of a respectful type
converter [33]. They define

A converter C : A→ B respects type T if the original
object of type A and the converted object of type B
have the same behavior when both objects are viewed
as a type T object. (p. 579)

T represents a set of common properties or behaviours that must be
preserved across the conversion. We relax and extend this defini-
tion in two ways. First, in their definition, T is considered to be a
common ancestor of A and B. We remove this requirement: in our
current sphere definition, the correspondences from A to B are of-
ten not reflected in the concrete representations. Second, we allow
an instance from A to correspond to one or more instances of B: an
element from one sphere should be treated as a set of items from
a different sphere if a programmer would consider them to be the
same.

These three examples illustrate also demonstrate that correspon-
dences may differ in at least two ways:

the valency of the conversion: There may be no single best match
for an element: an element in one sphere may correspond to
multiple elements in another sphere. This is illustrated with the
conversion of a Java interface to its implementing classes in the
dynamic run-time.

the fidelity of the conversion: The fidelity describes the degree of
information preservation or information loss in the conversion.
We provide three levels: EXACT, EQUIVALENT, and APPROXI-
MATE.

1. EXACT indicates a conversion where there is a perfect one-to-
one and onto correspondence. For example, a method defined
on a class for a static Java tool will correspond exactly to
the same method from a dynamic runtime tool, assuming the
dynamic run-time was taken from the same source base.

2. EQUIVALENT indicates a very near match: there is not a per-
fect conversion, but the elements are felt to be equivalent from
a programmer’s perspective. For example, a Java interface
will have an equivalent correspondence to its implementing
classes in in the dynamic run-time, providing the trace was
obtained from the same source code.

3. APPROXIMATE indicates an imperfect match, where there is a
similarity, but some differences. For example, a method from
a particular version of a file as committed to a repository will
have only an approximate correspondence to the representa-
tion of the method in the source code being edited.

We discuss the use of fidelity in the next section.

Conversion is modelled as a function on the relations defined by
a sphere. Imagine relations R ⊆ L×E ×E as a relational matrix
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M = E ×E with each matrix entry holding the applicable set of
labels, where E = E1 ∪E2. Then there are three possibilities for
how a converter C : E1→ E2 maps inputs to outputs; each of these
conversion possibilities corresponds to row merge or duplication
operations on the relational matrix.

1→ 1 : element e ∈ E1 corresponds to a unique element e′ ∈ E2:
the row corresponding to e is replaced by the union of the rows
for e and e′.

1→ n : element e ∈ E1 corresponds to several elements e′i ∈ E2:
the row corresponding to e is replaced by the union of the row
for e with the rows for e′i.

1→ 0 : element e ∈ E1 corresponds to no elements in E2: the row
corresponding to e remains unchanged.

This construction process proceeds similarly for C : E2→ E1. Note
that conversion may only rarely be symmetric.

2.4 Fidelity
The concept of fidelity is used in Section 2.3 to describe the de-

gree of information preservation or information loss resulting from
a conversion. Even when a converted element does not have a per-
fect correspondence to its source, it can still be used as a source for
inquiry.

Consider an example where a programmer is using Ferret over a
union of the static Java and evolution spheres (Table 1). We have a
Java type T , which is instantiated in methods m1, m2 and m3. We
examine the source for an earlier edition of T , an evolution element
S, which we consider to have an APPROXIMATE correspondence to
T . Now consider projecting the relation instantiators from S. Al-
though the evolution sphere has no such relation, the conversion
rules from Section 2.3 cause the projection to be the results of pro-
jecting from T , resulting in the methods m1, m2 and m3. But be-
cause they were determined from T , which has an APPROXIMATE
correspondence to S, then the resulting methods must have fidelity
of APPROXIMATE at best. To have a different fidelity would mean
that the results of a relation could be more certain than the input.

As it may be useful for a relation to involve some speculation,
we cause relations to have an associated fidelity too. The general
principle is that fidelity of the results of projecting a relation should
be the less of the fidelity of the input to the relation and the fidelity
of the relation itself. As a conceptual query may require projecting
a sequence of relations, then the fidelity should be monotonically
decreasing over the course of the query.

Thus the fidelity provides an assessment of the soundness of
a query’s results. Our use of fidelity serves a similar purpose to
Balzar’s pollution markers [2], where computation results that fail
to meet specified constraints are marked as being polluted. The
markers are propagated through any subsequent computations that
use a polluted result, indicating that the computation is polluted as
well. We should note that the fidelity only annotates the results of
a query, and does not affect the query computation.

3. TOOL
We created Ferret as a proof-of-concept tool to verify that the

model can express sufficiently rich conceptual queries, to demon-
strate that the conceptual queries can be implemented efficiently,
and to support experimentation with programmers to determine
which conceptual queries are useful. Currently, Ferret implements
36 conceptual queries across four spheres. We describe the queries
supported by Ferret and show how these queries utilize the model.
We defer a description of the results of a small field study to exam-
ine the usefulness of the queries to the next section of our paper.

3.1 Implementation of the Model
Ferret is a faithful implementation of the model described in Sec-

tion 2. At a high level, a conceptual query is issued in the context of
one or more elements of a program, such as a method declaration,
and the results of the query are computed using a set of relations
that are resolved by name through a sphere.

3.1.1 Spheres
Spheres are responsible for binding relation implementations to

relation names. Ferret currently implements four spheres corre-
sponding to the four sources: static, dynamic, software evolution,
and Eclipse PDE (see Table 1). The relations supported by the
spheres are implemented using the APIs provided by the sources.
The static Java sphere is implemented using the public Core and
Search APIs provided by the Eclipse Java Development Tools (JDT).
The dynamic Java run-time sphere is implemented using the pro-
file querying facilities of the Eclipse Test and Performance Tools
(TPTP). The software evolution sphere is implemented using facili-
ties from Kenyon [5], a source code repository analysis framework
supporting systems such as CVS [4], amongst others. The plug-in
development sphere is implemented using the internal representa-
tion model from Eclipse Plug-in Development Environment (PDE).

3.1.2 Conceptual Queries
The 36 conceptual queries currently implemented in Ferret are

listed in Table 2. The queries we have implemented were identi-
fied from the literature, blogs, or our own experiences developing
Ferret; the motivations for queries is tracked in Table 2. Some of
these queries have analogs to existing queries (marked with a dag-
ger or double-dagger in Table 2) but are augmented in their ability
to use other sources of program information. Other queries, such
as the evolution queries for relating source changes to code, do not
have direct analogs in any existing tool. Some conceptual queries
are included to serve as a demonstration of cross-artifact queries.
For example, the PDE-related queries link declarative information
specified in Eclipse plug-in manifests to static source elements.

A conceptual query is specified in terms of relational operators
over relation names. The relations named in the definition of a
conceptual query are resolved over a composite sphere that serves
as a fact database for the program. For example, the query “what
instantiates this type?” can be expressed as:

implementors ◦ instantiators

The relation implementors implicitly takes the given input, likely
to be a Java type, and returns all types that implement the input;
the relation instantiators returns all instantiators of a given input.
These relations are resolved using the composite sphere.

If a relation cannot be resolved, then the conceptual query fails.
In this respect, conceptual queries implement a form of dynamic
typing: if all the relations are resolved, then an answer can be com-
puted for the query; if some relation cannot be resolved, then the
query was not applicable for its inputs. This approach to imple-
menting the model isolates conceptual queries from the sources of
program information used to compute the results of the query.

3.1.3 Composing Spheres and Resolving Relations
Conceptual queries are executed in the context of a sphere, which

is used to resolve the relations named in the conceptual query’s
definition. The composite sphere is an implicit parameter to an in-
stallation of Ferret, and is used to resolve the relations named in
a conceptual query’s definition. The sphere may be a composite
sphere specified using the composition functions defined in Sec-
tion 2.2. We defer an example to Section 3.2. The composition
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Table 2: Conceptual queries currently defined for Ferret. ‘X’ indicates spheres providing relations used in the conceptual query. ‘*’
indicates queries supporting plural inputs; ‘†’ indicates queries that are not available in current tools and ‘‡’ indicates queries that
have partial support in current tools. The ‘Usage’ columns reflects the average usage of the query by the programmers observed for
the study described in Section 4.

Contributing Spheres Usage

Category / Conceptual Queries Static Dynamic Evolution Plug-ins # %

inter-class
1 †What methods return instances of this type? [16] X 1 0.4%
2 *What methods instantiate this type? [27] X X 8 2.9%
3 *What methods take an argument of this type? [27] X 2 0.7%
4 What fields are declared as being of this type? X 8 2.9%
5 *What calls this method? [27] X X 78 28.2%
6 *Where is the value of this field retrieved? [27] X 23 8.3%
7 *Where is the value of this field set? [27] X 5 1.8%
8 *What tests instanceof against this type? [17] X 2 0.7%
9 *Where are casts to this type? [17] X 1 0.4%

10 *What throws exceptions of this type? [27] X 0 0%
11 *What catches exceptions of this type? X 0 0%
12 *What references this type by name? [27] X 13 4.7%
13 *Which of the classes in this package were actually used? X 7 2.5%
14 *Which methods defined by this class were actually used? X 5 1.8%

intra-class
15 ‡*What fields does this type or method access? [27] X 16 5.8%
16 ‡*What methods does this type or method call? [27] X X 23 8.3%
17 †*What types does this {type, method, or extension} refer-

ence?
X X 18 6.5%

inheritance
18 *What interfaces does this type implement? [27] X 0 0%
19 What are this class’ subclasses? [27] X 6 2.2%
20 *What classes implement this interface? [27] X 8 2.9%
21 *What interfaces extend this interface? [27] X 5 1.8%
22 †What are this type’s siblings? [27] X 2 0.7%

declarations
23 What are all the fields are declared by this type? [27] X 9 3.2%
24 What class methods implement this interface method? [27] X 6 2.2%
25 *What interface methods specify this class method? [27] X 2 0.7%
26 What class methods does this method override? X 5 1.8%
27 What class methods override this method? X 7 2.5%
28 ‡What extension points or extensions reference this {type,

file, folder}?
X 6 2.2%

29 †What types is this type adaptable to? X X 3 1.1%
30 †What types could this type have be adapted from? X X 2 0.7%
31 What extensions are there of this extension point? X 4 1.4%
32 What plug-ins depend on this plug-in? X 2 0.7%

evolution
33 †What transactions changed this element? [21] X N/A N/A
34 †Who has changed this element, and when? [21, 31] X N/A N/A
35 †What elements were changed in this transaction? [21] X N/A N/A
36 †What files were changed in this transaction? X N/A N/A

functions determine the order in which spheres are consulted for
possible candidate relation implementations. The functions union,
and transformation cause all spheres to be resolved and to perform
some function on the combined results. The function replacement
selects an individual sphere.

Relations are always resolved in the context of some input from
which the relation is to be projected. This input comes from a selec-
tion from some information displayed by a tool that is represented

by one of the spheres. A relation implementation is considered re-
solved only after verifying that it supports the input. For example,
the static Java sphere’s implementation of implementors requires
its input to be a JDT type instance (an IType). This support gen-
erally entails that the inputs are or can be converted to an instance
of some particular type, and that possible conversions of the inputs
meet a minimum required fidelity. If the input cannot be converted,
then the relation implementation is rejected and resolution contin-
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ues. For example, both the static Java sphere and the dynamic Java
sphere provide implementations of a calls relation. Should these
sphere be composed using the union composition function, then
both spheres will be consulted for a calls relation. Should they be
composed using replacement, each sphere is consulted in turn un-
til one successfully resolves the relation. The former case is useful
if the conceptual query is intended to include calls implicit in the
code, such as calls via the Java reflection mechanism. The latter
case is useful if only the calls actually made during execution are
of interest.

3.1.4 Supporting Correspondences
Key to the relation resolving process is the conversion of inputs.

For example, the implementation of the implementors relation in
the static Java sphere using JDT requires its input to be a JDT rep-
resentation of a Java type, an IType. The resolving process will
attempt to find any ITypes that corresponds to its input.

Correspondences are implemented in Ferret using a mediating
broker architecture [33]. Each broker specifies the source and des-
tination types supported, the maximum possible fidelity of the cor-
respondence, and the maximum possible valency of its correspon-
dence. To reduce the number of brokers necessary, the brokers are
assembled into a graph. A correspondence may result in a path
with several intermediate correspondences. As there may be mul-
tiple candidate paths for converting a source type to some desired
target type, we select the best path by (i) considering only paths
where the intermediate correspondence steps are univalent so as
to avoid any possible ballooning in the results, and (ii) weighting
each path by its total fidelity. The fidelity of the resulting corre-
spondence is the minimum fidelity of the correspondence on the
path. A correspondence once made is cached based on the source
instance.

The set of currently configured correspondences is shown in Fig-
ure 1, grouped by related purposes. The types in this graph are
grouped into enclosures to indicate types with a related purpose. In
our implementation of Ferret, we have created two classes of corre-
spondences. The first class are handle correspondences of elements
between different spheres. The JDT ↔ TPTP , and Kenyon↔ JDT
conversions serve as examples of this kind. The second class of
correspondences exist to convert types that are conceptually part of
one of the provided spheres into a canonical form. For example, the
java.reflect and JDT/Debug enclosures represent live Java instances
from a runtime, such as in a stack frame of the debugger. These in-
stances have a likely correspondence to types defined in the static
Java sphere. These canonical correspondences allow Ferret to be
invoked from different views in the UI.

3.2 Example of Relation Resolution
To illustrate the implementation of the model, we trace through

the resolution of the returns-type relation when provided a partic-
ular JDT interface (type IType). This relation matches a type to the
methods declared as returning an object of that type. We use the
composite sphere corresponding to the following definition; we of-
ten use this definition when trying to understand some particular
functionality of a software system.

replacement [
dynamic−java−sphere ( tp tp−t race− f i l e ) ,
t r ans fo rma t i on [

s t a t i c−java−sphere ,
dynamic−java−sphere ( tp tp−t race− f i l e ) ,
"was−invoked " ] ]

This particular sphere composition uses the replacement function
at the top level. Thus function causes returns-type to be resolved
against its sub-spheres in succession until one is successful. Since a





 







Figure 1: The conversion broker network in Ferret. Ar-
rows indicate possible conversions; rounded enclosures indicate
groupings of related elements.

dynamic Java sphere does not provide an returns-type, the replace-
ment causes resolution to proceed to the next sphere.

The next sphere is a composite sphere obtained using the trans-
formation function. The transformation function first resolves returns-
type against the static Java sphere. This resolution is successful as
the sphere provides an implementation for returns-type, and the
implementation expects a JDT type instance (type IType) as input.
The transformation function then joins the results from projecting
returns-type to another relation, was-invoked, which is projected
against the dynamic Java sphere.

The dynamic Java sphere provides an implementation of was-
invoked. Was-invoked acts as a filter, filtering methods that were
never called. Its implementation is as follows:
• if its input is a TPTP method, or can be converted to a TPTP

method:
– if the method was actually recorded as being invoked in the

provided dynamic execution trace, then return the input,
– else the input was not sent, so return nothing;

• else the input is not a method, so return the input.
The implementation of was-invoked must attempt to convert its
input to native TPTP methods (of type TRCMethod). The corre-
spondence network, shown in Figure 1, supports converting JDT
methods (type IMethod) to the corresponding native TPTP method
(TRCMethod). Methods defined on interfaces, which have no ex-
ecutable components, are converted to the TPTP methods corre-
sponding to the class methods that implement the interface meth-
ods. Thus each of the overriding methods are checked for was-
invoked, which effectively filters the overriding methods by those
actually sent. These methods are the result of the transformed
returns-type relation and, since the returns-type was successfully
resolved, the replacement returns the type-returning methods that
were actually sent as the overall results of the projection of returns-
type.

Thus with this composite sphere, projecting returns-type from a
particular interface t results in the methods declared to return type
t that were actually invoked as recorded in the given dynamic trace
file. Performing this query without Ferret would require correlating
a list of methods from a JDT view using linear searches through a
TPTP view.

3.3 User Interface
Ferret is integrated into the Eclipse IDE as a single view (Fig-

ure 2). Upon being invoked for a particular element, Ferret com-
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Figure 2: The typical Ferret view in Eclipse.

Figure 3: Ferret supports clustering results of conceptual
queries.

putes and displays the results of all known conceptual queries in a
structured tree view. Queries that are not supported for the particu-
lar element from which Ferret is triggered are not displayed; by de-
fault, queries with no results are also not displayed. For each query,
Ferret displays the number of results for the query, and the number
of possible clusterings of the results (discussed below). When dis-
playing the results of the query, Ferret also informs the programmer
of the fidelity of the results.

Ferret can be invoked either explicitly or implicitly. Ferret is
invoked explicitly either through a keyboard shortcut or from a
program element’s context menu. Ferret also treats the program-
mer’s selection of program elements in the IDE (except for selec-
tions within the Ferret view) as an implicit invocation of Ferret’s
queries; this style of implicit invocation can be disabled.

As a conceptual query may have many results, Ferret provides
means for imposing alternative organizations of results by cluster-
ing according to the attributes of the solution elements. Figure 3,
for example, shows different possible clusterings for a set of Java
methods, which includes the declaring package, or the types of the
arguments. A particular conceptual query may provide additional
clusterings based on properties calculated during the query. For
example, the “what methods instantiate this type?” query, which
will includes the results of queries on implementors of an interface,
adds an additional clustering for the type instantiated. A program-
mer may manually remove any result from the view should it be
deemed to be uninteresting.

Queries can also be cascaded from a query result, where the re-
sult is used as the source for an invocation and whose results are
displayed in-place in the tree. This ability is similar to that offered
in JQuery [17].

Some conceptual queries can operate with multiple inputs and
correspond to the questions of the form “what common [feature]
is supported by these [elements]?”; these queries are indicated in
Table 2 by an asterisk.

Table 3: Ferret benchmark timings (seconds, average of five
runs) for the two sphere configurations described in Section 3.2.

Row Element C1 C2

1 PropPanelCallEvent (class) 0.3 0.3
2 PropPanelEvent (abstract class) 0.6 0.5
3 TargetListener (interface: 232 implementers) 14.3 15.5
4 PropPanelEvent.paramScroll (field) 0.3 0.4
5 TabProps.findPanelFor(Class) (method) 0.5 0.2
6 TargetListener.targetSet(Object) (method) 1.1 1.9

3.4 Benchmarks
Ferret’s querying performance is commensurate with the degree

of use of the element used to drive the queries: elements that are
widely used will require more time to compute the relations. Ta-
ble 3 presents average timings to perform a Ferret invocation for
a selection of types and methods from ARGOUML.1 The table
presents timings for two different sphere configurations. The first
configuration (labelled ‘C1’) used only the static Java sphere and
corresponds most closely to invoking a number of queries using
a normal static Java tool. This configuration allows comparing
the time taken with a static Java tool and, more importantly, cal-
ibrating against what a human might accept from a tool. The sec-
ond configuration (labelled ‘C2’) used the sphere configuration de-
scribed in Section 3.2, which combined static Java information
and dynamic program information from a dynamic execution trace.
This dynamic execution trace had filtered all classes from pack-
ages matching java*, com.sun*, com.ibm*, sun*, and org* except for
those classes matching org.argouml*. The resulting trace recorded
417 291 events over 2 604 methods defined in 760 classes. Rows
1–3 measure the performance of queries for a Java class or inter-
face, and rows 4–6 measure the performance of queries for Java
methods.

The addition of the dynamic Java sphere has a mixed effect, with
some types of elements causing longer query times and others lead-
ing to shorter query times. The increased times are likely due to
occurrences of JDT interface methods: the conversion of JDT meth-
ods to TPTP methods required for the was-invoked relation (Sec-
tion 3.2) requires first expanding the interface method to its im-
plementors, which are then converted to the native TPTP methods,
which slows the operation. The decreased times are likely benefit-
ing from the faster projection times from the TPTP queries, which
are done from an in-memory representation.

Although these times are not instantaneous, they are generally
faster than the times required by a human to visit and combine
the results of queries between multiple tools. These times can
also be improved by using better-suited query back-ends. For in-
stance, Ferret currently uses the JDT search facilities for static Java
searches, which defers most of the processing required for a search
to search time. Other search back-ends might optimize search time,
which would be better for Ferret since it issues multiple queries at
once.

4. FERRET IN USE
Having implemented 36 queries from a variety of sources, we

now turn to the question of whether these conceptual queries are
useful to programmers.

1Timings were performed for ARGOUML 0.13.6 (1605 Java
classes), running on a Lenovo ThinkPad T60 2GHz Core Duo
with 1GB of RAM using the Sun JDK 1.5.0_11-b03, Ferret
0.3.0.200708261920, Eclipse SDK R3.3.0 with 36 open projects.
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In an earlier controlled study, we sought to compare programmer
performance using several software exploration tools, including an
earlier version of Ferret. In this earlier laboratory study, Ferret was
equipped only with the static Java sphere. Thus this study did not
support investigation of multiple spheres nor how and when pro-
grammers might use the conceptual queries supported by the sphere
model and the Ferret tool. We wished to investigate how program-
mers used Ferret during their day to day work. More specifically,
we sought to discover:
• Which conceptual queries implemented in Ferret are useful to

programmers?
• Is the composition of static and dynamic program information,

which have some overlap in their concrete queries, useful?
• Are there features of Ferret that programmers find particularly

useful?
To answer these questions, we undertook a diary study. We re-
cruited four professional Java programmers from a large company
to use Ferret during their day-to-day programming activities. The
programmers were working on their own familiar codebases. Each
programmer was equipped with a version of Ferret instrumented
to record the queries used. This version of Ferret included the JDT,
PDE, and TPTP spheres; we were unable to use the evolution-related
queries as our repository library software was not compatible with
their repository software. We provided a 20-minute tutorial on con-
figuring and using Ferret. As we had found in previous studies that
programmers often revert to using the tools with which they are
familiar, we included some monitoring software to remind the pro-
grammers of Ferret should they undertake long periods of searching
or exploration without using Ferret. The programmers were asked
to maintain a journal, reflecting on their usage, as well as recording
any events when Ferret failed to do something or surprised them
in some fashion. We interviewed the programmers at the end of
their first day, asking about their usage of Ferret and discussing the
events recorded in their journal. We retrieved the instrumentation
logs and journals at the conclusion of the study.

The diary study was originally scheduled to last two days. We
anticipated that programmers would spend the first day learning to
use the tool and determining how to incorporate it into their explo-
ration strategies. We anticipated the programmers would be able to
use the tool productively on the second day. We staggered the pro-
grammers so as to allow one-on-one attention for the first day. We
did not initially schedule more time for the diary study because we
did not believe we would be able to recruit programmers for use
of an experimental tool in their daily work for a longer period of
time. Some programmers volunteered to extend the study beyond
the two days (P1–P3), and some programmers reported continuing
to use the tool beyond the end of the study (P2,P3).

4.1 Results
Three of the programmers used an integration of two spheres (the

static Java and PDE spheres), and one programmer used the integra-
tion of three different spheres (the static Java, PDE, and dynamic
Java spheres). The programmers provided limited journal entries,
generally recording questions or small usability or performance is-
sues. The monitor logs provided a record of Eclipse and Ferret
use, and the programmers were able to provide feedback during the
end-of-day interview.

The programmers reported finding Ferret useful. The program-
mers used almost all of the conceptual queries provided by Ferret
that were available to them. Table 2 reports the average use of
each query. Not surprisingly, the most heavily used queries corre-
spond to common queries in Eclipse. For instance “what calls this
method?” accounted for 28% of the usage. For 3 of the 4 partic-

ipants, this query would have returned the same results as Eclipse
because they were not able to make use of the TPTP integration.
However, the data in Table 2 also shows the programmers used
some queries more than once that are not supported by JDT. For
example, the intra-class queries for “what {fields, methods, types}
does this element access?” were used surprisingly often.

P4 was the only programmer to use the TPTP integration to incor-
porate dynamic runtime information.2 P4 created a trace to exam-
ine some anomalous run-time behaviour exhibited by a particular
set of unit tests. He reported that having the ability to see only what
was actually called was useful because it eliminated spurious calls
made from other tests.

Table 4 presents the usage statistics over the course of the period
of the study. The ‘# Days Used’ and ‘Eclipse Usage’ columns in-
dicate the total time that each programmer used Eclipse: the days
column records workdays, and the usage column as assessed by
accumulating the time between events in the monitoring logs, less
any gaps of four minutes or more. This table lists the number of
explicit invocations of Ferret (‘Invoked’); the number of cascad-
ing invocations (‘Cascaded’), where Ferret was triggered in-place
from a previous result; and the number of query expansions (‘Ex-
panded’), where a programmer examined the results of one of the
queries. Also included are the number of times where a program-
mer caused the results of a query to be clustered by some attribute
(‘Clusterings’), and the number of Eclipse-based searches made.

The fact that expansions were used more than invocations and
cascades indicates that the programmers generally looked at the
results of several queries per invocation.

P3 made particularly heavy use of the clustering, primarily to
cluster by package type. He noted that some of his queries had a
large number of results, and he was only interested in those from a
particular project which were all in a single package.

P1 and P3 both used a small number of Eclipse-based searches
during their sessions. The general lack of use of Eclipse-based
searches indicates that Ferret seemed to have provided a suitable
mix of conceptual queries. P1 explained that he knew precisely
what he was looking for, and although Ferret could have returned
the information, he did not want to wait for Ferret to find the re-
sults. P3’s queries were for occurrences of text strings, which does
not match Ferret’s focus on conceptual queries.

4.2 Validity
We chose to focus on realistic work by real programmers. The

use of a small number of programmers from the same company,
and over a small period of time, may limit the generalizability of
the results. A more extensive discussion of threats to validity are
available elsewhere [7].

5. DISCUSSION

5.1 Extending Ferret
The sphere model is designed to be extensible to handle the def-

inition of other conceptual queries. The model can easily accom-
modate, for instance, the definition of new composition functions.

The Ferret tool is designed to be extensible: spheres, concep-
tual queries, sphere composition functions, type conversions, and
clusterings are all configured through a set of extension points in
Eclipse. These elements are assumed to have been configured or
implemented by some provider, such as a tools-support group.

2P1 and P2 were not able to use the TPTP integration due to prob-
lems with their installation which prevented its use; P3 reported not
being in a situation where he felt he needed it.
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Table 4: Ferret usage over the course of the diary study.
Ferret Queries

Id
# Days
Used

Eclipse Usage
(hh:mm) Invoked Cascades Expanded Clusterings

# Eclipse
Searches

P1 4 20:24 47 43 107 7 9
P2 3 14:20 20 10 50 2 0
P3 3 14:53 31 20 66 38 2
P4 2 9:04 10 9 54 2 0

5.2 Conversions Are Not Symmetric
Some conversions are not as straightforward as might be thought.

This is illustrated by the JDT to Kenyon conversions. We initially
supposed that the individual JDT element types would correspond
to all the editions of that element in the repository (a Kenyon Node).
We realized this conversion implied that a programmer would re-
gard all editions as being the same — which is not true.

We instead convert the JDT elements to an intermediate handle
representation. The Kenyon repository history is then queried for
the editions of this handle. The individual editions of a handle ele-
ment can be converted to JDT element.

5.3 Presentation Issues
Much of the feedback from the programmers from our diary

study involved improving the presentation of results in Ferret’s view.
Presentation of data is a subject fraught with cultural and personal
preferences. We have deliberately chosen to avoid presentational
issues as much as possible by using the standard presentation mech-
anisms in Eclipse’s JFace, such as simple tree views. This is an area
for future work.

6. RELATED WORK
In considering previous efforts related to the sphere model and

Ferret, we restrict ourselves to efforts that seek to integrate different
sources of program information.

6.1 Integrating Dynamic and Static Views
Richner and Ducasse [23] describe an approach to integrate static

and dynamic information using logic programming. They use logic
queries to drive program visualizations. As their implementation
was centred around Smalltalk, which has no reification of inter-
faces, they did not encounter the valency issues in conversions.

Shimba [29] integrates static with dynamic information to pro-
duce UML-style sequence diagrams and state diagrams. Upon the
selection of some subset of the classes or methods, Shimba instru-
ments the program to produce either a sequence diagram represent-
ing interactions between selected objects, or a state diagram repre-
senting the control flow behaviour of the selected object or method.
Shimba’s focus is on the production of particular views rather than
on a model to integrate different kinds of program information.

6.2 Tool Integration
A number of approaches have focussed on integrating tools, such

as unifying different user interfaces and data requirements. Sev-
eral different levels of integration have been recognized, from pre-
sentational aspects, to sharing of data formats, to co-operation and
notification between tools [32]. These approaches aim to support
(i) the automated production of new software artifacts in response
to changes to other artifacts [35, 13, 22], (ii) reconciling incon-
sistencies between artifacts from different stages of the software
development life-cycle [6, 3], or (iii) facilitating the sharing of the
external artifacts produced by different tools [28, 18]). We take

a different approach by focusing on the use of integration of dif-
ferent sources of program information to provide better support to
programmers during exploration of the source code.

Other groups have focussed on defining meta-models to express
correspondences between software artifacts so as to support reason-
ing [19, 1, 14]. These approaches generally support only coarse-
grained artifacts, and assume a one-to-one mapping.

Garlan’s views [12] is perhaps closest to our work. Tools within
a development environment, for instance, an editor and a compiler,
often require different perspectives on similar data to perform a de-
sired action. To avoid duplication of data in such an environment,
Garlan proposed the use of views that together formed a logical
database over which all tools in the environment could operate.
One can ask whether Garlan’s approach could be used to imple-
ment conceptual queries by considering each query as a tool. We
believe this approach is not feasible because Garlan’s model does
not easily support the transformation and combination of the result
sets of queries over the data being represented. Our intent is not
to enable tools to work together to achieve their intended goal, but
rather to gather from a programmer’s perspective the results that
such tools produce.

A final set of related work involves type conversions. PTOLEMY
[36] and BALBOA [9] provide systems for lossless type conversions
when selecting components for use in component-based modelling
and design. Wing and Ockerbloom [33] describe respectful type
conversions, where a conversion A → B is characterized by the
properties preserved as expressed by another type T . These con-
versions assume a one-to-one mapping.

6.3 Cross-artifact Search Tools
Both GSEE [11] and SEXTANT [24] support integrating other

sources of information other than the static source code. SEXTANT,
for instance, supports integration of the relations embedded in En-
terprise Java Beans deployment descriptors. However both of these
approaches assume that there is a direct correspondence between
elements shared between the different artifact domains. In addi-
tion, neither tool considers how to reconcile the choice of different
implementations of the same query. The sphere model addresses
both of these issues.

6.4 Query Languages
There have been a number of languages proposed for querying

software. Most have used a standard database language such as SQL
or Datalog (e.g., CodeQuest [10]), a Prolog-like implementation
(e.g., JQuery [17]), or a custom language (e.g., SCA [20]). None
of these approaches provide support for the expression of corre-
spondences between elements or for the automatic propagation of
queries across corresponding elements. These languages also do
not consider how to reconcile the choice of different implementa-
tions of the same query. Ferret addresses these issues, but we have
not yet determined the range of conceptual queries that the sphere
model can support.
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7. CONCLUSIONS AND FUTURE WORK
At one time, programmers had to extract information manually

from source code to answer questions about a program. As pro-
grams grew more complex, tools were developed to help answer
some of a programmer’s question(s). These tools continue to be-
come more and more sophisticated and able to efficiently answer
more and more of a programmer’s questions. Despite this progress,
many of a programmer’s questions about a program still require sig-
nificant manual work to determine which tools can provide a piece
of the answer and how to integrate the results of multiple tools to
get closer to a complete answer.

In this paper, we introduce a model that alleviates the burdens
programmers face for a significant number of questions, which we
call conceptual queries. This model enables different sources of
information to be composed from a programmer’s perspective. We
have shown how this model can implement 36 conceptual queries,
many of which are derived from the literature, and some for which
there exists no current direct tool support. We have shown in a
small field study that practicing software programmers found a
number of these queries useful.

This work illustrates that it is possible to achieve deeper integra-
tion in an integrated development environment that goes beyond
tool to tool interactions, such as invoking one tool from another, to
integrating the results of the tools in a comprehensible manner for
programmers.
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