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ABSTRACT
In the course of a framework’s evolution, changes ranging
from a simple refactoring to a complete rearchitecture can
break client programs. Finding suitable replacements for
framework elements that were accessed by a client program
and deleted as part of the framework’s evolution can be
a challenging task. We present a recommendation system,
SemDiff, that suggests adaptations to client programs by an-
alyzing how a framework adapts to its own changes. In a
study of the evolution of the Eclipse JDT framework and
three client programs, our approach recommended relevant
adaptive changes with a high level of precision, and detected
non-trivial changes typically undiscovered by current refac-
toring detection techniques.

Categories and Subject Descriptors: D.2.7 [Software
Engineering]: Distribution, Maintenance, and Enhancement

General Terms: Documentation, Experimentation

1. INTRODUCTION
Application frameworks support large-scale reuse and free

developers from low-value programming tasks. By develop-
ing clients that integrate with the framework code, develop-
ers are able to customize and enhance the framework to suit
their specific needs. However, as the framework evolves,
changes ranging from a simple refactoring to a complete
rearchitecture can break client programs. To lower the cost
of adapting client programs to changes in the framework,
framework developers rely on a variety of techniques such
as automatically capturing and documenting some of their
changes [7, 10], providing migration paths [3], or deprecating
existing methods and indicating new replacements. Unfor-
tunately, current tools cannot capture changes more com-
plex than refactorings, and manually documenting a frame-
work’s evolution is not always cost-effective, especially for
fast-evolving frameworks. Although framework users are en-
couraged to only use public Application Programming Inter-
faces (API) as they usually provide a long-term contract of
stability, developers often use internal and undocumented
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parts of frameworks for a variety of good reasons, such as
accessing functionality that goes beyond the ones available
in the public interfaces [1].

A recent study of API evolution found that more than
80% of API-breaking changes were caused by refactorings,
and concluded that techniques aiming at documenting or
detecting refactorings were desirable [6]. The authors of
the study also mentionned that “Application developers will
have to carry only a small fraction [less than 20%] of the
remaining changes. These are changes that require human
expertise” [6, p.105]. To detect the largest portion of API-
breaking changes, i.e., refactorings, several approaches have
been proposed [5, 9, 13, 14, 20, 21].

Although refactoring detection techniques partially au-
tomate the tedious task of identifying and repairing small
changes such as a renamed method, refactorings tend to be
minor changes easily identified through a manual inspection.
Indeed, refactorings usually involve only one change dimen-
sion: name or location. For example, if a method is no
longer accessible in the new version of a framework, a devel-
oper can often simply perform a lexical search (“grep”) to
find similarly named methods (name dimension) or can look
in the same module to find potential replacements (location
dimension). However, it will generally be harder to repair a
client program if the framework went through major modi-
fications that led to non-trivial changes (e.g., a composition
of simple refactorings).

To help developers repair client programs that are affected
by the non-trivial evolution of a framework, we propose an
approach to recommend adaptive changes, a form of main-
tenance aiming at adjusting a software to comply with its
technological environment [15]. Our idea is to automati-
cally analyze how the framework was adapted to its own
changes, and to recommend similar adaptations. Basically,
if a method m1 is removed from the framework code, we can
identify all of the callers of m1 within the framework and
analyze how they were adapted to the removal of m1.

We implemented this approach for Java in a client-server
application called SemDiff. The SemDiff server component
is responsible for analyzing the source code repository of
a framework and for inferring high-level changes such as
method additions and deletions. The client component takes
as input calls to methods that no longer exist in a framework
and produces recommendations in the form of recommended
replacement methods, accompanied by a confidence value.

We evaluated the effectiveness and the need for our ap-
proach by using SemDiff in an historical study of one frame-
work in which we recommended adaptive changes for three
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broken client programs. We then compared our results with
the recommendations of a typical refactoring detection tool.
Our study showed that our approach provided a relevant
functionality replacement for 89% of the broken methods,
detected non-trivial changes that were more complex than
refactorings, and could recommend methods from external
libraries that replaced a framework’s functionality, a change
that is typically not detected by other techniques.

The contributions of this paper include (1) a technique
to automatically recommend adaptive changes in the face
of non-trivial framework evolution, (2) the architecture of a
complete system to track a framework’s evolution and infer
non-trivial changes, and (3) an historical study on the re-
design of a framework component that occurred in Eclipse,1

providing evidence for the effectiveness for our system.
In the remainder of this paper, we present a sample sce-

nario that illustrates the difficulties associated with non-
trivial framework evolution (Section 2). We then describe
the principles and implementation details underlying our ap-
proach (Section 3) and present a study on the evolution of
the Eclipse Java Development Tool (JDT) framework (Sec-
tion 4). We conclude with an overview of the related work
(Section 5).

2. SAMPLE SCENARIO
Let us now consider the concrete case of a developer who

decides to reuse internal classes of the Eclipse framework in
a client program. In Eclipse, classes that are in a package
containing the word internal are, by convention, not part
of the supported API. It is generally understood that inter-
nal classes can change from one version of the framework
to the other and that no documentation (e.g., javadoc) or
migration path is provided.

One of the classes the developer considers for reuse, org.-
eclipse.jdt.internal.corext.util.TypeInfo, is contained in
the org.eclipse.jdt.ui plug-in in Eclipse release 3.2. This
class, along with several others, such as TypeInfoFactory,
TypeInfoUtil and OpenTypeHistory, provides a lightweight
API for searching and displaying Java type information (e.g.,
a type name, package name, or access modifiers).

When Eclipse 3.3 is released, the developer loads the client
project in the development environment, which automat-
ically tries to build the developer’s program against the
new version of the framework. At this point, the developer
discovers that the compiler generates multiple compilation
errors, because the TypeInfo class and its methods are no
longer accessible in Eclipse 3.3. The developer then starts
exploring the source code of the new version of Eclipse in
the hopes of finding a suitable replacement for these miss-
ing methods, searching for a class with a name similar to
TypeInfo. Seeing a few classes named TypeInfo, the devel-
oper quickly realizes that they are defined in external li-
braries and that no similarly-named classes provide the re-
quired functionality. The developer then moves on to see if
the missing class is in the same package but under a different
name. Again, no classes are found with the same functional-
ity. Moreover, the TypeInfoFactory and TypeInfoUtil classes
also have disappeared from this package.

Having ruled out a simple refactoring, the developer then
looks at other classes that used to depend on TypeInfo and
sees that some of them now refer to the org.eclipse.jdt.-

1www.eclipse.org
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Figure 1: SemDiff Overview

core.search.TypeNameMatch class. Unfortunately, the devel-
oper finds that this class is not a perfect replacement for
TypeInfo, as TypeNameMatch resides in another plug-in (org.-
eclipse.jdt.core), and its interface is much smaller (8 meth-
ods declared in TypeNameMatch versus 23 methods in Type-

Info). At this point, the developer still does not know how
to replace one of the missing classes and it becomes clear
that reverse-engineering part of the framework will be nec-
essary as the changes involving the TypeInfo class were more
than cosmetic.

As illustrated by Figure 2, our SemDiff approach can make
the process of adapting a client program to an evolving
framework more efficient by (1) providing adaptive change
recommendations (bottom frame), and (2) providing a source
code example that illustrates how the framework was adapted
to its own changes (top frame). As opposed to current ap-
proaches that display a list of refactorings [5, 14, 20] or
change patterns [13] and that require the user to figure out
what the relevant refactorings are in a given situation, Sem-

Diff starts with a request to repair a broken call and re-
turns a list of potential replacements ordered by a confidence
value. By providing examples extracted from the frame-
work’s source code, SemDiff can also help developers validate
the recommendations and choose among alternatives.

3. SEMDIFF
Figure 1 provides an overview of the SemDiff implemen-

tation. SemDiff consists of a set of Eclipse plug-ins form-
ing a client component (the recommender) and a server
component (represented by the source repository analysis
framework). We first present the main strategies underlying
the recommender, describe how the server infers high level
changes from the source repository, and cover in detail one
of the analysis performed by the server.

3.1 Adaptive Change Recommendations
Developers can send requests to the recommender to re-

ceive suggestions of adaptive changes. With SemDiff, a de-
veloper selects a call that can no longer be resolved with
the new version of a framework (e.g., a call to a method
of the TypeInfo class presented Section 2), and queries the
recommender for potential replacements. The recommender
then formulates recommendations by using an analysis of the
high level changes inferred by the source repository analysis
framework. Using call differences. We base our recom-

mendation strategy on the hypothesis that, generally, calls
to deleted methods will be replaced in the same change set
by one or more calls to methods that provide a similar func-
tionality. Thus, by using differences in outgoing calls for a
given method during a framework’s history, we can see how
a framework was adapted to its own changes. For example,
in Figure 3, method m1 is removed between two versions. If
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Figure 2: The SemDiff Recommendations View (bottom) displays the recommendations to replace the Type-
InfoFactory.create() method and the Compare Editor (top) shows how the framework was adapted to its own
changes.
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Figure 3: Using method call changes

we want to find a suitable replacement for m1, we first find all
of the methods where a call to m1 was deleted (e.g., methods
caller1 and caller2 in Figure 3). Then, we gather all calls
that were added in these methods as part of the the same
change set (e.g., m2 and m3). Since we expect that methods
might be adapted along with additional changes, we sort
added calls by a confidence metric to provide a ranking of
the potential replacements. Assuming that we only look for
change sets made prior to an implicit target version v, we
define the confidence value of a method n that replaces a
call to method m with the following equations:

Rem(m) := {x | x is a method that removed a call to m}
Add(m) := {x | x is a method that added a call to m}

Callees(m) := {x | m calls x}
Callers(m) := {x | x calls m}

Potential(m) :=
⋃

x∈Rem(m)

Callees(x)

Support(m, n) := |Rem(m) ∩Add(n)|

Confidence(m, n) :=
Support(m, n)

Max(
⋃

c∈Potential(m) Support(m, c))

x

n

o

y

m-
-

+

++

Rem(m)

Potential(m)

Callees(y)

Add(n)

Support(m,n) = 1

Confidence(m,n) = 1/2 = 0.5

Figure 4: Support and confidence of a replacement

Figure 4 shows an example of each of the above defini-
tions in the context of requesting a replacement for method
m. The confidence metric of a recommendation n to replace
a method m is the ratio of the recommendation’s support
to the maximum support for all potential recommendations.
The confidence metric is therefore a normalized value with
a range of ]0, 1] that is used to compare the relevance of the
recommendations. For example, if o is the recommendation
with the highest support, 2, and recommendation n has half
of this support, 1, n will have a confidence of 50% (0.5). Be-
cause the support is bounded by the number of callers of the
removed method (|Rem(m)| ≤ |Callers(m)|), we hypothe-
size that the framework will have a sufficient amount of calls
to its own methods so relevant recommendations can be dis-
criminated from irrelevant ones. Section 4.2 shows how this
hypothesis held in practice.

When looking for a replacement for a method m, we search
for the methods that removed a call to m and not all callers
of m. Moreover, we do not care if method m still exists.
This enables us to get recommendations (1) for methods

483



caller1 caller1caller1
m1

m2 m2

m3m1

version 1 version 15version 10

Figure 5: Changes chain

caller1 caller1 m1

m2

m1

version 1 version 2

caller2
parent

Figure 6: Callee and caller are deleted together

that are deprecated but still accessed by a subset of the
framework or (2) for methods that are replaced before they
are actually deleted. This is one difference with previous
approaches that use the addition and deletion of methods
as the basis for detecting changes and refactoring [13, 14,
20, 21].

Change chains. It is possible that during the course of a
framework’s evolution, a method is replaced several times,
i.e., it is part of a change chain. As illustrated by Figure 5, a
method might be renamed once in one version and renamed
a second time in another version. Additionally, since we
study the evolution of a framework at the change set level, it
is probable that we will come across small changes that were
never accessible to client programs (e.g., a method name was
misspelled and corrected in the next change set, a developer
reverted to the old version of a class, etc.).

To account for these situations, we must slightly modify
the strategy defined above to detect whether a method is
part of a change chain. Indeed, we do not want to recom-
mend a method that changed subsequently and that is no
longer accessible or relevant. One solution would be to auto-
matically check if the recommended call exists in the frame-
work version used by the client program. Unfortunately, this
is not an adequate solution if the recommended method is
deprecated or if the method is no longer used by the frame-
work but was not removed. We thus rely on a different
heuristic to determine whether a recommendation is part of
a change chain. If we find that some methods calling the
recommended method removed a call to the recommended
method later, we conclude that our recommendation is prob-
ably in a change chain and the initial recommendation might
still be valid. If we find that all methods calling the rec-
ommended method removed the call to the recommended
method, we conclude that this recommendation is part of a
change chain and we discard the recommendation because
it is no longer relevant.

Once we have identified a recommendation as being part
of a change chain, we reapply the call difference analysis de-
scribed above to find a more relevant recommendation. This
is illustrated in Figure 5 where our system would recommend
to replace a call to m1 by a call to m3.

Caller stability. Because our strategy only relies on the
outgoing call relationship, it is sensitive to the stability of
callers throughout the framework’s evolution. For exam-
ple, Figure 6 shows a situation where both the requested
method, m1, and the caller, caller1, are deleted in the same
change set. In this situation, the caller cannot be used to

find a replacement for the requested method. To cope with
this issue, we first need to find a replacement for the deleted
caller and then, we can recommend the methods that are
called by the caller replacement minus the methods that
were previously called by the deleted caller. Figure 6 illus-
trates the case where caller1 was replaced by caller2 and
caller2 replaced a call to m1 by a call to m2.

When finding a replacement for a caller method, SemDiff

can generate multiple recommendations (e.g., the method
was splitted, there are truly multiple relevant replacements,
false positives, etc.). To reduce the impact of false posi-
tives, we first remove from the potential caller replacements
all recommendations that have a confidence value below a
certain threshold (0.6) and then, we perform the call dif-
ference analysis on each of the remaining recommendations.
We chose a threshold of 0.6 because it appeared to offer the
best results during initial prototyping of the approach.

Spurious call removal. When finding a replacement for a
method m1, SemDiff looks for change sets where a call to m1

was removed because this is typically where the framework
will be adapted to a change concerning m1. It is possible
though that a call to m1 is removed in one place and added
in another place in the same change set (e.g., the caller was
refactored, the caller was made more cohesive and the call to
m1 was moved elsewhere, etc.). In these cases, the framework
is not being adapting to the loss of m1 since it is still calling
it elsewhere. To make sure our analysis does not take into
account these spurious call removals, SemDiff will ignore all
change sets where the requested method call (e.g., m1) was
removed from one caller and added in another caller.

Complexity. The main factors affecting the computational
complexity of SemDiff’s algorithm are the number of meth-
ods that removed a call to the queried method, the number
of different added calls, the maximum change chain length,
and the maximum length of unstable callers. A complete de-
scription of SemDiff’s algorithmic complexity is not possible
due to space constraints.

Viewing recommendations. The recommendations pro-
duced by SemDiff are presented to the user in the Eclipse
development environment and take the form of a list of
methods, ranked by their confidence value. The user can
also double-click on a recommendation to open the Eclipse
compare editor with one example where the recommended
method replaced the broken call. This allows the user to un-
derstand why this particular recommendation was provided
and see how the framework was adapted to this change.

Current limitations. A number of factors constrain the
applicability of our approach. The most important limita-
tion is that the framework cannot issue recommendations for
root methods, i.e., methods that are never called within the
framework. Classes that are called back by other libraries
or protected methods that are called by a parent class not
in the framework will hinder the ability of our approach to
make adaptive change recommendations. One solution to
the problem of root methods is to include in our analysis
example programs that depend on the framework and that
were adapted to its various versions. In practice, however,
we expect changes to root methods to be significant, and as
such to be more likely to be documented.

Although our approach can make multiple recommenda-
tions per request, it does not group the recommendations
together. For example, a call to method m1 might have been
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// method m1 in Bar.java, version 1.1

private void m1 {
System.out.println();

}

// method m1 in Bar.java, version 1.2

private void m1 {
System.out.print(Math.random());

}
Figure 7: Outgoing call differences

replaced by a call to methods m2 and m3. Our approach will
present those two calls as two separate recommendations
with, possibly, a different confidence value. To help a user
identify relationship between recommendations, SemDiff dis-
plays the code where the changes happened: automatically
inferring those relationships remains an area for future work.

Finally, adaptive changes proposed by SemDiff might not
be semantically equivalent to features that need to be re-
placed, and blindly applying the recommended changes with-
out proper testing could lead to serious flaws. Other research
projects currently aim at generating test cases to ensure
that the semantic of a program is preserved when apply-
ing a refactoring [4]: it is possible that our approach could
directly benefit from such developments.

3.2 Analyzing source code history
To provide adaptive change recommendations, SemDiff

must first analyze a framework’s source code repository by
(1) retrieving the files and change data for each version of
the framework, (2) running several analyses to infer high-
level changes such as structural and method call differences,
and (3) storing those high-level changes in a database for
future use by our recommendation system.

Source Repositories. Currently, SemDiff provides adap-
ters to retrieve information from CVS2 and Subversion (SVN)3

repositories. SVN has the concept of change set embedded in
its protocol, which makes it easy to retrieve and group files
that were changed together. On the other hand, CVS does
not group file changes and some preprocessing of the repos-
itory log file is needed to infer change sets. We employed a
technique previously used to mine CVS repositories to re-
trieve the change sets [20, 23]: we group all log entries that
occurred within a certain time window (300 seconds) and
that shared the same user and log message. This concept of
time window is essential to capture transactions that could
span across multiple seconds [22].

The merging of branches is another issue that arises when
analyzing software repositories. This operation is not explic-
itly documented by neither CVS nor SVN. Detecting merges
is important because we do not want to analyze the same
change twice: one in the branched version and one in the
merged version. To detect merges, we employed a simple
heuristic used in previous work on source repository min-
ing [20, 23]: we ignored change sets involving more than 40
files.

Change Analysis. For each change set, SemDiff can run
custom analyses to infer high level information such as the
removal or addition of methods from the raw line difference
data provided by the repository. This high level informa-
tion is then used by our recommender. Because we only
retrieve the files that were added, removed or modified in

2www.nongnu.org/cvs/
3subversion.tigris.org

1: import package1.*;

2: import package2.*;

3: import package3.Y;

4:

5: class Foo {
6: void doSomething(Y obj) {
7: obj.x();

8: obj.a = 2.2;

9: doThis(Util.method2(obj,obj.a));

10: Util.method3().method4();

11: }
12:

13: void doThis(Z z) {
14: System.out.println(z);

15: }
16: }

Figure 8: Partial Program Analysis Example

each change set, we always perform analyses on a subset of
the program, which limits the types of analysis that we can
perform. For example, it might be impossible to fully resolve
the target of a call in a given source file if the class defin-
ing the callee is not part of the change set. Analyzing each
change set (as opposed to analyzing major revisions) po-
tentially makes the analysis of the program evolution easier
because we can break down a non-trivial change into smaller
and incremental changes (i.e., change sets). Combining the
granularity of the change set with the quality of full pro-
gram analysis by building the whole framework after having
retrieved each change set would be possible but not prac-
tical: project configuration (e.g., how to build the project)
can evolve over time and differ from one project to the oth-
ers and performing full program analysis on thousands of
change sets would take too much time to be valuable.

We perform two analyses on every change set in the frame-
work’s version history. The first analysis, StructDiff, pro-
vides a list of all methods that were added, removed and
modified. The second analysis, CallDiff, finds the calls that
were added or removed between two versions of each method
identified by StructDiff. For example, in Figure 7, CallDiff

would indicate that between version 1.1 and version 1.2,
the call PrintStream.println() was removed and the calls
Math.random() and PrintStream.print(double) were added.
Because we perform this static analysis on a subset of the
program source, we must rely on a custom parser and ana-
lyzer presented in Section 3.3.

Persisting changes. After the execution of the analyses
for a change set, the results are stored in a PostgreSQL
database4 and made available to our recommender.

3.3 Partial Program Analysis
With Java, most parsers and static analysis programs fail

to reconstruct the complete type hierarchy if they only re-
ceive as input a subset of the program source code with-
out the dependencies and the rest of the program (in the
form of source or binary). A few parsers, like the one pro-
vided by the Eclipse Java Development Tool framework, can
construct abstract syntax trees (AST) from a subset of the
program source code, but the information they provide is
incomplete. For example, in Figure 8, the Eclipse parser
would be able to recognize that in method doSomething(),
there is a call to a method named x at line 7, but it would
not indicate its target, an object of type Y, because it is an
unknown class. To enable the analysis of partial programs,

4www.postgresql.org/
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we modified the Soot Java static analysis framework [19]
and the Java source parser it uses, Polyglot [16].

Our implementation of Partial Program Analysis first re-
places every occurrence of unknown types by a placeholder
type: UNKNOWN. Then, it tries to conservatively infer the ac-
tual type of the placeholder types by analyzing how the
various unknown types are used. For example, our an-
alyzer would infer that the following methods are called
in doSomething(Y): Y.x(), Util.method2(Y,double), Foo.do-

This(Z), Util.method3(), and UNKNOWN.method4().
We configured our partial program analyzer so that the

inferred type will always be in the hierarchy of the formal
(defined) type, i.e., it will be a subtype, a supertype or the
same type as the formal type. For example, our analyzer
infers that the method Util.method2() on line 9 returns an
object of type Z, even if this method might be defined to
return a subtype of Z. It follows that the inference result, Z,
is not equals to the formal type, but it is in its hierarchy.
Inferring a hierarchy-related type is still more precise than
inferring that the return type is UNKNOWN or Object.

The recommender also needs to take into account that
the type information of a call might be incomplete. In the
worst case, it might be impossible to know the target and the
parameter types of a call. This is the case of method m1 in
the following example, if that we do not have the definition
of myObj’s type.:

myObj.myMethod().m1(myObj.myOtherMethod())

Polymorphism can also be an issue. In the next example,
the calls at line 2 and 3 refers to the same method, but our
partial program analysis would treat them as two different
calls, ArrayList.add(Object) and ArrayList.add(String), if
we do not have the definition of ArrayList.

1: List list = new ArrayList();

2: list.add(new Object());

3: list.add(new String());

This lack of accurate type information can be a serious
problem for common method names, such as add and remove.
Indeed, if we want to find a replacement for a method
add(Object) that is no longer accessible, we cannot search
for all methods that removed a call to a method named add

with one parameter: we would probably retrieve a lot of false
positives coming from other irrelevant classes that defined a
similar method. Currently, we try three matching criteria,
starting from the strictest one, until we can find calls. We
first try to find methods that removed a call sharing the
same name, number of parameters and target type as the
call we want to replace. If we do not find such methods, we
then try to find calls that share the same name, number of
parameters and parameter types. Finally, if this still does
not return any results, we then try to find calls only by their
name and number of parameters. The complete details of
our partial program analysis algorithms can be found in a
separate report.5

4. EVALUATION
The main strategy underlying SemDiff relies on a number

of hypotheses we made on framework evolution. We de-
signed a study to assess the validity of these hypotheses and
to evaluate the effectiveness of our approach. This study
helped us answer the following questions:

5www.sable.mcgill.ca/publications/techreports
/#report2007-6

1. Can SemDiff recommend to a client program adaptive
changes that replace a functionality deleted during a
framework’s evolution?

2. Is the confidence value good enough to discriminate
relevant recommendations from false positives?

3. Can SemDiff detect changes more complex than refac-
torings?

4.1 Study Design
To answer the above questions, we performed an histori-

cal study of one framework and three client programs. We
used SemDiff to adapt an old version of a client program to
the new version of the framework. We then compared our
adaptation recommendations to the historical (real) adap-
tation of the client program. To evaluate the complexity
of the changes that occurred during the framework’s evolu-
tion, we also used a refactoring detection tool to analyze the
framework’s history and provide recommendations to client
programs.

In summary, for each client program, we selected two ver-
sions (c1,c2): one that was using an old version of the frame-
work (f1) and one that was using the most recent version
(f2). We then tried to compile the c1 version of each client
program with the f2 version of the framework. For each
method call in the client program that could not be resolved
or that was deprecated (as determined through warnings
based on the use of the @deprecated javadoc tag), we used
the SemDiff recommender and a refactoring detection tool
to see if we could find a suitable replacement for the broken
method call. We then analyzed the c2 version of the client
program to see if the recommended methods were called.

Target systems. We chose the Eclipse Java Development
Tool (JDT) platform as the framework to analyze in our
study. This framework is large enough to provide evidence
that our approach scales, its source history is publicly avail-
able, it is actively maintained and has a large ecosystem
of client programs. We chose to study two modules of this
framework, the org.eclipse.jdt.core and org.eclipse.jdt.-

ui plug-ins from version 3.1 to 3.3. These plug-ins are mainly
responsible for the Java compiler and Java editor in the
Eclipse development environment and, in our experience,
client programs that depend on JDT always depend on at
least one of those two plug-ins. From release 3.1 to release
3.3, the jdt.core and jdt.ui plug-ins grew respectively from
222 to 261 kLOC and from 256 to 311 kLOC. We chose to
study those plug-ins across three major revisions (3.1, 3.2
and 3.3) to increase the odds of finding non-trivial changes
and change chains.

Finding suitable client programs was an harder task. We
needed client programs that (1) depended on JDT, (2) had
been adapted to the two versions of the framework we stud-
ied (3.1 and 3.3), and (3) replaced a functionality that dis-
appeared during the framework’s evolution by a function-
ality provided by the last release of the framework. We
ran into several cases where the last condition was not met.
For example, the AspectJ Development Tool6 client program
copied entire classes from JDT release 3.1 into its own code
base instead of calling a new JDT functionality. Another
JDT client program, the Eclipse Modeling Framework,7 re-
placed a deprecated framework functionality with its own

6www.eclipse.org/ajdt/
7www.eclipse.org/modeling/emf/
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Client Eclipse 3.1 Eclipse 3.3

Mylyn 0.5 2.0
JBoss IDE 1.1 1.5
jdt.debug.ui 3.1 3.3

Table 1: Client program versions

implementation. We could not use such client programs
because they did not provide an oracle for the quality of
the recommendations. However, such dramatic adaptation
strategies further motivate our work by providing anecdo-
tal evidence that adapting client code to new versions of a
framework is a challenging and costly endeavor.

We found three client programs that met our study crite-
ria: Mylyn [12], a task-focused environment, JBoss IDE,
a development environment for the JBoss web application
server, and jdt.debug.ui, the Java debugging environment
in Eclipse. Table 1 gives the client program versions used
for Eclipse 3.1 and Eclipse 3.3.

SemDiff. We used SemDiff to analyze the source history
of the Eclipse framework. SemDiff processed 10127 change
sets for the two jdt plug-ins in the Eclipse CVS repository
from January 2005 to July 2007, as Eclipse 3.1 and 3.3 were
respectively released on June 27 2005 and June 25 2007.
Because work on Eclipse 3.2 might have begun before the
release of Eclipse 3.1 (e.g., in a branch), we started to study
the framework in January 2005 instead of June 2005.

Once we analyzed the framework’s source history, we tried
to compile the first version of the client programs with Eclipse
3.3. For each call to a framework method that was depre-
cated or that could not be resolved by the compiler, we ran
the SemDiff recommender and noted its recommendations.
We then looked at the version of the client program that
had been adapted to Eclipse 3.3: if the client program called
one of the top three recommendations for each broken call,
we considered it to be a relevant recommendation.

RefactoringCrawler. We also used a typical refactoring
detection tool to discriminate non-trivial changes that oc-
curred during the framework’s evolution from simple refac-
torings. We chose RefactoringCrawler [5] as it was easy to
use, configurable, readily available and representative of sev-
eral refactoring detection techniques; a more detailed com-
parison of such techniques is given in Section 5. In essence,
RefactoringCrawler takes two complete versions of a project
as input and gives a list of refactoring pairs (e.g., method
m1 was renamed to method m2).

Following the tool author’s recommendations,8 we con-
figured RefactoringCrawler to raise the number of detected
refactorings at the expense of a higher number of false pos-
itives by lowering several threshold values. Indeed, we did
not want to assess the accuracy of the tool, but use it as a
baseline to differentiate refactorings from non-trivial changes.
In addition to the jdt.core and jdt.ui plugins, we added
the jdt.ui.tests and jdt.ui.tests.refactoring to the set of
plug-ins analyzed by RefactoringCrawler to increase the in-
coming calls to the jdt.ui plug-in, which was required by
this approach to increase the odds of detecting refactorings.
We combined in one result set the detected refactorings from
the following three version pairs: 3.1 to 3.2, 3.1 to 3.3 and
3.2 to 3.3.

We then followed the same procedure as we did for Sem-

Diff: for each broken call in a the first version of a client

8D. Dig. Personal communication, 25 August 2007

Client Errors Scope SemDiff RC

Mylyn 13 8 8 0
JBoss IDE 21 15 15 0
jdt.debug.ui 28 14(19) 10 6

Total 62 37(42) 33 6

Table 2: Number of relevant recommendations by
SemDiff and RefactoringCrawler

program, we tried to find a refactoring involving the called
method. If we found such a refactoring and the refactored el-
ement was used by the second version of the client program,
we considered that the refactoring detection tool succeeded
in providing a relevant adaptive change and that this change
was a refactoring.

4.2 Results
Table 2 shows the results of our study. For each client

program, we list the number of compilation errors related
to the JDT framework (Errors), the number of errors within
the scope of our approach (Scope), the number of errors that
could be fixed based on the top three SemDiff recommenda-
tions (SemDiff) and the number of errors that could be fixed
based on the refactorings detected by RefactoringCrawler
(RC). The number of errors represents all deprecated ac-
cesses and all compilation errors (e.g., import statement re-
ferring to an unknown class, unknown parameter type when
declaring a method, unknown method call, etc.). For ex-
ample, in Mylyn, there were 13 errors related to the JDT
framework of which 8 were within the scope of our approach.
SemDiff provided relevant recommendations for 8 of them
while RefactoringCrawler detected no refactoring relevant
to these errors.

We consider an error to be within the scope of our ap-
proach if the type of the error is in the input domain of
SemDiff (or RefactoringCrawler). Because SemDiff takes as
input a method and gives as output a list of methods, we
only considered unresolved and deprecated method calls to
be within the scope of our approach. Errors such as un-
known import statements cannot be provided as input to
SemDiff so we did not try to fix them. Even if method rec-
ommendations can be indirectly used to fix these kinds of
errors, there was not always an objective way to measure
the success of our recommendations.

The two numbers in the Scope column for jdt.debug.ui
represent two interpretations of the scope of our approach.
Although there were 19 errors that are applicable to our ap-
proach, five could not be validated by following our exper-
imental methodology because the client program replaced
the missing functionality by its own implementation instead
of using methods in the new version of the framework. In
this case, even if our approach (or RefactoringCrawler) pro-
vided the correct recommendations, we would not be able
to assert this fact using the client’s history as an oracle. We
thus include 14 as the number of adaptation problems for
which there is an objectively verifiable solution.

The execution of the repository analysis framework took
16 hours on a Pentium D 3.2 Ghz with 2 Gb of RAM and
running Ubuntu Server 7.04. This analysis needs only to be
performed once before a user can make requests in differ-
ent disconnected sessions. On average, each request took 1
second to complete. Running the three analysis with Refac-
toringCrawler took 13 hours.
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version 1 version 2 version 3

<<Abstract>>
TypeInfo

TypeNameMatch

<<Abstract>>
TypeNameMatch

JavaSearch
TypeNameMatch

jdt.ui jdt.core

Figure 9: Evolution of TypeInfo into
JavaSeachTypeNameMatch.

Relevant recommendations. SemDiff found relevant rec-
ommendations for 89% of the problematic calls in the client
programs. For example, in Mylyn, SemDiff suggested two
relevant replacements with a confidence value of 1.0 for Type-
InfoFactory.create(...) which returned an instance of the
TypeInfo class presented in Section 2. Those two replace-
ments were a call to the JavaSearchTypeNameMatch construc-
tor and a call to the method SearchEngine.createTypeName-

Match(...), both returning a subclass of TypeNameMatch.
Again in Mylyn, SemDiff was able to correctly recom-

mend a call to OpenTypeHistory.remove(TypeNameMatch) which
replaced a call to OpenTypeHistory.remove(TypeInfo). Al-
though this change might appear to be a simple refactoring,
it was not detected by RefactoringCrawler as such. The
detection of this change also indicates that the heuristics
introduced to cope with the inevitable inaccuracy of Par-
tial Program Analysis succeeded to find a replacement to a
method with a common name.

Finally, in jdt.debug.ui, SemDiff was not able to provide
the correct recommendation for four methods. These are
protected methods defined in the class TypeSelectionDialog2

and accessed solely by this class. Because TypeSelection-

Dialog2 was deprecated but not removed in Eclipse 3.3, no
call to those four methods were removed and SemDiff could
not generate any recommendation. As an alternative strat-
egy, we asked SemDiff to find a replacement for a public
method of TypeSelectionDialog2, and this time, the recom-
mender suggested a method from a new class that was used
by jdt.debug.ui. Indeed, the framework was adapted to the
deprecation of a public method, but not to the deprecation
of the protected ones.

Confidence value. In most cases, the confidence value
was necessary to discriminate relevant replacements from
false positives because SemDiff produced an average of 7.1
recommendations per request. In average, there were 1.6
recommendations with a confidence value of 1.0 per request.
The support of the relevant recommendations had an aver-
age of 2.2 methods. Because this low support was enough
to distinguish relevant recommendations from bad ones, we
consider this to be evidence that our approach can work only
by analyzing the code of the framework itself and does not
require a set of examples using the framework.

Non-trivial changes. Although RefactoringCrawler found
319 refactorings between JDT releases 3.1 and 3.3, only one
of them was related to errors in the client programs we stud-
ied (the six errors reported in Table 2). This observation
provides evidence that our approach works in the face of
non-trivial changes. For example, in Mylyn, the suggestion
to replace a factory method involving the TypeInfo class with
methods related to TypeNameMatch was far from trivial: as il-
lustrated by Figure 9, this change spanned across the two
jdt plug-ins and was part of a change chain.

Another interesting recommendation was provided for the
JBoss IDE: SemDiff recommended to replace the construc-
tor of ListContentProvider with the constructor of Array-

ContentProvider. Although the former is located in the jdt.-

ui plug-in, the latter is located in the org.eclipse.ui plug-
in, which was not even analyzed by SemDiff. This shows
that SemDiff can provide recommendations when a frame-
work feature is replaced by an external functionality. Being
able to track changes that are outside the analyzed frame-
work could also enable us to recommend adaptive changes
related to a framework, but only by analyzing a subset of
its client programs. This would make our approach usable
even if the framework’s source code and source history were
not publicly available.

Finally, to detect non-trivial changes, SemDiff used the
three heuristics presented in Section 3.1 several times when
recommending adaptive changes to the three client programs:
change chains were detected in 6% of the requests, caller re-
placements had to be found in 6% of the requests and change
sets with spurious calls were removed 67% of the time.

Summary. SemDiff was able to recommend relevant adap-
tive changes in the face of framework evolution in 89% of
the time. The fact that RefactoringCrawler was only able
to detect a small subset of the changes that broke the client
programs indicates that a developer would probably have
struggled to find a suitable replacement for most of the bro-
ken calls. Arguably, even if a developer had found a replace-
ment, the low cost of SemDiff on the client side (each request
took an average of 1 second) makes our approach more effec-
tive in most cases. On the server side, SemDiff took less than
6 seconds to process each change set, which is typically faster
than the compilation of the framework or the execution of
test suites in a continuous build environment. SemDiff could
then be integrated with such environment without affecting
the development process.

4.3 Threats to Validity
The external validity of this study is limited by the fact

that we only studied the evolution of the Eclipse JDT frame-
work and it might not be representative of the code and evo-
lution patterns of other frameworks. Multiple factors such as
change set granularity, method cohesion, and programming
idioms vary between software projects and can affect our
approach. For example, the two first factors will introduce
noise while some programming idioms such as using long call
chains (e.g., m1().m2().m3().m4()) are likely to decrease the
precision of our call difference analysis. Still, the impact of
these factors on the results is mitigated by the strategies we
devised to prevent them (e.g., confidence value). Moreover,
because 21 developers contributed to JDT, we can reason-
ably assume that the results we obtained were not related
to a particular developer profile.

To evaluate the relevance of our recommendations, we an-
alyzed the evolution of client programs. Since we used his-
torical data, we can only speculate on why the methods we
recommended were called by the client programs. We cannot
assess how the developers would have used our recommen-
dations, although such an assessment would form a natural
next step in the evaluation of our approach.

Finally, by using client programs and a refactoring detec-
tion tool, we tried to limit the need for personal judgment
when assessing the relevance of a recommendation and the
complexity of a change. The choice of client programs is
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still subject to investigator bias, but this risk is mitigated
by the fact that the investigators had no control and were
not involved in the evolution of the selected client programs.

5. RELATED WORK
Supporting framework evolution is an active research area

and various techniques have been proposed with this goal.

Migration Path. A number of approaches have been pro-
posed to document framework changes and allow client pro-
grams to be automatically repaired. For example, trans-
formation rules [3] can accompany a framework to indi-
cate how calls to functions in the old framework version
should be modified in order to work with the new version.
CatchUp! [10] is a tool integrated in the Eclipse develop-
ment environment that captures refactorings explicitly ap-
plied (i.e. using Eclipse refactoring tools) by developers.
The captured refactorings can then be replayed in a client
program to repair broken method calls. Explicit support for
saving and replaying refactorings was introduced in Eclipse
3.3 in the form of Refactoring Scripts. As opposed to trans-
formation rules, our approach is fully automated and does
not require the framework authors to explicitly describe how
the client program should adapt to the framework. Our ap-
proach also captures more changes (e.g., non refactorings,
imported functionality) than the second technique as it is
not limited to explicitly applied refactorings. Moreover, au-
thor of the client program does not need to search through
a list of refactorings to find the one that is relevant to a
broken method.

Change Detection. Most refactoring detection techniques
refer to Origin Analysis [9] as the basis of their approach.
Origin Analysis is a semi-automated technique that aims at
tracing back to the source of a program element in a previous
version of the program to detect changes such as splitting
and merging. Similarly, if a refactoring detection technique
finds that a method e in version n-1 is the origin of method
f in version n, it will conclude that method e was refactored
to method f.

To identify the origin of a program element, refactoring
detection techniques use a variety of strategies based on pro-
gram element characteristics (e.g., name, location, outgoing
and incoming references, textual similarity) to assess the
similarity of two elements across two versions. If the simi-
larity of the program elements is beyond a certain threshold,
those techniques conclude that one is a refactored variant of
the other.

More precisely, techniques such as UMLDiff [21] analyze
code relationship similarity (e.g., calls, hierarchy, accesses,
etc.) between complete versions of a program to detect high
level changes such as refactorings. RefactoringCrawler [5] is
a similar but more lightweight alternative to this approach
that also analyzes some code relationships and uses Shin-
gle, a custom syntactic similarity analysis, on two complete
versions of a program to detect refactorings. A later im-
plementation of Origin Analysis [14] fully automated the
approach for Java, but also reduced the number of change
types that the technique detected to consider program ele-
ments renaming and move. Mining software repositories [23]
is another technique that can be used to track changes: by
analyzing a program’s evolution and detecting code clone
patterns (textual similarity), researchers were able to de-
tect refactorings [20]. Other researchers also used repository
mining to predict the likelihood of a class to be refactored in

the next two months [17] or to classify fine-grained changes
that occurred inside method bodies [8]. Finally, M. Kim et
al. proposed a technique for detecting change patterns by
leveraging the similarity of program element names [13]. Ta-
ble 3 shows a comparison between the characteristics that
are used to assess the similarity of program elements and
the types of programs these various approaches require...

Typically, techniques based on Origin Analysis will not
be able to detect some or all of the following three kinds
of changes: first, changes that disfigure a significant part of
the program structure such as a rearchitecture will throw
out most refactoring detection techniques because the level
of change in a program element’s characteristics will be too
high to safely conclude that two program elements are sim-
ilar. Second, small changes performed on small methods
will also hinder the accuracy of most refactoring detection
techniques: for instance, if one line of code is changed in a
two-lines method, some technique will conclude that 50% of
the method changed and that the two are not similar. Third,
changes involving code external to the program under study
will be missed. For example, if a feature that was orginally
in the program is now imported from an external program
(e.g., a library offers a better version of the feature), tech-
niques based on origin analysis will not be able to capture
the change because the destination is not in the analyzed
program.

As shown with the study presented in Section 4, our ap-
proach does not suffer from these three limitations because
we do not try to assess the similarity of methods that changed:
we only analyze what happens to methods that were refer-
ring to the changed methods. Still, techniques based on
origin analysis can give a certain degree of confidence about
the origin of an element throughout the evolution of a pro-
gram. This confidence is required by activities demanding
detailed traceability information, such as bug tracking.

Finally, another approach using associative data mining
on framework usage changes (such as method call changes)
also outperformed an origin analysis-like technique and could
even recommend more change patterns than SemDiff (e.g., a
field access should be replaced by a method call) [18]. As
opposed to SemDiff, this approach only compares two full
versions, which can introduce more false-positives in the re-
sults and it also requires stable callers.

Framework Usage. Another family of approaches could
potentially be used to support framework evolution. Strath-
cona [11] and FrUIT [2] are systems that mine a set of frame-
work usage examples and recommend program elements of
potential interest for framework users based on the local
programming context. For example, if a developer is us-
ing class C and calling methods m1 and m2 from a certain
framework, framework usage tools will typically recommend
other program elements that are used along those classes
and methods in the mined examples.

We could potentially use framework usage tools to recom-
mend adaptive changes by mining usage examples of the new
framework version and running the tools on each method in
the client program that has a broken method call. The rec-
ommendations would probably contain the correct replace-
ments. One of the issues with these approaches is that the
data mining techniques they use usually need a fair number
of usage examples in order to produce accurate results: un-
fortunately, it takes some time before an adequate number
of usage examples becomes available when a new framework
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Method Program Element Characteristics Versions

Origin Analysis [9] name similarity, code metrics, calls two complete versions selected manually
UMLDiff [21] name similarity, code relationships full versions between two versions
M. Kim et al. [13] name similarity two complete versions selected manually
S. Kim et al. [14] name similarity, code metrics, calls, textual similarity two complete versions selected manually
Dig et al. [5] syntactic similarity (Shingle), code relationships two complete versions selected manually
Weissgerber et al. [20] structural and code clone differences all change sets between two versions
SemDiff structural and outgoing call differences all change sets between any versions

Table 3: Comparison of change detection approaches

version is released. On the other hand, SemDiff only uses
the usage examples inside the framework itself to produce
results.

6. CONCLUSION
We presented a technique to recommend adaptive changes

for clients of framework code that has evolved in a way that
is not backward-compatible. Our approach involves ana-
lyzing how the framework adapts to its own changes, and
recommending similar adaptations. Specifically, our tech-
nique extracts the differences in the outgoing calls in each
change set and recommends a set of method replacements
accompanied by a confidence value. An historical study of
the Eclipse JDT framework and three of its client programs
showed that our technique can detect non-trivial changes,
and that it succeeded in providing correct recommendations
for 89% of the cases of missing functionality between Eclipse
release 3.1 and 3.3. As opposed to previous work on refac-
toring detection techniques, our approach can recommend
methods located outside of the framework when a function-
ality has been imported from external libraries. We conclude
that analyzing outgoing call differences is an efficient and ro-
bust technique to track a framework’s evolution and repair
dependent client programs.
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