Fault Localization Using
Value Replacement

Dennis Jeffrey
Neelam Gupta
Rajiv Gupta
ISSTA '08

Presented by Amy Siu 12/9/08

What is fault localization?

B S
« Software building is a human-intensive process
> Prone to error

+ Software debugginc

Locating the error

v < »
\/ .)) .

consists of two phases

*

Why is fault localization difficult?

« The point of failure may appear anywhere after the faulty
code statement

« The faulty code statement is not always obvious

« Manual inspection requires
+ Human effort
+ Code familiarity
+ Domain knowledge
« Automatic localization is still an open research problem
« Computationally intensive

Problem statement

+ Investigate an alternative method to localize faulty code
statements

+ Automated
« Computationally less intensive

+ Able to locate faulty code statement even if the point of
failure occurs after that statement

State of the art - dynamic analysis

B T
+ Dynamic program slicing
« Computationally expensive and not scalable

+ Delta debugging
+ Cause effect chains have less granularity

* Nearest neighbor

« Poorer performance compared to the rest of the state-of-
the-art

+ Statistical technique
« Most similar approach to proposed technique

State of the art - Tarantula

B S

« Tarantula by Jones and Harrold '05 is the closest
statistical technique in the state-of-the-art to the
proposed technique

« Baseline for this paper
+ Evaluated over the same Siemens benchmark suite

How does Tarantula work?

+ Intuition: statements executed primarily by failing runs
are more likely to be faulty

+ Keep track of statements in successful and failing runs
+ Rank statements based on statistics

Definitions

B S
+ Value mapping
+ Variables: concrete value, e.g. x = 10
+ Predicate statements: branch outcome, e.g. “else” branch

* IVMP (Interesting Value Mapping Pair)
+ A pair of value mappings

+ Original value mapping exists in failing run with wrong
output

+ Alternate value mapping causes the output to become
correct

« Value profile
+ All value mappings for a program

+ Each mapping may contribute to original, alternate, or both
types of IVMPs

IVMP algorithm

Step 1: initialize value profile

Step 2: search for IVMPs

Running time = O(t*m)
+ t = # statements

« m = max. # alt. mappings

input:
Faulty program P, and failing test case f [with
actnal and expected output) from test suite T
output:
Set of identified IVMPs for f.
algorithm SearchForIVMPs

Step 1: [Compute value profile for P w/ respect to
L: valProf = {};
2 for each test case f iIn T do
3 trace := trace of value mappings from
execution of #;
augment valProf using the data in frace;

Search for IVMPs in f)
traces := trace of value mappings from
execution of f;
for each statement instance ¢ in fracey do
origMap := value mapping from trace; at 1:
5 := the statement associated with instance 4
for each altMap in valFProf at s do
execute f while replacing orighap
with alt Map at i;
if output of f becomes correct then
output IVMFP (arigMap, altMap) at @
end for
end for

-

Figure 1: General algorithm for computing IVMPs
with respect to a failing run and its test suite.

IVMP Example 1

IVMP at a faulty statement

arge i= ..;
if [m‘gc < 3} /* 3 should actually be 4 */
print (“Too few");

Test Input Actual | Expected | Result

Figure 2: Code fragment and test suite based on
schedule faulty version v9.

IVMP Example 2

IVMP directly linked to a faulty statement

AltLayVal := ...;
1: Pos_RA_Alt_Thresh[0] = 400,
2: Pos_RA_Alt Thresh[1l] = 550; /* Should be 500 */
3: Pos_RA_Alt_Thresh[2] = 640,
4: Pos_RA_Alt_Thresh[3] = 740,
5 if (Pos_RA_Alt_Thresh[AltLayV al] < 525)
b: print (0);
7. else
8: print (1);

] gl — || | | A

B | AltLayVal =1 1 0 FAIL

Figure 3: Code fragment and test suite based on
tcas faulty version vT.

10

IVMP Example 3

IVMP in the presence of erroneously omitted statements

mt foo(int r, int y)
1: ¥ if (y < 0) return =; */
2: if (y == 0) return 0;
3 return r + 1;

Input Actual

r.y) = (1-1 FAIL
B | (ryl=(22}{ 3 | 5 | PASS |

Figure 4: Code fragment and test suite inspired by
schedule2 faulty version vl1.

11

Dependence cause vs. Compensation cause

2

Dependence cause
: | ments in the same definition-use chain

+ Applying IVMP to any statement corrects the error
+ But only one statement is the root cause

- Compensation cause
+ Unrelated statements

+ Applying IVMP to any statement also corrects the error
+ The paper does not further discuss details

12

Ranking statements using IVMPs

I I AT I N N I N N N NN . N I N N T

Figure 5: Example with test suite to motivate the
need for considering multiple failing runs when rank-
ing statements using IVMPs.

Line 2 is more likely to be faulty than lines 4 and 6

13

Suspiciousness

B S
Proposed metric: suspiciousness

suspiciousness(s):= |{f: f € FAs € STMTrvap(f)H

Tie-breaker metric: suspiciousness as per Tarantula

failed|s)

total Failed

pazsedis) | failed]s) R—
total Pasaed ' totalFailed

SUSPICIOUSTES Starantula(8) =

14

Ordering failing runs algorithm

Step 1: find IVMPs

Step 2: use IVMPs to rank

statements

Re-executions = O(f*t*m)
« f=# failing runs
« 1 = # statements
« m = max. # alt. mappings

But can limit statement instances
and alternative mappings — use
shortest failing runs first

input:

Faulty program P, and test suite T containing

a set F of failing runs.
ot put:

A ranked list of statements exercized by tests in F.
algorithm IVMPBazedStatement Rank

ep 1: |Compute 1¥ MFPs for each test i F|
val Prof = construct value profile for Pwrt. T
sort the tests in F in increasing order of trace size;
workingList := the set of stmts exercised by the
firat failing test case in sorted F;
for each test f in F taken in sorted order do
tracey := stmt instances executed by f;
for each stmt instance { in fracey do
= the stmt associated with instance i
if # not in workingLizt then continue;
alt Map = alt. mappings for & in valProf;
altMap.cqe = subset of alt;M ap with min/max
values < and > the orig values used at 1
for each alt. mapping m in alt;Map,. . do
if & haz an IVMP in f then brealk;
if applving m at ¢ corrects f's output then
report a found IVMP at = in [

endfor (each alt mapping)
endfor (cach stmt instance)
it f has at least one IVMEP then
remove stmts from workingList that are not
aszociated with any IVMP in f:

. for each stmt & in stmfs do
compute suspciousness|&);
COMPULE SUSPLCIOWSTIESS s 4 r antulal 81

endfor

DOEtIEE, nnea (= BOUT #fmife by suspiciousness,
hreak ties by suspdciousnes 8 oran tula)

ooutput sEmtEean ked;

_] r) P p——

Figure 6: Our IVMP based statement ranking ap-
proach nsing a reduced IVMP search.

15

Summary of proposed technique

1. Gather successful and failing runs

2. Establish value profile

3. Search for IVMPs

4. Rank statements using suspiciousness

5. Break ties with Tarantula's suspiciousness

16

Experiment 1 — implementation

B S
Valgrind infrastructure

+ Synthetic, simulated CPU
+ Machine-level instructions

« Value mappings manipulated at the machine
Instruction level

Machine profile

+ Dell PowerEdge 1900 server

« 2 Intel Xeon quad-core processors at 3.00GHz
+ 16 GB RAM

« No parallel processing

17

Experiment 1 — subject programs

I
Siemens benchmark suite

« All faults are seeded
+ At least 5 successful and 5 failing runs

Frog. L # Avg. Suite Frogram
Name Ver. | (Pool) Sizes Description

b s 138 41 17 (1608) altitude separation
totinfo 346 23 15 (1052) statistic computation
ached 200 ¥ 20 (2650) priority scheduoler
sched 2 207 L 17 (2710) priority scheduoler
ptok 402 T 17 (4130} lexical analvzer
ptok? 483 ¥ 23 (4115) lexical analyzer
replace | 516 31 20 (5542) pattern substituter

Table 1: The Siemens benchmark programs. From
left to right: program name, Z lines of code, #
faulty versions, average suite size (and test case pool
aize), and description of program functionality.

18

Experiment 1 — compared approaches

B T
9 approaches compared in the experiment

*

*

*

IVMP
Tarantula

Tarantula-Pool — use entire test case pool to get
larger test suite

IVMP-1 — use only 1 failing run to search IVMPs with
IVMP-2 — use 2 failing runs to search [VMPs with

Assign a score to ranked statements

*

totalStmitsEr —r
score(5) = — ToimisEn * 100%

Higher score =» more statements executed by failing
runs are ignored before faulty statement is found
19

Results — effectiveness
B T S

Companzon of Statement Ranking Approaches

%% of Faulty Versions

Figure 7T: Comparison of statement ranking ap-
proaches

« IVMP ranks faulty statements higher than Tarantula
« Larger test suite pool help rank faulty statement higher
+ More failing runs help rank faulty statements higher

20

Results — efficiency (l)

I T A
& of Re-executions to Saarch for WPs

r 1 1 1 1 H_. : d'. 1
20 | Reduced Search -+ -

10 |

of Re-executions (in milkons)

0 20 40 &0 80 100 120
Faulty Version

Figure 8: For each faulty wversion., the number of
re-executions (in millions) required for the full and

reduced IVMP searches in the IVMP approach.

« Compare variations within IVMP search algorithm

+ Reduced IVMP search technique drastically reduces
re-executions

21

Results — efficiency (ll)

Time 1o Search for I MPs Using the Reduced Search

T T

g

%, Faulty Vier. Completed in the Specified Time
&

0 100 200 @0 400 00 600 700 800
Time (minutes)
Figure 9: The percentage of faulty versions in which

our reduced search for IVMPs= is able to complete in
the specified amount of time 1n the IVMP approach.

« Almost 90% of faulty versions have all IVMPs searched
under 100 minutes

+ Maximum time of 840 minutes due to unusual case —
long failing runs cannot limit [VMP search

22

Results — efficiency (lll)

Increase in'Value Profile SEe as Suile SEze Ingeases
200000

B uuuu ll I.ll"*| --------
? [II:I g~
| 200000 / ”‘,ﬂ S
i f — |
{ ptok2 «oo-e
é Em i I||II l'qim .
§
B on0000 [/
.]I
‘ﬁ 150000 | /
d f
100000 |/ -
E JI ;f_,_ﬂ-ﬂ"
- AL r"—'_:J_;:iﬁ:-_':_-'-E'ri'-';.'—--- e
uﬁ T —
0 1000 2000 3000 4000 G000

Figure 10: Increase in value profile size as suite sizes
increase, for each subject program.

+ Size of value profile increases logarithmically to test
suite size

« Unusual case — difficult to pinpoint exact floating point
values
23

Experiment 2 — larger programs

A A

Prog. Name | LOC | Fault Program

Type Description
space 6109 real ADL interpreter
grep-2.5 5812 real pattern matcher
sed-4.1.5 12072 | seeded stream editor
fenc-2.5.1 10013 | seeded | lexical analyzer generator
gzip-1.3 5166 | seeded file compressor

Table 3: Larger subject programs.

Frogram Faulty Stmt IVMP | # Re-executions
Name Rank Search Done/Possible
Time for IVMPs

space Tarantula: 106 35841 /1061154
IVMP: 5 | 70.5 min (3.4%%)

grep-2.5 | Tarantula: 213 241 /588
IVMP: 3 0.8 min (41.0%)

sod-4.1.5 Tarantula: 35 381/5816
IVMP: 3 1.8 min (15.1%)

flex-2.5.1 | Tarantula: 45 87 /228
IVMP: 1 0.5 min (38.2%)

gzip-1.3 Tarantula: 96 126845 /6918816
IVMP: 1 | 215.6 min (1.8%%)

Table 4: Experimental results using the larger pro-

grams (one fault and test suite per program).

Second experiment ran on 5 larger subjects programs
« Similar IVMP search time to experiment 1

« Search time depends on length of shortest failing trace,

not program size

+ Proposed technique is scalable

24

Discussion

B S
Scalability
« Further enhance scalability by limiting IVMP search
« Combine other techniques such as program slicing

Multiple simultaneous faults

+ Difficult to find IVMPs that influence each other, or
have different effects on program output

« Diminishes effectiveness of proposed approach

Addess values
+ Ignored by proposed approach

25

Conclusions

Proposed IVMP approach is

+ More effective than the best technique in the
state-of-the-art, Tarantula

+ Scalable

26

Limitations and future work — noted by authors

B S
Limitations
+ Only find faults that can be detected via value replacement
+ Multiple simultaneous faults
+ Address values

Future work
+ (No explicit future work section in the paper)

+ Combine proposed technique with program slicing to limit
IVMP search

27

Limitations and future work — class discussion

B S
Limitations
+ Indirectly linked faulty statements

+ Extraneous statements causing a fault — no example,
unclear how that works

+ "Fuzzy” values generate huge value profile a /a floating
point example

+ Dependent on existing runs — both successful and failing
ones — to generate rankings

Future work

+ Adapt proposed technique in practical environment without
machine instruction-level simulator

+ Try new technique on even larger programs

« How to use proposed technique when there are no existing
test runs to extract value profile from

28

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

