Summary of Fault-Based Adequacy Criteria

- Create tests to cover faults that could possibly occur in the software.
- Introduce mutations into the code.
- See if the tests detect the mutations.
Error Based Testing and Domain Analysis

- Divide the domain into subdivisions.
- Test inside and on the boundaries of the divisions.
- Two ways to subdivide
 - Specification-Based
 - Program-Based
Specification-Based Division

- Division by analyzing the problem's input.
- Example: Program converts a number from 0 to 100 to a letter grade (without + or -)
 - 83 and 84 both return B. Don't divide.
 - 89 returns B, 90 returns A. Divide here.
Program-Based Division

- Divisions are determined by looking directly at the code and identifying where the code branches.

```java
char convertScoreToGrade(int score) {
    if (score > 89) return 'A';
    else if (score > 79) return 'B';
    else if (score > 69) return 'C';
    else if (score > 59) return 'D';
    else return 'F';
}
```
Question

What are the advantages and disadvantages of each method?
Boundary Analysis

- N x 1 domain testing. Choose N test cases on the borders and 1 off. (White and Cohen, 1980)
- N x N domain testing. Choose N test cases on the borders and N linearly independent test cases off the border. (Clark et. al, 1982)
- N x 1 detects parallel boundary shifts.
- N x N adds rotation.
Boundary Analysis Example

- There are two input variables, so N is 2
- There is a boundary at numItems = 10 when costPerItem <= 100
- With N x 1, 2 tests would set numItems = 10 and costPerItem <= 100 (on boundary), 1 test would set numItems <> 10 and costPerItem <= 100 (off boundary)
- N x N would be the same as N x 1, but there would be 2 tests of the second type instead of 1.

```java
int calculateTotalCost(int numItems, int costPerItem) {
    int totalCost = numItems * costPerItem;
    if ((costPerItem > 100 && numItems > 5) || (numItems > 10)) {
        totalCost *= 0.9;
    }
    return totalCost;
}
```
Functional Analysis

- Boundary analysis looks for errors in boundary location. Functional analysis looks for errors in computation inside each division.
- Example: $\text{total} = 5x + 10y$
 - $f(x, y) = 5x + 10y$
 - f is a linear function, and two points define a line, so two test cases are required.
 - For the two examples, x and y would be set to any values that are in the division, for example if this function calculated the output for the division of a program where $x < 10$, x and y would be set to any arbitrary values as long as x is less than 10.
What are some limitations of domain analysis?
Comparison of Test Data Adequacy Criteria

- Three types of comparison appear in the literature:
 - Fault-Detecting Ability
 - Software Reliability
 - Test Cost
Fault-Detecting Ability

- Statistical Experiment
- Simulation
- Formal Analysis
Choose a set of programs with known faults (either through previous experience or mutations)

A test set is generated using some method

The proportion of faults detected compared with the known number of faults is calculated

Statistical analysis is done on these numbers
Statistical Experiment Example

- Test set C1 detects 17 of 41 faults on its program, while test set C2 detects 80 of 200 faults.
- The proportion of faults detected by C1, p_1, is 0.415. For C2, $p_2 = 0.400$.
- C1 appears slightly better, but statistically p_1 has a greater margin of error.
Simulation Method

- Generate random test cases and run them on a set of programs
- Research by Duran and Ntafos showed that 100 simulated random test cases performed better than 50 simulated partition test cases.
Formal Analysis

- Compares test sets by formally proving relations between them
- Five relations:
 - C1 narrows C2
 - C1 covers C2
 - C1 partitions C2
 - C1 properly covers C2
 - C1 properly partitions C2
Software Reliability

- The adequacy of a test set can be directly measured by the reliability of the software that passed the tests.
- Methods exist to measure the reliability of software.
Test Cost

- The third way to compare test adequacy is by the test cost.
- Because testing is expensive, it is important to consider the cost of a test method.
- If a method is only slightly better than another one, but much more expensive, it may not be the best choice.
- What types of things would be considered when determining test cost?
Summary of Comparison of Test Adequacy

- It is easier to achieve high confidence using partition testing
- Random testing is cheaper
- Is one of these methods always better? How would you decide which method to use in a given situation?
Axiomatic Assessment

- Seek the most fundamental properties of test adequacy
- An axiomatic approach has been proven useful in math and physics
Example of Axioms (Weyuker)

- A1 (Applicability): For every program, there exists a finite adequate test set.
- A2 (Nonexhaustive Applicability): There is a program p and a test set t such that p is adequately tested by t and t is not an exhaustive test set.
- A3 (Monotonicity): If t is adequate for p and t is a subset of t', then t' is adequate for p.
- A4 (Inadequate Empty Set): The empty set is not adequate for any program.
Test criteria are a central problem of software testing.

Numerous adequacy criteria have been proposed, analyzed and compared.

Much research has also been done on the issue of evaluating and comparing criteria.

The tendency is towards systematic approaches in testing using adequacy criteria.