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Abstract—Given some test case, a program fails. Which circumstances of the test case are responsible for the particular failure? The

Delta Debugging algorithm generalizes and simplifies the failing test case to a minimal test case that still produces the failure. It also

isolates the difference between a passing and a failing test case. In a case study, the Mozilla web browser crashed after 95 user

actions. Our prototype implementation automatically simplified the input to three relevant user actions. Likewise, it simplified 896 lines

of HTML to the single line that caused the failure. The case study required 139 automated test runs or 35 minutes on a 500 MHz PC.

Index Terms—Automated debugging, debugging aids, testing tools, combinatorial testing, diagnostics, tracing.
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1 INTRODUCTION

Often people who encounter a bug spend a lot of time
investigating which changes to the input file will make the
bug go away and which changes will not affect it.
—Richard Stallman, Using and Porting GNU CC.

IF you browse the Web with Netscape 6, you actually use a
variant of Mozilla, Netscape’s open source web browser

project [1]. As a work in progress with big exposure, the
Mozilla project receives several dozens of bug reports a day.
The first step in processing any bug report is simplification,
that is, eliminating all details that are irrelevant for
producing the failure. Such a simplified bug report not
only facilitates debugging, but it also subsumes several
other bug reports that only differ in irrelevant details.

In July 1999, Bugzilla, the Mozilla bug database, listed

more than 370 open bug reports—bug reports that were not

even simplified. With this queue growing further, the

Mozilla engineers “faced imminent doom” [2]. Over-

whelmed with work, the Netscape product manager sent

out the Mozilla BugAThon call for volunteers [2]: people who

would help process bug reports. For five bug reports

simplified, a volunteer would be invited to the launch

party; 20 bugs would earn her or him a T-shirt signed by the

grateful engineers. “Simplifying” meant turning these bug

reports into minimal test cases, where every part of the input

would be significant in reproducing the failure.
As an example, consider the HTML input in Fig. 1.

Loading this HTML page into Mozilla and printing it causes

a segmentation fault. Somewhere in this HTML input is

something that makes Mozilla fail—but where? If we were

Netscape programmers, what we wanted here is the

simplest HTML page that still produces the failure.

Decomposing specific bug reports into simple test cases

does not trouble only the Mozilla engineers. The problem

arises from generally conflicting issues:

. A bug report should be as specific as possible, such
that the engineer can recreate the context in which
the program failed.

. On the other hand, a test case should be as simple as
possible because a minimal test case implies a most
general context.

Thus, a minimal test case not only allows for short problem

descriptions and valuable problem insights, but it also

subsumes several current and future bug reports.
The striking thing about test case simplification is that no

one, so far, has thought to automate this task. Several

textbooks and guides about debugging are available that

tell how to use binary search in order to isolate the

problem—based on the assumption that tests are carried

out manually, too. With an automated test, however, we can

automate this simplification of test cases, and we can

automatically isolate the difference that causes the failure.

Simplification of test cases. Our minimizing delta debugging

algorithm ddmin is fed with a failing test case, which it

simplifies by successive testing. It stops when a minimal test

case is reached, where removing any single input entity

would cause the failure to disappear. As an analogon from

the real world, consider a flight test: An air plane crashes a

few seconds after taking off. By repeating the situation over

and over again under changed circumstances, we can find

out what is relevant and what not. For instance, we may

remove the passenger seats and find that the plane still

crashes. We may remove the coffee machine and the plane

still crashes. Eventually, only the relevant “simplified”

skeleton remains, including a test pilot, the wings, the

runway, the fuel, and the engines. Each part of this skeleton

is relevant for reproducing the crash. In the real world, no

one with a sane mind would consider such a way to

simplify the circumstances of test flights. However, for

simulations of flight tests or, more generally, for arbitrary

computer programs, such an approach comes at a far lesser

cost. The cost may be so low that we can easily use a large

amount of tests just to simplify a test case.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 2, FEBRUARY 2002 183

. A. Zeller is with Univeristät des Saarlandes, Lehrstuhl für Softwaretechnik,
Postfach 151150, 66041 Saarbrücken, Germany.
E-mail: zeller@computer.org.

. R. Hildebrant is with DeTeLine - Deutsche Telekom Kommunikationsnetze
GmbH, Rognitzstrasse 9, 14057 Berlin, Germany.
E-mail: ralf_hildebrandt@web.de.

Manuscript received Mar. 2001; revised June 2001; accepted July 2001.
Recommended for acceptance by M.J. Harrold and A. Bertolino.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 115156.

0098-5589/02/$17.00 � 2002 IEEE



Fig. 2 sketches how the ddmin procedure minimizes a test

case: Starting with the HTML input in Fig. 1, the ddmin

algorithm simplifies the input by testing subsets with

removed characters (shown in grey): The test fails (��) if

Mozilla crashes on the given test case and passes (
p

)

otherwise. After 57 tests, the original 896-line HTML input is

reduced to the minimal failing test case <SELECT>.1 Each

character in the minimal failing test case is relevant for

producing the failure.

Isolating failure-inducing differences. In the case, where a

passing test case exists as well, it is generally more efficient to

isolate the failure-inducing difference between a failing and a

passing test case. This is what the general Delta Debugging

algorithm dd does. dd is a generalization of ddmin.

Again, as an analogon, take the flight test example. Now,

we try to isolate the difference between the crash and a

working flight. We may find that if we replace the engines

of the crashing machine by the engines of a working

machine, the change does not matter; consequently, we find

this difference to be irrelevant. By reducing differences

further and further, we may eventually isolate a piece of

metal on the runway that is relevant for the crash—every-

thing else may stay the same, but having this piece of metal

on the runway or not induces whether there is a crash or a

perfect flight.
Again, nobody wants to crash planes over and over. Fig. 3

shows how dd works on HTML input: Rather than only
minimizing the failing input, dd also maximizes the passing
HTML input until a minimal failure-inducing difference is
obtained. In our case, this is the first character < of the
failure-inducing <SELECT> tag, pinpointed after only seven
tests: This one-character difference makes Mozilla fail.

Delta Debugging as a technique for simplifying or

isolating failure causes is not limited to HTML input, to

character input, nor to program input in general: Delta

Debugging can be applied to all circumstances that in any way

affect the program execution. Delta Debugging is fully

automatic: Whenever some regression test fails, an addi-

tional Delta Debugging run automatically determines the

failure-inducing circumstances.
In earlier work [3], we have shown how Delta Debugging

is applied to isolate failure-inducing code changes; our

current research includes application domains like failure-

inducing thread schedules or failure-inducing program

statements. In this paper, however, we will concentrate on

program input.
The remainder of this paper is organized as follows: We

begin with formal definitions of passing and failing test cases

(Section 2). We first introduce the basic ddmin algorithm in

Section 3 which simplifies failing test cases. The case studies

(Section 4) include GCC, Mozilla, and UNIX utilities subjected

to random fuzz input.
In Section 5, we extend ddmin to dd to isolate the difference

between a passing and a failing test case. Section 6 evaluates

dd by repeating the GCC and fuzz case studies. Sections 7 and 8

close with discussions of related and future work.
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1. Section 4.2 has more details on this example.

Fig. 1. Printing this HTML page makes Mozilla crash (excerpt).

Fig. 2. Simplifying failure-inducing HTML input.



2 TESTING FOR CHANGE

Software features that can’t be demonstrated
by automated tests
simply don’t exist.
—Kent Beck, Extreme Programming Explained

In general, we assume that the execution of a specific
program is determined by a number of circumstances. These
circumstances include the program code, data from storage
or input devices, the program’s environment, the specific
hardware, and so on.

In our context, we are only interested in the changeable
circumstances—that is, those circumstances whose change
may cause a different program behaviour. (In fact, we are
even only interested in those circumstances that actually
may cause a different test outcome.) These changeable
circumstances make up the program’s input (in the most
general sense). In the remainder of this paper, “circum-
stances” will always refer to changeable circumstances.

2.1 The Change that Causes a Failure

Let us denote the set of possible configurations of
circumstances by R. Each r 2 R determines a specific
program run. Now, let us assume a specific run r�� 2 R that
fails.2 Typically, we do not consider all circumstances of this
run as a whole. Instead, we focus on the difference between
r�� and some run rp 2 R that works. This difference is the
change which causes the failure and the smaller this change,
the better it qualifies as a failure cause.

Formally, the difference between rp and r�� is expressed
as a mapping � which changes the circumstances of a program
run:

Definition 1 (Change). A change � is a mapping � : R ! R.
The set of changes is C ¼ RR. The relevant change between
two runs rp; r�� 2 R is a change � 2 C such that �ðrpÞ ¼ r��.

In the remainder of this paper, � will always stand for the
relevant change between the two given program runs rp

and r��. The exact definition of � and its application is, of
course, specific to the given problem and its circumstances.
In the Mozilla example sketched in Section 1, applying �
means to expand a trivial (empty) HTML input to the full
failure-inducing HTML page.

2.2 Decomposing Changes

We now assume that the relevant change � can be
decomposed into a number of elementary changes �1; . . . ; �n.
This decomposition of � into individual changes �i is

problem-specific. As an example, think of a DIFF output �

consisting of several individual changes �i, each affecting a

particular place in the text.
Our approach does not suggest a specific way of

decomposing changes. In general, though, we expect the

decomposition to follow the structure of the change, which

again follows the structure of the circumstances being

changed. In the Mozilla example from Section 1, there are

many ways to decompose the change �: It may be

decomposed into changes adding single characters or

changes adding HTML tags or changes adding lines,

depending on whether we see the input of being composed

from characters, tags, or lines. In doubt, an atomic decom-

position—that is, a decomposition into changes that can no

further be decomposed—is the way to go.
To express (de)composition formally, we write

� ¼ �1 	 �2 	 . . . 	 �n, where the composition �i 	 �j groups

two changes �i and �j into a larger whole:

Definition 2 (Composition of changes). The change

composition 	 : C 
 C ! C is defined as

ð�i 	 �jÞðrÞ ¼ �i
�
�jðrÞ

�
:

We do not assume any particular properties of 	. In

practice, 	 is typically realized as a union of two change sets �i.

2.3 Test Cases and Tests

To relate program runs to failures, we need a testing

function that takes a program run and tests whether it

produces the failure. According to the POSIX 1003.3 standard

for testing frameworks [4], we distinguish three outcomes:

. The test succeeds (PASS, written here as
p

)
. The test has produced the failure it was intended to

capture (FAIL, written here as ��)
. The test produced indeterminate results (UNRE-

SOLVED, written here as ??).3

Definition 3 (rtest). The function rtest : R ! f��;p; ??g
determines for a program run r 2 R whether some specific

failure occurs (��) or not (
p

) or whether the test is unresolved (??).

Axiom 4 (Passing and failing run). rtestðrpÞ ¼ p
and

rtestðr��Þ ¼ �� hold.

In the remainder of this paper, we shall consider not only

rp and r��, but also several runs that are the product of

changes being applied to rp. For convenience, we identify

each run by the set of changes being applied to rp. That is, we

define cp as the empty set cp ¼ ; which identifies rp (no

changes applied). The set of all changes c�� ¼ f�1; �2; . . . ; �ng
identifies r�� ¼ ð�1 	 �2 	 . . . 	 �nÞðrpÞ.

We call the subsets of c�� test cases:
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Fig. 3. Isolating a failure-inducing difference.

2. Read r�� and rp as “r-fail” and “r-pass”, respectively.
3. POSIX 1003.3 also lists UNTESTED and UNSUPPORTED outcomes, which

are of no relevance here.



Definition 5 (Test case). A subset c � c�� is called a test case.

Test cases are related to program runs by means of the
test function, which applies the set of changes to rp and
tests the resulting run.

Definition 6 (test). The function test : 2�� ! f��;p; ??g is
defined as follows: Let c �c�� be a test case with
c ¼ f�1; �2; . . . ; �ng. Then,

testðcÞ ¼ rtest
�
ð�1 	 �2 	 . . . 	 �nÞðrpÞ

�

holds.4

Using Axiom 4, we can deduce the results of testðcpÞ and
testðc��Þ

Corollary 7 (Passing and failing test case). The following
holds:

testðcpÞ ¼ testð;Þ ¼ p ð}passing test case}Þ

and

testðc��Þ ¼ test
�
f�1; �2; . . . ; �ng

�
¼ �� ð}failing test case}Þ:

3 MINIMIZING TEST CASES

Proceed by binary search. Throw away half the input and
see if the output is still wrong; if not, go back to the previous
state and discard the other half of the input.
—Brian Kernighan and Rob Pike, The Practice of Programming

Let us now model our initial scenario. We have a test case
cp that works fine and a test case c�� that fails. Let us assume
that cp stands for some trivial program run (such as a run
on an empty input). Then, minimizing the difference
between cp and c�� becomes minimizing c�� itself—that is,
simplification of c��.

3.1 Minimal Test Cases

A test case c � c�� being a minimum means that there is no
smaller subset of c�� that causes the test to fail. Formally:

Definition 8 (Global minimum). A set c � c�� is called the
global minimum of c�� if: 8c0 � c�� �

�
jc0j < jcj ) testðc0Þ 6¼

��
�

holds.

In practice, this would be nice to have, but it is practically
impossible to compute: Relying on test alone to determine
the global minimum of c�� requires testing all 2jc��j subsets of
c��, which obviously has exponential complexity.5

Resorting to the idea of a local minimum helps a little. We
call a test case minimal if none of its subsets causes the test to
fail. That is, if a test case c is minimal, there may be some

other test case that is even smaller (i.e., a global minimum),
but at least we know that each element of c is relevant in
producing the failure—nothing can be removed without
making the failure disappear.

Definition 9 (Local minimum). A test case c � c�� is a local
minimum of c�� or minimal if: 8c0 � c �

�
testðc0Þ 6¼ ��

�
holds.

This is what we want: A failing test case whose elements are
all significant. However, determining that a test case c is a
local minimum still requires 2jcj � 2 tests.

What we can determine, however, is an approximation—
for instance, a test case where removing a small set of
changes is still significant in producing the failure, but we
do not check whether removing several changes at once
might make the test case even smaller. Formally, we define
this property as n-minimality: removing any combination of
up to n changes causes the failure to disappear. If c is
jcj-minimal, then c is minimal in the sense of Definition 9.

The approximation which interests us most is 1-minim-
ality. A failing test case c composed of jcj changes would be
1-minimal if removing any single change would cause the
failure to disappear. While removing two or more changes
at once may result in an even smaller, still failing test case,
every single change on its own is significant in reproducing
the failure.

Definition 10 (n-minimal test case). A test case c � c�� is
n-minimal if: 8c0 � c � jcj � jc0j � n)

�
testðc0Þ 6¼ ��

�
holds.

Consequently, c is 1-minimal if 8�i 2 c � test
�
c� f�ig

�
6¼ ��

holds.

1-minimality is what we should be aiming at. However,
given, say, a failure-inducing input of 100,000 lines, we
cannot simply remove each individual line in order to
minimize it. Thus, we need an effective algorithm to reduce
our test case efficiently.

3.2 A Minimizing Algorithm

What do humans do in order to minimize test cases? One
possibility: They use binary search. If c�� contains only one
change, then c�� is minimal by definition. Otherwise, we
partition c�� into two subsets �1 and �2 with similar size and
test each of them. This gives us three possible outcomes:

. Reduce to �1. The test of �1 fails—�1 is a smaller test
case.6

. Reduce to �2. Testing �1 does not fail, but testing �2

fails—�2 is a smaller test case.
. Ignorance. Both tests pass or are unresolved—neither

�1 nor �2 qualify as possible simplifications.

In the first two cases, we can simply continue the search
in the failing subset, as illustrated in Fig. 4. Each line of the
diagram shows a configuration. A number i stands for an
included change �i; a dot stands for an excluded change.
Change 7 is the minimal failing test case—and it is isolated
in just a few steps.
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4. To make the application of change sets unambiuous, test must sort the
applied changes �i in some canonical way.

5. To be precise, Corollary 7 tells us the results of testð;Þ and testðc��Þ,
such that only 2jc�� j � 2 subsets need to be tested, but this does not help
much.

6. Since �1 and �2 have similar size, there is no need for testing �2 as
well if testing �1 already fails.



Given sufficient knowledge about the nature of our input,
we can certainly partition any test case into two subsets such
that at least one of them fails the test. But what if this
knowledge is insufficient, or not present at all?

Let us begin with the worst case: after splitting up c�� into
subsets, all tests pass or are unresolved—ignorance is
complete. All we know is that c�� as a whole is failing. How
do we increase our chances of getting a failing subset?

. By testing larger subsets of c��, we increase the
chances that the test fails—the difference from c�� is
smaller. On the other hand, a smaller difference
means a slower progression—the test case is not
halved, but reduced by a smaller amount.

. By testing smaller subsets of c��, we get a faster
progression in case the test fails. On the other hand,
the chances that the test fails are smaller.

These specific methods can be combined by partitioning c��
into a larger number of subsets and testing each (small) �i as
well as its (large) complement ri ¼ c�� ��i—until each
subset contains only one change, which gives us the best
chance to get a failing test case. The disadvantage, of course,
is that more subsets means more testing.

This is what can happen. Let n be the number of
subsets �1; . . . ;�n. Testing each �i and its complement
ri ¼ c�� ��i, we have four possible outcomes (Fig. 5):

. Reduce to subset. If testing any �i fails, then �i is a
smaller test case. Continue reducing �i with n ¼ 2
subsets. This reduction rule results in a classical
“divide and conquer” approach. If one can identify a
smaller part of the test case that is failure-inducing
on its own, then this rule helps in narrowing down
the test case efficiently.

. Reduce to complement. If testing any ri ¼ c�� ��i

fails, then ri is a smaller test case. Continue
reducing ri with n� 1 subsets.

Why do we continue with n� 1 and not two

subsets here? Because the granularity stays the same:

Splitting ri into n� 1 subsets means that the subsets

of ri are identical to the subsets �i of c��. Every

subset of c�� eventually gets tested.
As an example, assume n ¼ 32 and r30 fails. If we

continue with n ¼ 31, the recursive ddmin call splits

r30 into n ¼ 31 subsets. The subsets �1 to �30 have

already been tested before. If we realize the test

function such that it keeps track of tests that have

already been run, the next new test would be one of

the complements ri—we would simply continue

removing small chunks.
If we continued with two subsets instead, we

would have to work our way down with n ¼
2; 4; 8; . . . until the initial granularity of n ¼ 32 is

reached again.
. Increase granularity. Otherwise (that is, no test failed),

try again with 2n subsets. (Should 2n > jc��j hold, try
again with jc��j subsets instead, each containing one
change.) This results in at most twice as many tests,
but increases chances for failure.

. Done. The process is repeated until granularity can
no longer be increased (that is, the next n would be
larger than jc��j). In this case, we have already tried
removing every single change individually without
further failures: The resulting change set is minimal.

As an example, consider Fig. 6, where the minimal test

case consists of the changes 1, 7, and 8. Any test case that

includes only a subset of these changes results in an

unresolved test outcome. A test case that includes none of

these changes passes the test.

We begin with partitioning the total set of changes in two

halves—but none of them passes the test. We continue with

granularity increased to four subsets (Steps 3-6). When

testing the complements, the set r2 fails, thus removing

changes 3 and 4. We continue with splitting r2 into three

subsets. The next three tests (Steps 9-11) have already been
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Fig. 4. Quick minimization of test cases.

Fig. 5. Minimizing Delta Debugging algorithm.



carried out and need not be repeated (marked with �).

When testing r2 (Step 13), changes 5 and 6 can be

eliminated. We increase granularity to four subsets and

test each (Steps 16-19) before the last complement r2 (Step

21) eliminates change 2. Only changes 1, 7, and 8 remain;

Steps 25-27 show that none of these changes can be

eliminated. To minimize this test case, a total of 19 different

tests was required.

3.3 Properties of ddmin

We close with some formal properties of ddmin. First, ddmin

eventually returns a 1-minimal test case:

Proposition 11 (ddmin minimizes). For any c � c��, ddminðcÞ
is 1-minimal in the sense of Definition 10.

Proof. According to the ddmin definition (Fig. 5), ddminðc0��Þ
returns c0�� only if n � jc0��j and testðriÞ 6¼ �� for all

�1; . . . ;�n where ri ¼ c0�� ��i. If n � jc0��j, then j�ij ¼ 1

and jrij ¼ jcj � 1. Since all subsets of c0 � c0�� with jc0��j �
jc0j ¼ 1 are in fr1; . . . ;rng and testðriÞ 6¼ �� for allri, the

condition of definition 10 applies and c is 1-minimal. tu
In the worst case, ddmin takes jc��j2 þ 3jc��j tests:

Proposition 12 (ddmin complexity, worst case). The number

of tests carried out by ddminðc��Þ is jc��j2 þ 3jc��j in the worst

case.

Proof. The worst case can be divided into two phases: First,

every test has an unresolved result until we have a

maximum granularity of n ¼ jc��j, then, testing only the

last complement results in a failure until n ¼ 2 holds.

. In the first phase, every test has an unresolved
result. This results in a reinvocation of ddmin2

with a doubled number of subsets, until j�ij ¼ 1

holds. The number of tests to be carried out is

2þ 4þ 8þ � � � þ 2jc��j

¼ 2jc��j þ jc��j þ
jc��j
2
þ jc��j

4
þ � � � ¼ 4jc��j:

. In the second phase, the worst case is that testing
the last complement rn fails; consequently,
ddmin2 is reinvoked with ddmin2ðrn; jc��j � 1Þ.
This results in jc��j � 1 calls of ddmin, with two
tests per call, or

2ðjc��j � 1Þ þ 2ðjc��j � 2Þ þ � � � þ 2

¼ 2þ 4þ 6þ � � � þ 2ðjc��j � 1Þ
¼ jc��jðjc��j � 1Þ ¼ jc��j2 � jc��j

tests.

The overall number of tests is thus

4jc��j þ jc��j2 � jc��j ¼ jc��j2 þ 3jc��j:
tu
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Fig. 6. Minimizing a test case with increasing granularity.



In practice, however, it is unlikely that an n-character
input requires n2 þ 3n tests. The “divide and conquer” rule
of ddmin takes care of quickly narrowing down failure-
inducing parts of the input:

Proposition 13 (ddmin complexity, best case). If there is only
one failure-inducing change �i 2 c�� and all test cases that
include �i cause a failure as well, then the number of tests t is
limited by t � 2 log2ðjc��jÞ.

Proof. Under the given conditions, the test of either initial
subset �1 or �2 will fail; n ¼ 2 always holds. Thus, the
overall complexity is that of a binary search. tu
Whether this “best case” efficiency applies depends on

our ability to break down the input into smaller chunks that
result in determined (or better: failing) test outcomes.
Consequently, the more knowledge about the structure of
the input we have, the better we can identify possibly
failure-inducing subsets and the better is the overall
performance of ddmin.

The surprising thing, however, is that even with no
knowledge about the input structure at all, the ddmin algorithm
has sufficient performance—at least in the case studies we
have examined. This is illustrated in the following section.

4 CASE STUDIES

When you’ve cut away as much HTML, CSS, and JavaScript
as you can, and cutting away any more causes the bug to
disappear, you’re done.
—Mozilla BugAThon call

Let us now turn to some real-life failures and simplify
failure-inducing input. We discuss examples from the GNU

C compiler, Mozilla, and various UNIX utilities subjected to
random fuzz input.

4.1 GCC Gets a Fatal Signal

The C program in Fig. 7 not only demonstrates some
particular nasty aspects of the language, it also causes the
GNU C compiler (GCC) to crash—at least, when using
version 2.95.2 on Intel-Linux with optimization enabled.

Before crashing, GCC grabs all available memory for its
stack, such that other processes may run out of resources
and die.7 The latter can be prevented by limiting the stack
memory available to GCC, but the effect remains:

$(ulimit -H -s 256; gcc -O bug.c)

gcc: Internal compiler error:

program cc1 got fatal signal 11

$ _

The GCC error message (and the resulting core dump)
help GCC maintainers only; as ordinary users, we must now
narrow down the failure-inducing input in bug.c—and
minimize bug.c in order to file in a bug report.

In the case of GCC, the passing program run is the empty
input. For the sake of simplicity, we modeled a change as the
insertion of a single character. This means that,

. rp is running GCC with an empty input,

. r�� means running GCC with bug.c,

. each change �i inserts the ith character of bug.c,

. partitioning c�� means partitioning the input into
parts.

No special effort was made to exploit syntactic or semantic

knowledge about C programs; consequently, we expected a

large number of test cases to be invalid C programs.

To minimizebug.c, we implemented the ddmin algorithm

of Fig. 5 into our WYNOT prototype.8 The test procedure

would create the appropriate subset of bug.c, feed it to GCC,

return �� iff GCC had crashed, and
p

otherwise. The results of

this WYNOT run are shown in Fig. 8.

After the first two tests, WYNOT has already reduced the

input size from 755 characters to 377 and 188 characters,

respectively—the test case now only contains the mult

function. Reducing mult, however, takes time: only after 731

more tests (and 34 seconds)9 do we get a test case that

cannot be minimized any further. Only 77 characters are

left.

ZELLER AND HILDEBRANDT: SIMPLIFYING AND ISOLATING FAILURE-INDUCING INPUT 189

Fig. 7. The bug.c program that crashes GNU CC.

7. The authors deny any liability for damage caused by repeating this
experiment.

8. WYNOT = “Worked Yesterday, NOt Today.”
9. All times were measured on Linux PC with a 500 MHz Pentium III

processor. The time given is the CPU user time of our WYNOT prototype as
measured by the UNIX kernel; it includes all spawned child processes (such
as the GCC run in this example).



tðdouble z½�; int nÞfint i; j; forð; ; Þfi ¼ iþ jþ 1; z½1�
¼ z½i� � ðz½0� þ 0Þ; greturn z½n�; g

This test case is 1-minimal—no single character can be

removed without removing the failure. Even every single

superfluous whitespace has been removed and the function

name has shrunk from mult to a single t. (At least, we now

know that neither whitespace nor function name were

failure-inducing.)
Fig. 9 shows an excerpt of the Delta Debugging log: From

“z[0]” to “return”, we see how the ddmin algorithm tries to
remove every single change (= character) in order to
minimize the input even further—but each test results in
a syntactically invalid program.

As GCC users, we can now file in the one-liner as a
minimal bug report. But where in GCC does the failure
actually occur? We already know that the failure is
associated with optimization: If we remove the -O option
to turn off optimization, the failure disappears. Could it be
possible to keep optimization turned on, but to influence it
in a way that the failure disappears?

The GCC documentation lists 31 options that can be used

to influence optimization on Linux, shown in Table 1. It

turns out that applying all of these options causes the failure

to disappear:

$ gcc -O -ffloat-store -fno-default-inline \

-fno-defer-pop ...

-fstrict-aliasing bug.c

$ _

This means that some option(s) in the list prevent the failure.
We can use test case minimization in order to find the
preventing option(s). This time, each �i stands for removing
a GCC option from Table 1: Having all �i applied means to
run GCC with no option (failing), and having no �i applied
means to run GCC with all options (passing).

This WYNOT run is a straight-forward “divide and
conquer” search, shown in Fig. 10. After seven tests (and less
than a second), the single option –ffast-math is found which
prevents the failure:

$ gcc -O -ffast-math bug.c

$ _

Unfortunately, the –ffast-math option is a bad candidate for
working around the failure, because it may alter the
semantics of the program. We remove –ffast-math from the

list of options and make another WYNOT run. Again after
seven tests, it turns out the option –fforce-addr also prevents
the failure:

$ gcc -O -fforce-addr bug.c

$ _

Are there any other options that prevent the failure?
Running GCC with the remaining 29 options shows that the
failure is still there; so it seems we have identified all
failure-preventing options. And this is what we can send to
the GCC maintainers:

1. The minimal test case
2. “The failure occurs only with optimization.”
3. “–ffast-math and –fforce-addr prevent the failure.”

Still, we cannot identify a place in the GCC code that causes
the problem. On the other hand, we have identified as many
failure circumstances as we can. In practice, program
maintainers can easily enhance their automated regression
test suites such that the failure circumstances are auto-
matically simplified for any failing test case.

4.2 Mozilla Cannot Print

As a further case study, we wanted to simplify a real-world
Mozilla test case and thus contribute to the Mozilla
BugAThon. A search in Bugzilla, the Mozilla bug database,
shows us bug #24735, reported by anantk@yahoo.com:

Ok the following operations cause mozilla to crash
consistently on my machine

! Start mozilla.
! Go to bugzilla.mozilla.org.
! Select search for bug.
! Print to file setting the bottom and right margins to

.50 (I use the file /var/tmp/netscape.ps).
! Once it’s done printing do the exact same thing again

on the same file (/var/tmp/netscape.ps).
! This causes the browser to crash with a segfault.

In this case, the Mozilla input consists of two items: The
sequence of input events—that is, the succession of mouse
motions, pressed keys, and clicked buttons—and the
HTML code of the erroneous WWW page. We used the
XLAB capture/replay tool [5] to run Mozilla while capturing
all user actions and logging them to a file. We could easily
reproduce the error, creating an XLAB log with 711 recorded
X events. Our WYNOT tool would now use XLAB to replay
the log and feed Mozilla with the recorded user actions,
thus automating Mozilla execution.

In a first run, we wanted to know whether all actions in
the bug report were actually necessary. We thus subjected
the log to test case minimization, in order to find a failure-
inducing minimum of user actions. Out of the 711 X events,
only 95 were induced by user actions—that is, moving the
mouse pointer, pressing or releasing the mouse button, and
pressing or releasing a key on the keyboard. (The other
events were induced by the X server, such as notifications
that the window should be redrawn.) These 95 user actions
could easily be filtered out automatically by event type and
were then subjected to minimization.

The test function would start Mozilla and use XLAB to
replay the given set of user actions and then wait for a few
seconds. If Mozilla crashed during this interval, test would
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Fig. 8. Minimizing GCC input bug.c.



return ��. Otherwise, test would terminate Mozilla and

return
p

.10

The results of this run are shown in Fig. 11. After 82 test

runs (or 21 minutes), only three out of 95 user actions are left:

1. Press the P key while the Alt modifier key is held.
(Invoke the Print dialog.)

2. Press mouse button 1 on the Print button without a
modifier. (Arm the Print button.)

3. Release mouse button 1. (Start printing.)

User actions removed include moving the mouse pointer,

selecting the Print to file option, altering the default file

name, setting the print margins to .50, and releasing the
P key before clicking on Print—all this is irrelevant in

producing the failure.11

Since the user actions can hardly be further generalized,

we turn our attention to another input source—the failure-

inducing HTML code. The original Search for bug page has a

length of 39094 characters or 896 lines; an excerpt is shown

in Fig. 1. In order to minimize the HTML code, we chose a

hierarchical approach: In a first run, we wanted to minimize

the number of lines (that is, each �i was identified with a

line); in a later run, we wanted to minimize the failure-

inducing line(s) according to single characters.
The results of the lines run are shown in Fig. 12. After

57 test runs, the ddmin algorithm minimizes the original 896

lines to a 1-line input:

< SELECTtNAME ¼00 priority00tMULTIPLEtSIZE ¼ 7 >

This is the HTML input which causes Mozilla to crash

when being printed. As in the GCC example of Section 4.1,

the actual failure-inducing input is very small. It should be

noted, though, that the original HTML code contains

multiple SELECT tags; Delta Debugging returns only one

of them.12 Further minimization by characters, as shown in

Fig. 2, reveals that the attributes of the SELECT tag are not

relevant for reproducing the failure, either—the single input

< SELECT >

already suffices for reproducing the failure. Overall, we

obtain the following self-contained minimized bug report:

! Create an HTML page containing “<SELECT>”
! Load the page and print it using Alt+P and Print.
! The browser crashes with a segmentation fault.

or even simpler:

! Printing “<SELECT>” causes a crash.

In principle, this minimization procedure could easily be

applied automatically on the 12,479 open bugs listed in the

Bugzilla database13—provided that the bug reports can be

reproduced automatically. All one needs is an HTML input, a

sequence of user actions, an observable failure—and a little

time to let the computer simplify the failure-inducing input.
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Fig. 9. Minimizing GCC input bug.c.

TABLE 1
GCC Optimization Options

10. As in all testing, it is always a good idea to set an upper time bound
for test cases.

11. It is relevant, though, that the mouse button be pressed before it is
released.

12. If desired, one could easily reinvoke Delta Debugging on the
remainder to search for other independent failure causes. In practice,
though, we expect that after Delta Debugging has simplified a test case, first
the error is fixed. Then, the test is repeated with the fixed program. If the
failure persists, then Delta Debugging can find the next failure cause.

13. As of 15 February 2001, 13:00 GMT.



4.3 Minimizing Fuzz

In a classical experiment [6], [7], Miller et al. examined the
robustness of UNIX utilities and services by sending them
fuzz input—a large number of random characters. The
studies showed that, in the worst case, 40 percent of the
basic programs crashed or went into infinite loops when
being fed with fuzz input.

We wanted to know how well the ddmin algorithm

performs in minimizing the fuzz input sequences. We

examined a subset of the UNIX utilities listed in

Miller’s paper: NROFF (format documents for display), TROFF

(format documents for typesetter), FLEX (fast lexical analyzer

generator), CRTPLOT (graphics filter for various plotters),

UL (underlining filter), and UNITS (convert quantities).
We set up 16 different fuzz inputs, differing in size

(103 to 106 characters) and content (whether all characters

or only printable characters were included and whether

NUL characters were included or not). As shown in

Table 2b, Miller’s results still apply—at least on Sun’s

Solaris 2.6 operating system: Out of 6
 16 ¼ 96 test runs,

the utilities crashed 42 times (43 percent).
We applied our WYNOT tool in all 42 cases to minimize

the failure-inducing fuzz input. In a first series, our test

function would simply return �� if the input made the

program crash and
p

otherwise. Table 2c shows the

resulting input sizes. Table 2d lists the number of tests

required. Depending on the crash cause, the programs

could be partitioned into two groups:

. The first group of programs shows obvious buffer
overrun problems.

- FLEX, the most robust utility, crashes on
sequences of 2,121 or more nonnewline and
non-NUL characters (t14–t15).

- UL crashes on sequences of 516 or more printable
nonnewline characters (t5–t8, t13–t16).

- UNITS crashes on sequences of 77 or more 8-bit
characters (t2–t4 and t11–t12).

Fig. 13 shows the first 500 tests of the WYNOT run for
FLEX and t16. After 494 tests, the remaining size of
2,122 characters is already close to the final size.
However, it takes more than 10,000 further tests to
eliminate one more character.

. The second group of programs appears vulnerable
to random commands.

- NROFF and TROFF crash

* on malformed commands like: ”\\D^J%0F”:14

(NROFF, t6), and
* on 8-bit input such as: ”\302\n”: (TROFF,

t1).
- CRTPLOT crashes on the one-letter inputs: ”t”:

(t1) and: ”f”: (t5, t9, t13–t16).

The WYNOT run for CRTPLOT and t16 is shown in
Fig. 14. It takes 24 tests to minimize the fuzz input of
106 characters to the single failure-inducing character.

Again, all test runs can be (and have been) entirely

automated. This allows for massive automated stochastic

testing, where programs are fed with fuzz input in order

to reveal defects. As soon as a failure is detected, input

minimization can generalize the large fuzz input to a

minimal bug report.

4.4 The Precision Effect

In the fuzz examples from Section 4.3, our test function

would return �� whenever a program crashed—regardless

of further circumstances. This ignorance may lead to a

problem: The minimized input may cause a different failure

than the original test case.
In the fuzz examples, a different failure may be tolerable:

Just as in the Mozilla case study (Section 4.3), there may be
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Fig. 10. Minimizing GCC options.

Fig. 11. Minimizing Mozilla user actions.

Fig. 12. Minimizing Mozilla HTML input.

14. All input is shown in C string notation.
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TABLE 2
Minimizing Failure-Inducing Fuzz Input

(a) Test cases. (b) Test outcomes. (c) Size jc0��j of minimized input—low precision. (d) Number of test runs—low percision. (e) Size of jc0��j of
minimized input—high precision. (f) Number of test runs—high precision.



multiple independent failure causes and, eventually, we
must fix them all. In the context of debugging, though, it is
important that the causes for the original failure be isolated.

As a consequence, we repeated our test runs with an
increased precision, which would also compare the location of
the failure. As location, we used the backtrace—that is, the
current program counter and the stack of calling functions
at the moment of the crash. The values of arguments and
local variables were not part of the backtrace, though.

. The test function would return �� only if the program
crashed and if the backtrace of the failure was
identical to the original backtrace.

. If the program failed, but with a different backtrace,
test would return ??.

. If the program did not crash, test would return
p

.

As shown in Table 2e, this increase in precision resulted
in larger minimized test cases for NROFF, TROFF, and FLEX;
the other three programs are unchanged. As an example,
the NROFF input t1 has been minimized from 103 to 60
characters; with lower precision (Table 2c), only two
characters were left. This indicates that the two characters
from Table 2c induce a failure different from the original
one. Only the 60 characters in Table 2e induce the same
backtrace.

Besides the backtrace, there is more one could compare:
the entire memory contents, for instance, or the full
execution traces. One will find, though, that higher
precision will always increase the size of the minimized
test case. This is so because only the complete original input
can induce the complete original failure and a complete
comparison of behavior will make all of the original input
significant (except for those parts, of course, which do not
have any impact on the final program state at all). In
practice, a simple backtrace as in our setting should provide
sufficient precision.

5 ISOLATING FAILURE-INDUCING DIFFERENCES

So assess them to find out their plans,
both the successful ones and the failures.
Incite them to action in order to find out
the patterns of movement and rest.
—Sun Tzu, The Art of War

The case studies as discussed in Sections 4.3 and 4.4 exhibit
a major weakness of the ddmin algorithm: The larger the

size of the simplified input, the higher is the number of
tests required. This is pretty obvious, because determining
the 1-minimality of a test case with n entities requires at
least n tests—each entity is individually removed and
tested. Consequently, with the simplified FLEX input of
2121 characters, the number of tests (Table 2d) varies
between 11,589 (fuzz input of 104 characters) and 17,960
(105 fuzz input characters); with high precision, the number
of tests is between 34,450 and 37,454 (Table 2f).

Thirty-six thousand tests are not much of an issue if each
individual test is fast. If a single test takes about 0.1 seconds,
as in the FLEX case, the entire simplification requires one
hour. However, if the tests are less trivial or if the size of the
simplified input is larger, we have a serious problem.

There are many pragmatic approaches to resolve this
issue, such as stopping simplification as soon as a time limit
is reached or as soon as the original test case is reduced by a
certain amount. However, there is a better strategy. Rather
than only cutting away while the failure persists, one can
also add differences while the program still passes the test. To
get the best efficiency, one can combine both approaches
and narrow down the set of differences whenever a test either
passes or fails.

5.1 Isolation Illustrated

This idea of isolating the failure-inducing differences is best
illustrated in comparison to the “simplification” approach
discussed so far. Fig. 2 shows how ddmin simplifies the
failure-inducing HTML line presented in Section 4.2: After
26 steps, the line is reduced to the single <SELECT> tag.

Fig. 3 shows the alternative “isolation” approach. Again,
as in ddmin, each time a test case fails, the smaller test case
is used as a new failing test case. This minimizes the failing
test case, as well as the difference between the failing test
case and the (initially empty) passing test case. However,
each time a test case passes, the larger test case is used as new
passing test case, thus minimizing the difference as well.

Before going into details of the algorithm, let us look at the
results: After seven tests, the failure-inducing difference is
narrowed down to one < character. Prefixing the passing test

SELECTtNAty
00
tMULTIPLEtSIZE ¼ 7 >

with a < character changes the SELECT text to an HTML

<SELECT> tag, causing the failure when being printed. This
example demonstrates the basic difference between simpli-
fication and isolation:
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Fig. 13. Minimizing FLEX fuzz input. Fig. 14. Minimizing CRTPLOT fuzz input.



. Simplification means to make each part of the
simplified test case relevant: Removing any part
makes the failure go away.

. Isolation means to find one relevant part of the test
case: Removing this particular part makes the failure
go away.

In general, isolation is much more efficient than
simplification. If we have a large failure-inducing input,
isolating the difference will pinpoint a failure cause much
faster than minimizing the test case—in Fig. 3, isolating
requires only seven tests, while minimizing (Fig. 2) required
26 tests.

On the other hand, focusing on the difference requires
the programmer to keep the common context of both test
cases in mind—that is, the passing test case. This imposes
an extra load on the programmer. In the future, though, we
might have debugging tools that highlight differences and
commonalities between multiple runs. For such tools,
having two test cases with a minimal difference is far
preferable to having only one simplified test case. Already
today, if the isolated difference consists of, say, two items to
keep in mind, while the minimized test case consists of, say,
a hundred items to keep in mind, the isolated difference
may lead much faster to the fix.

Another important point is that the running time of the
program is frequently proportional to the size of its input.
In some cases, simplification may require a larger amount
of tests, but a lower total running time, due to the smaller
input. Consequently, even when isolating differences, we
should take care to prefer simple test cases. In practice,
intended use and available resources may result in a mix of
both simplification and isolation.

5.2 An Isolating Algorithm

Let us now formally define the algorithm that isolates failure-

inducing differences. How can we extend the ddmin algorithm

to obtain the behavior as sketched in Fig. 3.? Our goal is to find

two sets c0p and c0�� such that ; ¼ cp � c0p � c0�� � c�� holds and

the difference � ¼ c0�� � c0p is minimal.

Again, we need to specify what we mean by minimality,

now applied to differences instead of test cases. The

definition of minimality follows Definition 9:

Definition 14 (Minimal failure-inducing difference). Let

c0p and c0�� be two test cases with ; ¼ cp � c0p � c0�� � c��.

Their difference � ¼ c0�� � c0p is minimal if

8�i � � � testðc0p [�iÞ 6¼
p ^ testðc0�� ��iÞ 6¼ ��

holds.

Again, the number of subsets of � is exponential, so

we resort to the same pragmatic approximation as in

Definition 10:

Definition 15 (n-minimal difference). Let c0p and c0�� be

defined as in Definition 14. Their difference � ¼ c0�� � c0p is

n-minimal if

8�i � � � j�ij � n)
�
testðc0p [�iÞ 6¼

p ^ testðc0�� ��iÞ 6¼ ��
�

holds. Consequently, � is 1-minimal if

8�i 2 � � test
�
c0p [ f�ig

�
6¼ p ^ test

�
c0�� � f�ig

�
6¼ ��

holds.

This is what we are aiming at: to isolate a 1-minimal

difference between a passing and a failing test case.
It turns out that the original ddmin algorithm, as

discussed in Section 3.2, can easily be extended to compute

a 1-minimal difference rather than a minimal test case.

Besides reducing the failing test case c0�� whenever a test

fails, we now also increase the passing test case c0p whenever

a test passes. At all times, c0p and c0�� act as lower and upper

bound of the search space, which is systematically

narrowed—like in a branch-and-bound algorithm, except

that there is no backtracking.
This is what we have to do to extend ddmin:

1. Extend ddmin such that it works on two sets at a
time:

. the passing test case c0p which is to be

maximized (initially, c0p ¼ cp ¼ ; holds) and
. the failing test case c0�� which is to be minimized

(initially, c0�� ¼ c�� holds).
2. Compute subsets �i as subsets of � ¼ c0�� � c0p

(instead of subsets of c0��)
3. Change the rule “Reduce to subset” such that c0p [

�i is tested (and passed to the recursive call) instead
of �i.

4. Introduce two additional rules for passing test cases:

. Increase to complement. If c0�� ��i passes for any
subset �i, then c0�� ��i is a larger passing test
case. Continue reducing the difference between
c0�� ��i and c0��. This is just the complement of
the “reduce to subset” rule in ddmin.

. Increase to subset. If c0p [�i passes for any
subset �i, then c0p [�i is a larger passing test
case. Again, this is just the complement of the
“reduce to complement” rule in ddmin.

As a consequence of the additional rules, the

“increase granularity” rule only applies if all

previous tests turn out unresolved.

The full dd algorithm is shown in Fig. 15.

5.3 Properties of dd

Being based on ddmin, the dd algorithm inherits most

properties. In particular, dd returns a 1-minimal difference

and has the same worst-case number of tests:

Proposition 16 (dd minimizes). For any c � ��, let

ðc0p; c0��Þ ¼ ddðcÞ. Then, � ¼ c0�� � c0p is 1-minimal in the

sense of Definition 15.

Proof. (Compare proof of Proposition 11.) According to the

dd definition (Fig. 15), dd2ðc0p; c0��; nÞ returns ðc0p; c0��Þ only
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if n � j�j where � ¼ c0�� � c0p ¼ �1 [ . . . [�n; that is,

j�ij ¼ 1 and �i ¼ f�ig hold for all i.
Furthermore, for dd2 to return ðc0p; c0��Þ, the conditions

testðc0p [�iÞ 6¼ ��, testðc0�� ��iÞ 6¼
p

, testðc0p [�iÞ 6¼
p

,
and testðc0�� ��iÞ 6¼ �� must hold. These are the condi-
tions of Definition 15; consequently, � is 1-minimal. tu

Proposition 17 (dd complexity, worst case). The number of

tests carried out by ddðc��Þ is jc��j2 þ 3jc��j in the worst case.

Proof. The worst case is the same as in Proposition 12;

hence, the number of tests is the same. tu

Actually, ddmin is an instance of dd: If test returns
p

only

for cp, c0p ¼ cp ¼ ; always holds and only c0�� is

minimized.15 However, dd is much more efficient than

ddmin if there are no unresolved test cases; this “best case”

even requires half as many tests as ddmin.

Proposition 18 (dd complexity, best case). If all tests return

either
p

or ��, then the number of tests t is limited by

t � log2ðjc��jÞ.
Proof. We decompose � ¼ �1 [�2 ¼ c0�� � c0p . Under the

given conditions, the test of c0p [�1 ¼ c0�� ��2 will either

pass or fail; n ¼ 2 always holds. This is equivalent to a

classical binary search algorithm over a sorted array:

With each recursion, the difference is reduced by 1/2; the

overall complexity is the same. tu
Proposition 18 tells us what makes the search for the

SELECT tag so efficient: There were no unresolved test

outcomes in the Mozilla test case. In fact, when there are no

unresolved test outcomes, dd always returns a single

failure-inducing change:

Corollary 19 (Size of failure-inducing difference, best
case). If all tests return either

p
or ��, then jddðc��Þj ¼ 1 holds.

Proof. Follows directly from the equivalence to binary
search, as shown in Proposition 18. tu

However, these “best cases” need not always be
given—the more unresolved test outcomes we have, the
more tests will be required. Let us see how dd behaves in
practice when there are unresolved test outcomes.

6 CASE STUDIES REVISITED

— How do they know the load limit on bridges, Dad?
—They drive bigger and bigger trucks over the bridge until
it breaks. Then they weigh the last truck and rebuild the
bridge.
—Bill Watterson, Calvin and Hobbes

To demonstrate the difference in performance between dd
and ddmin, we have repeated the GCC and fuzz case studies
with the dd algorithm.

6.1 Isolating GCC Input

As a first example, reconsider the GCC example from
Section 4.1. Since we are not interested in programs with
invalid syntax, we set up the test function such that it
would return

p
if the compilation succeeded, �� if the

compiler crashed, and ?? in all other cases (notably, if the
compilation failed).

With ddmin, it took us 731 tests to minimize the entire
program. Isolating the difference requires but 59 tests
(Fig. 16), but nonetheless pinpoints to a relevant
difference of two characters. As shown in Fig. 17 it
suffices to remove the assignment to i in the mult

function to make the program work (Fig. 17b). This
suggests a problem with inlining the expression iþ jþ 1
in the array accesses z½i� on the following line.

6.2 Isolating Fuzz Input

In a second example, we have repeated the high-precision
fuzz experiments of Section 4.4 with the dd algorithm—that
is, the test outcome was ?? if the failure backtrace was
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Fig. 15. General Delta Debugging algorithm.

15. There is another instance of dd, which might be called a
“maximizing” algorithm; it minimizes the difference only by extending
the passing test case. This ddmax variant is obtained if test returns �� only for
c��: then, c0�� ¼ c�� always holds and c0p is maximized.



different from the original backtrace.16 As shown in

Table 3b, the number of test runs is much smaller for dd

than for ddmin. Except for NROFF, the minimal failure-

inducing difference is always just one character. Only

NROFF, TROFF, and FLEX have any unresolved test out-

comes (Table 3d); for all others, the number of test runs

(Table 3c) is logarithmic in proportion to the input size as

predicted in Proposition 18.
Table 3e shows the size of the common context—that is,

the size of the maximized passing input c0p. In the UL

example, for instance, we can see that adding one more
character to the 515 passing ones causes the failure.
Likewise, the FLEX buffer is overrun after adding one more
character to a base of 7,804 to 7,811 characters. In all cases,
the number of tests is significantly lower than with the
ddmin algorithm.

7 RELATED WORK

When you have two competing theories which make exactly
the same predictions, the one that is simpler is the better.
—Occam’s Razor

As stated in the introduction, we are unaware of any other
technique that would automatically simplify test cases to
determine failure-inducing input. One important exception
is the simplification of test cases which have been artificially
produced. In [8], Slutz describes how to stress-test databases
with generated SQL statements. After a failure has been
produced, the test cases had to be simplified—after all, a
failing 1,000-line SQL statement would not be taken
seriously by the database vendor, but a 3-line statement
would. This simplification was realized simply by undoing
the earlier production steps and testing whether the failure
still occurred.

In general, Delta Debugging determines circumstances
that are relevant for producing a failure (in our case, parts
of the program input). Such work has been conducted
before. However, the previous work was always specific to
a particular domain and always only as simple binary
search for a single circumstance. An example for such work
is detecting a single failure-inducing component in an
optimizing compiler [9].

The dd algorithm presented in this paper is a successor to
the ddþ algorithm presented in [3]. Like dd, ddþ takes a set of
changes and minimizes it according to a given test; in [3],
these changes affected the program code and were obtained
by comparing two program versions.

The main differences between dd and ddþ are:

. ddþ is not well suited for failures induced by a large
combination of changes. In particular, ddþ does not
guarantee a 1-minimal subset, which is why it is not
suited for minimizing test cases.

. ddþ assumes monotonicity: That is, whenever
testðcÞ ¼ p

holds, then testðc0Þ ¼ p
holds for every

subset c0 � c as well. This assumption, which was
found to be useful for changes to program code,
gave ddþ a better performance when most tests
produced determinate results.

We recommend dd as a general replacement for ddþ. To
exploit monotonicity in dd, one can make testðcÞ return

p

whenever a superset of c has already passed the test and ��
whenever a subset of c has already failed the test.

8 FUTURE WORK

If you get all the way up to the group-signed T-Shirt, you can
qualify for a stuffed animal as well by doing 12 more.
—Mozilla BugAThon call.

Our future work will concentrate on the following topics:

. Domain-specific simplification methods. Knowledge
about the input structure can very much enhance
the performance of the Delta Debugging algorithms.
For instance, valid program inputs are frequently
described by grammars; it would be nice to rely on
such grammars in order to exclude syntactically
invalid input right from the start. Also, with a formal
input description, one could replace input by smaller
alternate input rather than simply cutting it away. In
the GCC example, one could try to replace arithmetic
expressions by constants or program blocks by no-
ops; HTML input could be reduced according to
HTML structure rules. Besides grammars, changes
may also be constrained by explicit change con-
straints, as established in version control [10].

. Optimization. In general, the abstract description of
the Delta Debugging algorithms leaves a lot of
flexibility in the actual implementation and thus
provides “hooks” for several domain-specific
optimizations:

- The implementation can choose how to partition
the difference � into subsets �i. This is the place
where knowledge about the structure of the
input comes in handy.

- The implementation can choose which subset to
test first. Some subsets may be more likely to
cause a failure than others.

- The implementation can choose whether and
how to handle multiple independent failure-indu-
cing inputs—that is, the case where there are
several subsets �i with testðc0p [�iÞ ¼ ��. Op-
tions include:
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Fig. 16. Narrowing down the failure-inducing difference.

16. We also repeated the low-precision experiments. But, since the test
outcome was always

p
or ��, the experiments outcome just confirmed the

predictions of Proposition 18 and Corollary 19.



* to continue with the first failing subset,
* to continue with the smallest failing one, or
* to simplify each individual failing subset.

Our implementation currently goes for the first

failing subset only and, thus, reports only one

subset. The reason is economy: It is wiser to fix the

first failure before checking for further similar

failures.
. Undoing changes. Delta Debugging assumes that failure

is monotone: Once a failure occurs, one cannot make it

disappear by adding more “undoing” changes. (For-

mally, there is no "�i such that ð�i 	 "�iÞðrÞ ¼ r.) As an

example, assume a program that processes HTML tags:

Whenever its input contains only the opening HTML

tag, but not the closing one, it fails. In the input <A></

A><B>, for instance, the HTML tag <B> lacks a closing

</B>. If we use Delta Debugging to simplify this

failure-inducing input, then it may partition the input

into <A> and </A><B>, resulting in the simplified

input <A>—although in the concrete example, this

failure cause was undone by</A>; it was<B> that had

no closing HTML tag. To identify undoing changes,

one cannot use test alone (this would require testing

up to 2jc��j supersets of the minimized test case), so we

investigate whether increased precision (Section 4.4)

or domain-specific knowledge help in practice.
. Program analysis. In the field of general automated

debugging, failure-inducing circumstances have al-

most exclusively been understood as failure-indu-

cing statements during a program execution. The

most significant method to determine statements

relevant for a failure is program slicing—either the

static form obtained by program analysis [11], [12] or

the dynamic form applied to a specific run of the

program [13], [14].
The strength of analysis is that several potential

failure causes can be eliminated due to lack of data

or control dependency. This does not suffice,

though, to check whether the remaining potential

causes are relevant or not for producing a given

failure. Only by experiment (that is, testing) can we

prove that some circumstance is relevant—by

showing that there is some alteration of the

circumstance that makes the failure disappear.

When it comes to concrete failures, program analysis

and testing are complementary: Analysis disproves

causality, and testing proves it.
It would be nice to see how far systematic testing

and program analysis could work together and

whether Delta Debugging could be used to deter-

mine failure-inducing statements as well. In our

current work, we treat a program state (i.e., variables

and values) as internal input to the remainder of the

program and isolate those variables and values

which are relevant for producing the failure—just

as Delta Debugging isolates external failure-indu-

cing input. The statements in which these variables

are set can then be determined as failure-inducing.

In both steps, program analysis is most helpful to

narrow down the set of potential variables and

statements.
. Other failure-inducing circumstances. Changing the

input of the program is only one means to influence
its execution. As stated in Section 2.3, a �i can stand
for any change in the circumstances that influences
the execution of the program. Our current work
extends Delta Debugging to other failure-inducing
circumstances, such as executed statements, control
predicates, or thread schedules.

9 CONCLUSION

Debugging is still, as it was 30 years ago,
a matter of trial and error.
—Henry Lieberman, The Debugging Scandal

We have shown how the Delta Debugging algorithms
simplify and isolate failure-inducing input, based on an
automated testing procedure. The method can be (and has
been) applied in a number of settings, finding failure-
inducing parts in the program invocation (GCC options), in
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Fig. 17. A failure-inducing difference.



the program input (GCC, fuzz, and Mozilla input), or in the

sequence of user interactions (Mozilla user actions).
We recommend that automated test case simplification

be an integrated part of automated testing. Each time a test

fails, Delta Debugging could be used to simplify and isolate

the circumstances of the failure. Given sufficient testing

resources and a reasonable choice of changes �i that

influence the program execution, the algorithms presented

in this paper provide simplification and isolation methods

that are straight-forward and easy to implement.

In practice, testing and debugging typically come in pairs.

However, in previous research on automated debugging,

testing has played a very minor role. This is surprising,

because retesting a program under changed circumstances is

a common debugging approach—and the only way to prove

that the circumstances actually cause the failure. Eventually,

we expect that several debugging tasks can in fact be stated as

search and minimization problems, based on automated

testing—and thus be solved automatically.
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TABLE 3
Isolating Failure-Inducing Differences in Fuzz Input

(a) Test cases. (b) Size jc0�� � c0pj of minimized difference—high precision. (c) Number of test runs—high precision. (d) Number of unresolved test
outcomes—high precision. (e) Size jc0pj of common context—high precision.
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