Recovering Traceability Links between
Code and Documentation

Paper by: Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza,
Andrea De Lucia, and Ettore Merlo

Presentation by: Brice Dobry and Geoff Gerfin

Problem Statement and Proposed
Solution

Problem: Documentation is usually
created in a very informal manner

= [n large software systems with large amounts
of free-text documentation, this makes it
difficult to associate the correct document for
a certain piece of code.

Solution: Use Information Retrieval (IR)
to recover traceability links between
source code and free-text documents.

Benefits of Traceability Links (1/3)

Program Comprehension

= For both top-down and bottom-up code analysis,
traceability links can aid in:

Forming a hypothesis about how the code functions
(bottom-up)

Locating code that supports a hypothesis (top-down)

Maintenance
= Determine legacy system functionality

= | inks can associate domain concepts to code
fragments

Benefits of Traceability Links (2/3)

Requirement Tracing (Specifications)

= | ocate source code that corresponds to a
program specification

= Fnables assessing program completeness /
code inspection
Impact Analysis

= Discover pieces of code affected by a change
to a program’s specification

= Discover pieces of documentation affected by
a change to a program’s code

Benefits of Traceability Links (3/3)

Code Reuse

= Concepts about existing code could exist in a
wide range of documents (specifications, man
pages, design documents, etc.)

= Traceability links could aid in locating code
that could be reused

Proposed Method

Design Document

int mainy) {

o, Specifications
for (i=1; i < NUM_FTS; i++){
zrid[i] = grid[i-1] © thetali]:

inifialize a grid with..

Authors chose not to base their method on
traditional compiler methods

= Too difficult to apply syntactic analysis to the natural
language sentences that occur in free-text
documents

= However, parsing technology can be applied when
identifying source code elements

Proposed Method

Design Document

int mainy) {

o, Specifications
for (i=1; 1 < NUM_PTS; i++){
grid[i] = grid[i-1] © thetali]:

initialize a grid with...

Ranking is done in two different ways:
= Probabilistic Model
= \/ector Space Model

Architecture

Source code
COmponent

Soltware
Documents

Identificrs
Fxtraction

Query Exiraction

Identifiers

Separation

[etiers
Trunsformation

CODE PATH

DOCUMENT PATH

Text Normalization

Stopwords

Removal

Text
Normalization

Morphological
Analisys

Indexer

Scored Document

-

Document
Classifier

[List

Indexer

Document Path (1/4)

DOCUMENT PATH

Text Normalization

Letters ‘ Stopwords Morphological

Transformation Analisys

Removal

.'"

Document Path (2/4

DOCUMENT PATH

Text Normalization

Letlers
Transformation

Stopwords Morphological

‘ Removal ATUEYS

Capital Letters -> Lowercase Letters

Document Path (3/4

DOCUMENT PATH

Text Normalization

Letters ‘ Stopwords Morphological
- ;
Analisys

Transformation ‘

Removal

Stop words are removed:

= articles, punctuation, numbers

= Ex source code cmpnt: “areaOfARectangle”

= Ex sentence: “...calculate the volume of a cylinder.”

Document Path (4/4

DOCUMENT PATH

Text Normalization

Letlers
Transformation

Stopwords Morphological

Removal Analisys

|

Plurals -> Singulars
= Ex: “"Rectangles” -> “rectangle”

Conjugated Verbs -> Infinitives
= Ex: “jumps” -> “to jump”

Code Path (1/4)

Query Extraction

Identifiers Identifiers Text

Extraction Separation Normalization
e h el & !

CODE PATH

Code Path (2/4)

Query Extraction

Identifiers Identifiers Text
Normalization

Extraction Separation

CODE PATH

double areaOfARectangle(float height, float width){

double area; Extracted Source Code Components

f (height == 0 || width == 0) -“areaOfARectangle
return -1.0; -“area”
-“height”

area = height*width;
¥ “‘width”

Code Path (3/4)

Query Extraction

Identifiers

] " L T ' "

Extraction QARG Normalization
(LW s § s !

-

CODE PATH

Text that contains two or more identifiers
s split into single identifiers:

= "areaOfARectangle” - “area”, "Of", "A",
“Rectangle”

Code Path (4/4)

Query Extraction

Identifiers Identifiers Text

X ractio o vormalizatio
Extraction Separation Normalization

CODE PATH

Text normalization includes the components of
the document path:

= Capital -> Lowercase
= Stop Words Removal
= Plurals -> Singulars; Conjugated Verbs -> Inifinitves

Ranking Methods - Probabilistic

Probabilistic Model

" Free-text documents are ranked according to
the probability that they are relevant to a
given guery

= Fach string of words in a given vocabulary is
assigned a probability within each document

= The source code components are scored

against the model
Higher scores indicate higher probability of relevancy

Ranking Methods - Probabilistic

The similarity between a source code
component and a document can be
represented as a conditional probability:

Similarity(D;, Q) = Pr(D;|Q).

Using Baye’s Rule:
Pr(Q|D;)Pr(D;)

Pr(D;|Q) =

PriQ))
Pr(Di) same for all docs, P(Q) is constant:
= Similarity(Di, Q) = Pr(Q | Di)

Ranking Methods - Probabilistic

Q can be represented as a sequence of
words:

P ' wy, Wz, -. ., Wm A’I—_-}.if)

Tt
= Pr(wy | ;) | I Prlwe | vy, oo we_1; D).
sl

Computation can become exhaustive, so it
IS better to be less precise and limit to the
last n-1 words (where n < m):

Prlawy, wa ot | Dy)

Tt
=~ Priwiy. .. ,Wn-1 | 1) H Priwg | We—pit.. .. W

k=n

Ranking Methods - Probabilistic

Even the n-1 limit could become exhaustive if there is a
large amount of words in the vocabulary

It is rare that multiple words from the same source code
component occur in the same document, therefore we
can compute independently:

Sivmalarity(D;, Q) = Pr(Q D;)

— Ji_n.fl: u . 'l"i.-‘g._ ce el i 4 = i i : e _jr__]l I| .

Problem: If any one word doesn't occur, P = 0.

= Solution: Smoothing Function - If @ word doesn't occur,
P = lambda; otherwise P = P(wk|Di) + lambda

Ranking Methods - Vector

Vector Space Model

= Documents are classified in n-dimensions
n is the number of words in the vocabulary (n = |
Vi)
= 2 vectors are created:
Vector 1: [d; d;, d;y;] created for each doc.
= Represents the occurrence of a Vocab word in Doc. i
Vector 2: [qg; 4, . qy;] is the same for each doc

= Represents the occurrence of a source code component
Q in the Vocab.

Example Vectors

This document
describes the
specifications for
finding the area of
a rectangle and
the volume of a
cylinder.

Vocabulary: area, volume, rectangle,
cylinder:

Component 1

Component 1. double areaOfRectangle();

Component 2: double volumeOfCylinder();

Component 2

D=1]1,1,1,1 D=1]1,1,1, 1]
Q=1[1,0,1,0 Q=1[0,1,01

22

Ranking Methods - Vector

A distance function is used to compute
the similarities between the vectors
(overlap indicates high similarity):

Similarity(D;. Q) =

"\—"l
=]

This is the cosine of the angle between
vectors d and g. A higher cosine of an
angle indicates less difference; this is used
as a common distance function

Case Stuay

Background Info

Metrics

® Recall

Ratio of number of relevant documents retrieved
over the total number of relevant documents

Z; +#+ Relevant;

100% recall means that all relevant documents
were retrieved

Background Info

Metrics (cont'd)

® Precision

Ratio of number of relevant documents retrieved
over the total number of documents retrieved

> . #(Relevant; N\ Retrieved;

) 07

Precision = s

> #Retrieved,

100% precision means that all no irrelevant
documents were retrieved

Background Info

Metrics (cont'd)

= Tdeal results would have recall and precision
both equal to 100%

® For a tool to be most useful, it should have
100% recall with precision as high as possible
(make sure all relative documents are
included but include as few false positives as
possible)

Background Info

Test Subjects
= LEDA (Library of Efficient Data types and
Algorithms)
C++
95 KLOC
208 classes

88 manual pages

Manual pages were generated with scripts that
extract comments from the source code

Background Info

Test Subjects (cont'd)
= Albergate
Java
20 KLOC
95 classes (60 looked at for this experiment)

16 functional requirements

Documentation was produced early in the
development cycle so much more distance
between documentation and code

LEDA Results

Many names (functions, arguments, etc.)

from the code appear exactly in manual

pages so traceability link recovery task is

relatively easy

Simplified steps

= [dentifier separation: Only split identifiers
containing underscores

= Text normalization: Only transform capital
letter to lowercase

LEDA Results

208 classes, 88 manual pages

Each class described by at most one man
pPage

110 classes were not described anywhere
Total number of links: 98

LEDA Results

Probabilistic IR model Vector Space IR model

17.06 % | 72.44

12,66 % | 80.6]

532 93 | . | Y48 82 | 985 % 83.67
1040 93 | 1 94.89 ¢ 85 | 8.17% | 86.73

1248 03 | 7.45% | 94.89 ¢ 80 | 7.13% | 90.81
1456 | 91.83
1664 3

1872

2080

2496 98 | 3.92% | 100.00 %

LEDA Results

:] M o Ci [53 i

12
Recall

10/11

LEDA Results

Probabilistic model has higher recall value
at low cut values but vector space model
reaches 100% sooner (cut value of 12
versus 17)

Precision results are greatly affected by
the fact that more than half of the classes
(110/208) are not referenced in any
document

Albergate Results

60 classes, 16 functional requirements

On average a requirement was
implemented by about 4 classes with a
maximum of 10

Most classes were associated with only
one requirement (6 were associated with
two, 8 were associated with none)

Total number of links: 58

Albergate Results

50.00 % | 4833 % | 50.00 %
70.68 % | 34 | 28.33% | 58.62 %
77.58 % 46 | 25.55% | 79.31 %

87.93 % | 1| 2125% | 87.93 %
98.27 % 4| 1800% @ 93.10%
1527 % | 94.82 %

Albergate Results

Frecision
1

FProbabilistic Model

Vector

Albergate Results

Two models performed similarly

Probabilistic model reached 100% recall
sooner (cut value of 6 versus 7)

Probabilistic vs. Vector Space Model

Observations

= Probabilistic model gets high recall values
with small cut values then makes little
progress towards 100% as cut value
Increases

= \/ector space model starts with lower recall
values at low cut values then makes regular
progress towards 100% as cut value
Increases

Probabilistic vs. Vector Space Model

Explanation

® Probabilistic mode

Associate a class with a document based on the product of
the unigram probabilities with which each class identifier
appears in the document

Class identifiers that do not appear in the document are
assigned a very low probability

= \/ector space mode

Only account for the class identifiers which appear in the
document
Weigh the frequency of occurrence of the words in the

document with respect to their distribution in other
documents

Probabilistic vs. Vector Space Model

Explanation (cont'd)

® Probabilistic model

Best-suited for cases where the presence of class
identifiers that are not included in the document is
low

= \/ector space model

Best-suited for cases where each group of words
IS common to a relatively small number of
documents

Aims to regularly achieve the maximum recall with
a low number of retrieved documents, and not
necessarily to pick the best match

Probabilistic vs. Vector Space Model

Explanation (cont'd)

= Simplified process is only acceptable for documents
close to the code

‘NAME .
AreaOfARectangle A‘

ARGS

= When used for the Albergate study, the difference is
Clear

The vector space model is affected very little while the
probabilistic model is effected greatly by the simplification

Albergate Results (simplified)

Frobali ic Model (Improved)

Veactor Spac
hACde]

Evaluation

Comparing IR models with grep

Single Code Item
® grep with each class identifier individually

Code Items or Combined
= grep with the or of all of the class’s identifiers

4670

Considerations of Effort Saving

Recovery Effort Index (REI)

+# Retrieved

REI =

+# Available

= A person with no tool would have to look
through every document to find links (REI =
1)

= The lower the REI, the less effort is required
(less effort identifying false positives)

Considerations of Effort Saving

Recovery Effort Index (cont'd)

= Can also be seen as the ratio between the
precision of results achieved by a manual
process and a semiautomatic tool with recall
equal to 100% for the same software system

Precision,, #(h elevant N\ Retrieved,,) # Retrieved;

Precisions — # (Relevant N\ Retrievedy) #Retrieved,,

Precision,, # Retrieved, o
/0

Precision; ~ #Available

Considerations of Effort Saving

Recovery Effort Index (cont'd)
= Albergate (vector space): REI = 43.75%
= | EDA (vector space): REI = 13.63%

= Higher REI for Albergate is because there are
not that many documents total (16)

= JR methods are designed to work with huge
document spaces

= Albergate (grep): REI = 54.54
= | EDA (grep): REI = 16

Retrieving a Variable Number of
Documents

Instead of a cut value, we could also have
a variable number of documents based on
some threshold of the similarity values

to = ¢ [max s;]

l

Return all documents with s, 5 = t,

Retrieving a Variable Number of
Documents

Percentage

49 lS % | 50.00 %fr
37.62 % | 6551 %
31.64 % | 86.20 %
20.75 % | 94.82 %
11.98 % | 100.00 %

Worse than fixed cut values but still decent

Mixed version: take the minimum of the above
technique with 10% constant or the best 7 (constant cut
value)

Conclusion

Summary

IR is a practical solution to the problem of
(semi-)automatically recovering traceability links

Both IR ‘models (probabilistic and vector space)
achieve 100% recall with approximately the
same number of documents retrieved

Probabilistic model achieves higher recall with a
smaller number of documents retrieved

Vector space model shows regular increase in
recall with higher numbers of documents
retrieved

Summary

IR approach easily reduces the effort
required by the user over grep

Increased text normalization provides
better results, especially when the
“distance” between the documents and
the code is higher

Future Work

Use known existing traceability links to
ease the recovery of additional links
= Can be especially useful when the number of

common words between the code and
documentation is very low (or 0)

Investigate using this technology for
impact analysis
= Take a textual maintenance request and

determine which sections of code will be
affected to make this change

