
Recovering Traceability Links between
Code and Documentation

Paper by: Giuliano Antoniol, Gerardo Canfora, Gerardo Casazza,
Andrea De Lucia, and Ettore Merlo

Presentation by: Brice Dobry and Geoff Gerfin

Problem Statement and Proposed
Solution

 Problem: Documentation is usually
created in a very informal manner
 In large software systems with large amounts

of free-text documentation, this makes it
difficult to associate the correct document for
a certain piece of code.

 Solution: Use Information Retrieval (IR)
to recover traceability links between
source code and free-text documents.

Benefits of Traceability Links (1/3)

 Program Comprehension
 For both top-down and bottom-up code analysis,

traceability links can aid in:
 Forming a hypothesis about how the code functions

(bottom-up)
 Locating code that supports a hypothesis (top-down)

 Maintenance
 Determine legacy system functionality
 Links can associate domain concepts to code

fragments

Benefits of Traceability Links (2/3)

 Requirement Tracing (Specifications)
 Locate source code that corresponds to a

program specification
 Enables assessing program completeness /

code inspection
 Impact Analysis

 Discover pieces of code affected by a change
to a program’s specification

 Discover pieces of documentation affected by
a change to a program’s code

Benefits of Traceability Links (3/3)

 Code Reuse
 Concepts about existing code could exist in a

wide range of documents (specifications, man
pages, design documents, etc.)

 Traceability links could aid in locating code
that could be reused

Proposed Method

 Authors chose not to base their method on
traditional compiler methods
 Too difficult to apply syntactic analysis to the natural

language sentences that occur in free-text
documents

 However, parsing technology can be applied when
identifying source code elements

Proposed Method

 Ranking is done in two different ways:
 Probabilistic Model
 Vector Space Model

Architecture

Document Path (1/4)

Document Path (2/4)

 Capital Letters -> Lowercase Letters

Document Path (3/4)

 Stop words are removed:
 articles, punctuation, numbers
 Ex source code cmpnt: “areaOfARectangle”
 Ex sentence: “…calculate the volume of a cylinder.”

Document Path (4/4)

 Plurals -> Singulars
 Ex: “Rectangles” -> “rectangle”

 Conjugated Verbs -> Infinitives
 Ex: “jumps” -> “to jump”

Code Path (1/4)

Code Path (2/4)

double areaOfARectangle(float height, float width){
 double area;

 if (height == 0 || width == 0)
 return -1.0;

 area = height*width;
}

Extracted Source Code Components

-“areaOfARectangle”

-“area”

-“height”

-“width”

Code Path (3/4)

 Text that contains two or more identifiers
is split into single identifiers:
 “areaOfARectangle”  “area”, “Of”, “A”,

“Rectangle”

Code Path (4/4)

 Text normalization includes the components of
the document path:
 Capital -> Lowercase
 Stop Words Removal
 Plurals -> Singulars; Conjugated Verbs -> Inifinitves

Ranking Methods - Probabilistic

 Probabilistic Model
 Free-text documents are ranked according to

the probability that they are relevant to a
given query

 Each string of words in a given vocabulary is
assigned a probability within each document

 The source code components are scored
against the model

 Higher scores indicate higher probability of relevancy

Ranking Methods - Probabilistic

 The similarity between a source code
component and a document can be
represented as a conditional probability:

#Using Baye’s Rule:

#Pr(Di) same for all docs, P(Q) is constant:
#Similarity(Di, Q) = Pr(Q | Di)

Ranking Methods - Probabilistic
 Q can be represented as a sequence of

words:

#Computation can become exhaustive, so it
is better to be less precise and limit to the
last n-1 words (where n < m):

Ranking Methods - Probabilistic

 Even the n-1 limit could become exhaustive if there is a
large amount of words in the vocabulary

 It is rare that multiple words from the same source code
component occur in the same document, therefore we
can compute independently:

#Problem: If any one word doesn’t occur, P = 0.
#Solution: Smoothing Function  If a word doesn’t occur,

 P = lambda; otherwise P = P(wk|Di) + lambda

Ranking Methods - Vector

 Vector Space Model
 Documents are classified in n-dimensions

 n is the number of words in the vocabulary (n = |
V|)

 2 vectors are created:
 Vector 1: [di1, di2, …, di|V|]] created for each doc.

 Represents the occurrence of a Vocab word in Doc. i

 Vector 2: [q1, q2, …, q|V|]] is the same for each doc
 Represents the occurrence of a source code component

Q in the Vocab.

Example Vectors

 Vocabulary: area, volume, rectangle,
cylinder:

 D = [1, 1, 1, 1] D = [1, 1, 1, 1]
 Q = [1, 0, 1, 0] Q = [0, 1, 0, 1]

22

This document
describes the
specifications for
finding the area of
a rectangle and
the volume of a
cylinder.

Component 1: double areaOfRectangle();

Component 2: double volumeOfCylinder();

Component 1 Component 2

 A distance function is used to compute
the similarities between the vectors
(overlap indicates high similarity):

Ranking Methods - Vector

#This is the cosine of the angle between
vectors d and q. A higher cosine of an
angle indicates less difference; this is used
as a common distance function

Case Study

Background Info
 Metrics

 Recall
 Ratio of number of relevant documents retrieved

over the total number of relevant documents

 100% recall means that all relevant documents
were retrieved

Background Info

 Metrics (cont’d)
 Precision

 Ratio of number of relevant documents retrieved
over the total number of documents retrieved

 100% precision means that all no irrelevant
documents were retrieved

Background Info

 Metrics (cont’d)
 Ideal results would have recall and precision

both equal to 100%

 For a tool to be most useful, it should have
100% recall with precision as high as possible
(make sure all relative documents are
included but include as few false positives as
possible)

Background Info
 Test Subjects

 LEDA (Library of Efficient Data types and
Algorithms)
 C++
 95 KLOC
 208 classes
 88 manual pages
 Manual pages were generated with scripts that

extract comments from the source code

Background Info
 Test Subjects (cont’d)

 Albergate
 Java
 20 KLOC
 95 classes (60 looked at for this experiment)
 16 functional requirements
 Documentation was produced early in the

development cycle so much more distance
between documentation and code

LEDA Results
 Many names (functions, arguments, etc.)

from the code appear exactly in manual
pages so traceability link recovery task is
relatively easy

 Simplified steps
 Identifier separation: Only split identifiers

containing underscores
 Text normalization: Only transform capital

letter to lowercase

LEDA Results

 208 classes, 88 manual pages
 Each class described by at most one man

page
 110 classes were not described anywhere
 Total number of links: 98

LEDA Results

LEDA Results

LEDA Results
 Probabilistic model has higher recall value

at low cut values but vector space model
reaches 100% sooner (cut value of 12
versus 17)

 Precision results are greatly affected by
the fact that more than half of the classes
(110/208) are not referenced in any
document

Albergate Results
 60 classes, 16 functional requirements
 On average a requirement was

implemented by about 4 classes with a
maximum of 10

 Most classes were associated with only
one requirement (6 were associated with
two, 8 were associated with none)

 Total number of links: 58

Albergate Results

Albergate Results

Albergate Results

 Two models performed similarly

 Probabilistic model reached 100% recall
sooner (cut value of 6 versus 7)

Probabilistic vs. Vector Space Model

 Observations
 Probabilistic model gets high recall values

with small cut values then makes little
progress towards 100% as cut value
increases

 Vector space model starts with lower recall
values at low cut values then makes regular
progress towards 100% as cut value
increases

Probabilistic vs. Vector Space Model
 Explanation

 Probabilistic mode
 Associate a class with a document based on the product of

the unigram probabilities with which each class identifier
appears in the document

 Class identifiers that do not appear in the document are
assigned a very low probability

 Vector space mode
 Only account for the class identifiers which appear in the

document
 Weigh the frequency of occurrence of the words in the

document with respect to their distribution in other
documents

Probabilistic vs. Vector Space Model

 Explanation (cont’d)
 Probabilistic model

 Best-suited for cases where the presence of class
identifiers that are not included in the document is
low

 Vector space model
 Best-suited for cases where each group of words

is common to a relatively small number of
documents

 Aims to regularly achieve the maximum recall with
a low number of retrieved documents, and not
necessarily to pick the best match

Probabilistic vs. Vector Space Model
 Explanation (cont’d)

 Simplified process is only acceptable for documents
close to the code

 When used for the Albergate study, the difference is
clear
 The vector space model is affected very little while the

probabilistic model is effected greatly by the simplification

Albergate Results (simplified)

Evaluation

Comparing IR models with grep

 Single Code Item
 grep with each class identifier individually

 Code Items or Combined
 grep with the or of all of the class’s identifiers

Considerations of Effort Saving

 Recovery Effort Index (REI)

 A person with no tool would have to look
through every document to find links (REI =
1)

 The lower the REI, the less effort is required
(less effort identifying false positives)

Considerations of Effort Saving

 Recovery Effort Index (cont’d)
 Can also be seen as the ratio between the

precision of results achieved by a manual
process and a semiautomatic tool with recall
equal to 100% for the same software system

Considerations of Effort Saving

 Recovery Effort Index (cont’d)
 Albergate (vector space): REI = 43.75%
 LEDA (vector space): REI = 13.63%
 Higher REI for Albergate is because there are

not that many documents total (16)
 IR methods are designed to work with huge

document spaces
 Albergate (grep): REI = 54.54
 LEDA (grep): REI = 16

Retrieving a Variable Number of
Documents

 Instead of a cut value, we could also have
a variable number of documents based on
some threshold of the similarity values

 Return all documents with sk,Q ≥ tQ

Retrieving a Variable Number of
Documents

 Worse than fixed cut values but still decent
 Mixed version: take the minimum of the above

technique with 10% constant or the best 7 (constant cut
value)

Conclusion

Summary

 IR is a practical solution to the problem of
(semi-)automatically recovering traceability links

 Both IR models (probabilistic and vector space)
achieve 100% recall with approximately the
same number of documents retrieved

 Probabilistic model achieves higher recall with a
smaller number of documents retrieved

 Vector space model shows regular increase in
recall with higher numbers of documents
retrieved

Summary

 IR approach easily reduces the effort
required by the user over grep

 Increased text normalization provides
better results, especially when the
“distance” between the documents and
the code is higher

Future Work

 Use known existing traceability links to
ease the recovery of additional links
 Can be especially useful when the number of

common words between the code and
documentation is very low (or 0)

 Investigate using this technology for
impact analysis
 Take a textual maintenance request and

determine which sections of code will be
affected to make this change

