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Problem Statement and Proposed 
Solution

 Problem:  Documentation is usually 
created in a very informal manner
 In large software systems with large amounts 

of free-text documentation, this makes it 
difficult to associate the correct document for 
a certain piece of code.

 Solution:  Use Information Retrieval (IR) 
to recover traceability links between 
source code and free-text documents.



Benefits of Traceability Links (1/3)

 Program Comprehension
 For both top-down and bottom-up code analysis, 

traceability links can aid in:
 Forming a hypothesis about how the code functions 

(bottom-up)
 Locating code that supports a hypothesis (top-down)

 Maintenance
 Determine legacy system functionality
 Links can associate domain concepts to code 

fragments



Benefits of Traceability Links (2/3)

 Requirement Tracing (Specifications)
 Locate source code that corresponds to a 

program specification
 Enables assessing program completeness / 

code inspection
 Impact Analysis

 Discover pieces of code affected by a change 
to a program’s specification

 Discover pieces of documentation affected by 
a change to a program’s code



Benefits of Traceability Links (3/3)

 Code Reuse
 Concepts about existing code could exist in a 

wide range of documents (specifications, man 
pages, design documents, etc.)

 Traceability links could aid in locating code 
that could be reused



Proposed Method

 Authors chose not to base their method on 
traditional compiler methods
 Too difficult to apply syntactic analysis to the natural 

language sentences that occur in free-text 
documents

 However, parsing technology can be applied when 
identifying source code elements



Proposed Method

 Ranking is done in two different ways:
 Probabilistic Model
 Vector Space Model



Architecture



Document Path (1/4)



Document Path (2/4)

 Capital Letters -> Lowercase Letters



Document Path (3/4)

 Stop words are removed:
 articles, punctuation, numbers
 Ex source code cmpnt: “areaOfARectangle”
 Ex sentence: “…calculate the volume of a cylinder.”



Document Path (4/4)

 Plurals -> Singulars
 Ex:  “Rectangles” -> “rectangle”

 Conjugated Verbs -> Infinitives
 Ex:  “jumps” -> “to jump”



Code Path (1/4)



Code Path (2/4)

double areaOfARectangle(float height, float width){
   double area;

   if (height == 0 || width == 0)
      return -1.0;

   area = height*width;
}

Extracted Source Code Components

-“areaOfARectangle”

-“area”

-“height”

-“width”



Code Path (3/4)

 Text that contains two or more identifiers 
is split into single identifiers:
 “areaOfARectangle”  “area”, “Of”, “A”, 

“Rectangle”



Code Path (4/4)

 Text normalization includes the components of 
the document path:
 Capital -> Lowercase
 Stop Words Removal
 Plurals -> Singulars; Conjugated Verbs -> Inifinitves



Ranking Methods - Probabilistic

 Probabilistic Model
 Free-text documents are ranked according to 

the probability that they are relevant to a 
given query

 Each string of words in a given vocabulary is 
assigned a probability within each document

 The source code components are scored  
against the model

  Higher scores indicate higher probability of relevancy



Ranking Methods - Probabilistic

 The similarity between a source code 
component and a document can be 
represented as a conditional probability:

#Using Baye’s Rule:

#Pr(Di) same for all docs, P(Q) is constant:
#Similarity(Di, Q) = Pr(Q | Di)



Ranking Methods - Probabilistic
 Q can be represented as a sequence of 

words:

#Computation can become exhaustive, so it 
is better to be less precise and limit to the 
last n-1 words (where n < m):



Ranking Methods - Probabilistic

 Even the n-1 limit could become exhaustive if there is a 
large amount of words in the vocabulary

 It is rare that multiple words from the same source code 
component occur in the same document, therefore we 
can compute independently:

#Problem:  If any one word doesn’t occur, P = 0.
#Solution:  Smoothing Function  If a word doesn’t occur,

 P = lambda; otherwise P = P(wk|Di) + lambda



Ranking Methods - Vector

 Vector Space Model
 Documents are classified in n-dimensions

 n is the number of words in the vocabulary (n = |
V|)

 2 vectors are created:
 Vector 1:  [di1, di2, …, di|V|]] created for each doc.

 Represents the occurrence of a Vocab word in Doc. i

 Vector 2:  [q1, q2, …, q|V|]] is the same for each doc
 Represents the occurrence of a source code component 

Q in the Vocab.



Example Vectors

 Vocabulary:  area, volume, rectangle, 
cylinder:

 D = [1, 1, 1, 1]             D = [1, 1, 1, 1]
 Q = [1, 0, 1, 0]             Q = [0, 1, 0, 1]

22

This document 
describes the 
specifications for 
finding the area of 
a rectangle and 
the volume of a 
cylinder.

Component 1:  double areaOfRectangle();

Component 2:  double volumeOfCylinder();

Component 1 Component 2



 A distance function is used to compute 
the similarities between the vectors 
(overlap indicates high similarity):

Ranking Methods - Vector

#This is the cosine of the angle between 
vectors d and q.  A higher cosine of an 
angle indicates less difference; this is used 
as a common distance function



Case Study



Background Info
 Metrics

 Recall
 Ratio of number of relevant documents retrieved 

over the total number of relevant documents

 100% recall means that all relevant documents 
were retrieved



Background Info

 Metrics (cont’d)
 Precision

 Ratio of number of relevant documents retrieved 
over the total number of documents retrieved

 100% precision means that all no irrelevant 
documents were retrieved



Background Info

 Metrics (cont’d)
 Ideal results would have recall and precision 

both equal to 100%

 For a tool to be most useful, it should have 
100% recall with precision as high as possible 
(make sure all relative documents are 
included but include as few false positives as 
possible)



Background Info
 Test Subjects

 LEDA (Library of Efficient Data types and 
Algorithms)
 C++
 95 KLOC
 208 classes
 88 manual pages
 Manual pages were generated with scripts that 

extract comments from the source code



Background Info
 Test Subjects (cont’d)

 Albergate
 Java
 20 KLOC
 95 classes (60 looked at for this experiment)
 16 functional requirements
 Documentation was produced early in the 

development cycle so much more distance 
between documentation and code



LEDA Results
 Many names (functions, arguments, etc.) 

from the code appear exactly in manual 
pages so traceability link recovery task is 
relatively easy

 Simplified steps
 Identifier separation: Only split identifiers 

containing underscores
 Text normalization: Only transform capital 

letter to lowercase



LEDA Results

 208 classes, 88 manual pages
 Each class described by at most one man 

page
 110 classes were not described anywhere
 Total number of links: 98



LEDA Results



LEDA Results



LEDA Results
 Probabilistic model has higher recall value 

at low cut values but vector space model 
reaches 100% sooner (cut value of 12 
versus 17)

 Precision results are greatly affected by 
the fact that more than half of the classes 
(110/208) are not referenced in any 
document



Albergate Results
 60 classes, 16 functional requirements
 On average a requirement was 

implemented by about 4 classes with a 
maximum of 10

 Most classes were associated with only 
one requirement (6 were associated with 
two, 8 were associated with none)

 Total number of links: 58



Albergate Results



Albergate Results



Albergate Results

 Two models performed similarly

 Probabilistic model reached 100% recall 
sooner (cut value of 6 versus 7)



Probabilistic vs. Vector Space Model

 Observations
 Probabilistic model gets high recall values 

with small cut values then makes little 
progress towards 100% as cut value 
increases

 Vector space model starts with lower recall 
values at low cut values then makes regular 
progress towards 100% as cut value 
increases



Probabilistic vs. Vector Space Model
 Explanation

 Probabilistic mode
 Associate a class with a document based on the product of 

the unigram probabilities with which each class identifier 
appears in the document

 Class identifiers that do not appear in the document are 
assigned a very low probability

 Vector space mode
 Only account for the class identifiers which appear in the 

document 
 Weigh the frequency of occurrence of the words in the 

document with respect to their distribution in other 
documents



Probabilistic vs. Vector Space Model

 Explanation (cont’d)
 Probabilistic model

 Best-suited for cases where the presence of class 
identifiers that are not included in the document is 
low

 Vector space model
 Best-suited for cases where each group of words 

is common to a relatively small number of 
documents

 Aims to regularly achieve the maximum recall with 
a low number of retrieved documents, and not 
necessarily to pick the best match



Probabilistic vs. Vector Space Model
 Explanation (cont’d)

 Simplified process is only acceptable for documents 
close to the code

 When used for the Albergate study, the difference is 
clear
 The vector space model is affected very little while the 

probabilistic model is effected greatly by the simplification



Albergate Results (simplified)



Evaluation



Comparing IR models with grep

 Single Code Item
 grep with each class identifier individually

 Code Items or Combined
 grep with the or of all of the class’s identifiers



Considerations of Effort Saving

 Recovery Effort Index (REI)

 A person with no tool would have to look 
through every document to find links (REI = 
1)

 The lower the REI, the less effort is required 
(less effort identifying false positives)



Considerations of Effort Saving

 Recovery Effort Index (cont’d)
 Can also be seen as the ratio between the 

precision of results achieved by a manual 
process and a semiautomatic tool with recall 
equal to 100% for the same software system



Considerations of Effort Saving

 Recovery Effort Index (cont’d)
 Albergate (vector space): REI = 43.75%
 LEDA (vector space): REI = 13.63%
 Higher REI for Albergate is because there are 

not that many documents total (16)
 IR methods are designed to work with huge 

document spaces
 Albergate (grep): REI = 54.54
 LEDA (grep): REI = 16



Retrieving a Variable Number of 
Documents

 Instead of a cut value, we could also have 
a variable number of documents based on 
some threshold of the similarity values

 Return all documents with sk,Q ≥ tQ



Retrieving a Variable Number of 
Documents

 Worse than fixed cut values but still decent
 Mixed version: take the minimum of the above 

technique with 10% constant or the best 7 (constant cut 
value)



Conclusion



Summary

 IR is a practical solution to the problem of 
(semi-)automatically recovering traceability links

 Both IR models (probabilistic and vector space) 
achieve 100% recall with approximately the 
same number of documents retrieved

 Probabilistic model achieves higher recall with a 
smaller number of documents retrieved

 Vector space model shows regular increase in 
recall with higher numbers of documents 
retrieved



Summary

 IR approach easily reduces the effort 
required by the user over grep

 Increased text normalization provides 
better results, especially when the 
“distance” between the documents and 
the code is higher



Future Work

 Use known existing traceability links to 
ease the recovery of additional links
 Can be especially useful when the number of 

common words between the code and 
documentation is very low (or 0)

 Investigate using this technology for 
impact analysis
 Take a textual maintenance request and 

determine which sections of code will be 
affected to make this change


