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Abstract
A memory leak in a garbage-collected program occurs when the
program inadvertently maintains references to objects that it no
longer needs. Memory leaks cause systematic heap growth, de-
grading performance and resulting in program crashes after per-
haps days or weeks of execution. Prior approaches for detecting
memory leaks rely on heap differencing or detailed object statis-
tics which store state proportional to the number of objects in the
heap. These overheads preclude their use on the same processor for
deployed long-running applications.

This paper introduces a dynamic heap-summarization technique
based on type that accurately identifies leaks, is space efficient
(adding less than 1% to the heap), and is time efficient (adding 2.3%
on average to total execution time). We implement this approach
in Cork which utilizes dynamic type information and garbage col-
lection to summarize the live objects in a type points-from graph
(TPFG) whose nodes (types) and edges (references between types)
are annotated with volume. Cork compares TPFGs across multiple
collections, identifies growing data structures, and computes a type
slice for the user. Cork is accurate: it identifies systematic heap
growth with no false positives in 4 of 15 benchmarks we tested.
Cork’s slice report enabled us (non-experts) to quickly eliminate
growing data structures in SPECjbb2000 and Eclipse, something
their developers had not previously done. Cork is accurate, scal-
able, and efficient enough to consider using online.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging—Debugging aids

General Terms Memory Leak Detection

Keywords memory leaks, runtime analysis, dynamic, garbage
collection

1. Introduction
Memory-related bugs are a substantial source of errors, and are
especially problematic for languages with explicit memory man-
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agement. For example, C and C++ memory-related errors include
(1) dangling pointers – dereferencing pointers to objects that the
program previously freed, (2) lost pointers – losing all pointers to
objects that the program neglects to free, and (3) unnecessary ref-
erences – keeping pointers to objects the program never uses again.

Garbage collection corrects the first two errors, but not the last.
Since garbage collection is conservative, it cannot detect or reclaim
objects referred to by unnecessary references. Thus, a memory leak
in a garbage-collected language occurs when a program maintains
references to objects that it no longer needs, preventing the garbage
collector from reclaiming space. In the best case, unnecessary ref-
erences degrade program performance by increasing memory re-
quirements and consequently collector workload. In the worst case,
a growing data structure with unused parts will cause the program
to run out of memory and crash. Even if a growing data structure is
not a true leak, application reliability and performance can suffer.
In long-running applications, small leaks can take days or weeks to
manifest. These bugs are notoriously difficult to find because the
allocation that finally exhausts memory is not necessarily related to
the source of the heap growth.

Previous approaches for finding leaks use heap diagnosis tools
that rely on a combination of heap differencing [10, 11, 20] and
allocation and/or fine-grain object tracking [7, 8, 9, 13, 19, 24, 25,
28, 29]. These techniques degrade performance by a factor of two
or more, incur substantial memory overheads, rely on multiple ex-
ecutions, and/or offload work to a separate processor. Additionally,
they yield large amounts of low-level details about individual ob-
jects. These reports require a lot of time and expertise to interpret.
Thus, prior work lacks precision and efficiency.

This paper introduces Cork, an accurate, scalable, online, and
low-overhead memory leak detection tool for typed garbage-
collected languages. Cork uses a novel approach to summarize,
identify, and report data structures with systematic heap growth.
We show that it provides both efficiency and precision. Cork pig-
gybacks on full-heap garbage collections. As the collector scans the
heap, Cork summarizes the dynamic object graph by type (class)
in a summary type points-from graph (TPFG). The nodes of the
graph represent the volume of live objects of each type. The edges
represent the points-from relationship between types weighted by
volume. At the end of each collection, the TPFG completely sum-
marizes the l ive-obj ect poi nt s-from r elationshi ps in the heap.

For space efficiency, Cork stores type nodes together with
global type information block (TIB). The TIB, or equivalent, is
a required implementation element for languages such as Java and
C# that instructs the compiler on how to generate correct code and
instructs the garbage collector on how to scan objects. The num-
ber of nodes in the TPFG scales with the type system. While the
number of edges between types are quadratic in theory, programs
implement simpler type relations in practice; we find that the edges
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Type Symbol Size
HashTable H 256
Queue N 256
Queue B 256
Company C 64
People P 32
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Figure 1. The type points-from graph summarizes the object
points-to graph

are linear in the number of types. The TPFG never adds more than
0.5% to heap memory.

Cork stores and compares TPGFs from multiple collections to
detect and report a dynamic type slice with systematic heap growth.
We store points-from instead of points-to information to efficiently
compute the candidate type slice. We demonstrate that the construc-
tion and comparison of TPFGs across multiple collections adds on
average 2.3% to total time to a system with a generational collector.

We apply Cork to 14 popular benchmarks from DaCapo
b.050224 [5] and SPECjvm [26, 27] benchmark suites. Cork
identifies and reports unbounded heap growth in three of them. We
confirm no additional memory leaks in the other 11 benchmarks
by examining their heap composition graphs [6]. Additionally we
apply Cork to a known memory leak in Eclipse bug#115789. In
this paper, we report detailed results for the two largest programs:
(1) SPECjbb2000 which grows at a rate of 128KB every 64MB of
allocation, and (2) Eclipse bug#115789 which grows at a rate of
2.97MB every 64MB of allocation. Using a generational collection,
Cork precisely pinpointed the single data structure responsible for
the growth after six full-heap collections. We used this precision to
quickly identify and eliminate the memory leaks.

In practice, Cork’s novel summarization technique is efficient
and precisely reports data structures responsible for systematic
heap growth. Its low space and time overhead makes it appealing
for periodic or consistent use in deployed production systems.

2. Finding Leaks with Cork
This section overviews how Cork identifies potentially growing
type nodes (candidate leaks) and reports their corresponding type

1 void scanObject(TraceLocal trace,
2 ObjectReference object) {
3 MMType type = ObjectModel.getObjectType(object);
4 type.incVolumeTraced(object); // added
5 if (!type.isDelegated()) {
6 int references = type.getReferences(object);
7 for (int i = 0; i < references; i++) {
8 Address slot = type.getSlot(object, i);
9 type.pointsTo(object, slot); // added

10 trace.traceObjectLocation(slot);
11 }} else {
12 Scanning.scanObject(trace, object);
13 }}

Figure 2. Object Scanning

to the user along with the data structure which contains them and
the allocation sites that generate them. For clarity of exposition,
we describe Cork in the context of a full-heap collector using an
example program whose types are defined in Figure 1(a).

2.1 Building the Type Points-From Graph

To detect growth, Cork summarizes the heap in a type points-
from graph (TPFG) annotated with instance and reference volumes.
The TPFG consists of type nodes and reference edges. The type
nodes represent the total volume of objects of type t (Vt ). The
reference edges are directed edges from type node t � to type node
t and represent the volume of objects of type t � that are referred
to by objects of type t (Vt ��t ). To minimize the costs associated
with building the TPFG, Cork piggybacks its construction on the
scanning phase of garbage collection which detects live objects by
starting with the roots (statics, stacks, and registers) and performing
a transitive closure through all the live object references in the
heap. For each reachable (live) object o visited, Cork determines
the object’s type t and increments the corresponding type node by
the object’s size. Then for each reference from o to object o�, it
increments the reference edge from t � to t by the size of o�. At the
end of the collection, the TPFG completely summarizes the volume
of all types and references that are live at the time of the collection.

Figure 1(b) shows an object points-to graph (i.e., the heap it-
self). Each vertex represents a different object in the heap and each
arrow represents a reference between two objects. Figure 2 shows
the modified scanning code from MMTk in Jikes RVM: Cork re-
quires two simple additions that appear as lines 4 and 9. Assume
scanObject is processing an object of type B that refers to an ob-
ject of type C (from Figure 1(b)). It takes the tracing routine and
object as parameters and finds the object type. Line 4 increments
the volume of type B (VB) in the node for this instance. Since the
collector scans (detects liveness of) an object only once, Cork in-
crements the total volume of this type only once per object instance.
Next, scanObject must determine if each referent of the object has
already been scanned. As it iterates through the fields (slots), the
added line 9 resolves the referent type of each outgoing reference
(B � C) and increments the volume along the appropriate edge
(B � C) in the graph (VC�B). Thus, this step increments the edge
volume for all references to an object (not just the first one). Be-
cause this step adds an additional type lookup for each reference,
it also introduces the most overhead. Finally, scanObject enqueues
those objects that have not yet been scanned in line 10. The addi-
tional work of the garbage collector depends on whether it is mov-
ing objects or not, and is orthogonal to Cork.

At the end of scanning, the TPFG completely summarizes the
live objects in the heap. Figure 1(c) shows the TPFG for our
example. Notice that the reference edges in the TPFG point in
the opposite direction of the references in the heap. Also notice
that, in the heap, objects of type C are referenced by H, B, and
N represented by the outgoing reference edges of C in the TPFG.
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Figure 3. Comparing Type Points-From Graphs to Find Heap Growth

Since C has multiple references to it in the heap, the sum of the
weights of its outgoing reference edges is greater than its type
node weight. Cork differences the TPFG volumes from distinct
collections to determine where growth is occurring in the heap.

Cork uses volume rather than a simple count to detect array
growth when the number of arrays remains constant but their sizes
grow. Additionally, volume gives a heavier weight to larger types
which tend to make the heap grow faster than smaller types.

2.2 Finding Heap Growth

At the end of each collection, Cork differences the TPFG for
the current collection with previous collections reporting those
types nodes whose volumes increase across several collections as
candidate leaks. For each type node that is growing, Cork follows
growing reference edges through the TPFG to pinpoint the growth.

For example, Figure 3 shows the full TPFG created during three
collections of our example program. Notice that objects C and P
are added to both the hashtable and queues. When they are finished
being used, they are removed from all of the queues but not from
the hashtable, causing a memory leak. Comparing the TPFG from
the first two collections shows both C and P objects are potentially
growing (depicted with bold arrows). We need more history to
be sure. Figure 3(c) represents the state at the next collection,
at which point it becomes clearer that the volume of P objects
is monotonically increasing, whereas the volume of C objects is
simply fluctuating. In practice, we find that type volume jitters –
fluctuates with high frequency – though the overall trend may show
growth. Thus, Cork must look for more than monotonically non-
decreasing type growth between two consecutive collections.

Cork differences the TPFG from the current collection with
that of previous collections looking for growing types and ranks
them. We examine two different methods for ranking types [16].
Because of space constraints, we only present the more robust of
these techniques: the Ratio Ranking Technique.

The Ratio Ranking Technique (RRT) ranks type nodes accord-
ing to the ratio of volumes Q between two consecutive TPFG, finds
the type nodes with ranks above a rank threshold (rt � Rt

thres), and
reports the corresponding types as candidates. Additionally, RRT
uses a decay factor f , where 0 � f � 1 to adjust for jitter. To be

considered a potential leak, RRT considers only those type nodes
whose volumes satisfy VTi � �1� f ��VTi�1 on consecutive collec-
tions as potential candidates. The decay factor keeps type nodes
that shrink a little in this collection, but which may ultimately be
growing. We find that the decay factor is increasingly important
as the size of the leak decreases. Choosing the leak decay factor
balances between too much information and not enough.

To rank type nodes, RRT first calculates the phase growth factor
(g) of each type node as gti � pti ��Q�1�, where p is the number of
phases (or collections) that t has been potentially growing and Q is
the ratio of volumes of this phase and the previous phase such that
Q� 1. Since Q� 1, g� 0. Each type node’s rank rt is calculated by
accumulating phase growth factors g over several collections such
that absolute growth is rewarded (rti � rti�1 �gti ) and decay is pe-
nalized (rti � rti�1 �gti ). Higher ranks represent a higher likelihood
that the corresponding volume of the type grows without bound.
Since RRT only reports types that have been potentially growing
for some minimum number of phases, the first time a type appears
in a graph, RRT does not report it. Cork ranks reference edges (re)
using the same calculation.

2.3 Correlating to Data Structures and Allocation Sites

Reporting a low-level type such as Stringas a potential candidate
is not very useful. Cork identifies the growing data structure that
contains the candidate growth by constructing a slice in the TPFG.
We define a slice through the TPFG to be the set of all paths
originating from type node t0 such that the rank of each reference
edge rtk�tk�1 on the path is positive. Thus, a slice defines the growth
originating at type node t0 following a sequence of type nodes
�t0�t1� � � � �tn� and a sequence of reference edges �tk�tk�1� where
type node tk points to tk�1 in the TPFG.

Cork identifies a slice by starting at a candidate type node and
tracing growing reference edges through the graph until it encoun-
ters a non-growing type node with non-growing reference edges.
This slice contains not only candidates, but also the dynamic data
structure containing them. Additionally, Cork reports type alloca-
tion sites. However, unlike some more expensive techniques, it does
not find the specific allocation site(s) responsible for the growth. In-
stead, it reports all allocations site for the candidate type. As each
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allocation site is compiled, Cork assigns it a unique identifier, and
constructs a map (a SiteMap) to it from the appropriate type. For
each leaking type, Cork searches the map to find allocations sites
for that type. For each type, the SiteMap includes the method and
byte-code index (bcidx) or line for each allocation site.

2.4 Implementation Efficiency and Scalability

We implement several optimizations to make Cork’s implementa-
tion scalable and efficient in both time and space. First, we find
Cork can accurately detect heap growth keeping a history of only
four TPGFs: T PFGi, T PFGi�1, T PFGi�2, and T PFGi�3. Cork
piggybacks type nodes on the VM’s global type information block
(TIB). This structure or an equivalent is required for a correct im-
plementation of Java or C#. Figure 4 shows the modified TIB from
Jikes RVM . Notice that every live object of a type (ob jectL) points
to the TIB corresponding to its type. The TIB consists of three
different parts. The first is the method table which stores point-
ers to code for method dispatch. The method table points to a cor-
responding VM Type which stores information used by the VM
for efficient type checking and used by the compiler for generat-
ing correct code. Finally, the VM Type points to a corresponding
MMType used by the memory management system to do correct
allocation and garbage collection. Recall from Figure 2 that object
scanning resolves the MMType of each object (line 3). Thus, Cork
stores TPFG type node data for each TPFG in the corresponding
MMType adding only four extra words. One additional word stores
the number of consecutive collections that a type potentially grows.
Thus, the type nodes scale with the type system of the VM.

While the number of reference edges in the TPFG are quadratic
in theory, one class does not generally reference all other classes.
Programs implement a much simpler type hierarchy, and we find
that the reference edges are linear with respect to the type nodes.
This observation modifies simply edge implementation consisting
of a pool of available edges (edge pool). Each time a class (type) is
loaded, the edge pool grows. Additionally, the edge pool can grow
dynamically whenever it runs out of edges. New edges are added to
the TPFG by removing them from the edge pool and adding them
to the list of reference edges kept with node data. We encode a
pointer to the edge list with the node data to prevent from adding
any extra words to the MMType structure. We further reduce the
space required for reference edges by pruning those that do not
grow.

2.5 Cork in Other Collectors

Since Cork’s implementation piggybacks on live-heap scanning
during garbage collection, it is compatible with any mark-sweep
or copying collector (i.e., a scanning collector). Cork can also
be added as described to any scanning collector that does peri-
odic whole-heap collections. In these configurations, Cork per-
forms the analysis only during full-heap collections. To find leaks
in our benchmarks, Cork needed approximately six collections dur-
ing which heap growth occurs. A scanning incremental collector

that never collects the entire heap may add Cork by defining in-
tervals that combine statistics from multiple collections until the
collector has considered the entire heap. Cork would then compute
difference statistics between intervals to detect leaks.

2.6 Cork in Other Languages

Cork’s heap summarization, the TPFG, relies on the garbage col-
lector’s ability to determine the type of an object. We exploit the
object model of polymorphically typed languages (such as Java
and C#) by piggybacking on their required global type informa-
tion to keep space overheads to a minimum. There are, however,
other implementation options. For garbage-collected languages that
lack global type information (such as Standard ML), other mecha-
nism may be able to provide equivalent information. Previous work
for provide some suggestions for functional languages that tag ob-
jects [21, 22, 23]. For example, type-specific tags could be used
to index into a hashtable for storing type nodes. Alternatively, ob-
jects could be tagged with allocation and context information al-
lowing Cork to summarize the heap in an allocation-site points-
from graph. These techniques, however, would come at a higher
space and time overhead.

3. Results
This section presents overhead and qualitative results for Cork.
Section 3.1 describes our methodology, Section 3.2 reports Cork’s
space overhead, and Section 3.3 reports its performance. Sec-
tion 3.4 shows the accuracy of the Slope Ranking Technique and
shows how a variety of reasonable values for the decay factor and
the rank threshold gives highly accurate results using the Ratio
Ranking Technique. After applying and identifying unbounded
heap growth in four commonly used benchmarks, Section 3.5 de-
tails the two largest: SPECjbb2000 and Eclipse.

3.1 Methodology

We implement Cork in MMTk, a memory management toolkit in
Jikes RVM version 2.3.7. MMTk implements a number of high-
performance collectors [3, 4] and Jikes RVM is a high-performance
VM written in Java with an aggressive optimizing compiler [1, 2].
We use configurations that precompile as much as possible, includ-
ing key libraries and the optimizing compiler (the Fast build-time
configuration), and turn off assertion checking. Additionally, we
remove the nondeterministic behavior of the adaptive compilation
system by applying replay compilation [15].

We evaluate our techniques using the SPECjvm [26], DaCapo
b.050224 [5], SPECjbb2000 [27], and Eclipse [30]. Table 1(a)
shows benchmark statistics including the total volume allocated
(column 1) and number of full-heap collections in both a whole-
heap (column 2) and a generational (column 3) collector in a heap
that is 2.5X the minimum size in which the benchmark can run.
Column 4 reports the number of types (bm) in each benchmark.
However since Jikes RVM is a Java-in-Java virtual machine, Cork
analyzes the virtual machine along with the benchmark during
every run. Thus column 5 (+VM) is the actual number of types
potentially analyzed at each collection.

For performance results, we explore the time-space trade-off by
executing each program on moderate to large heap sizes, ranging
from 2.5X to 6X the smallest size possible for the execution of the
program. We execute timing runs five times in each configuration
and choose the best execution time (i.e., the one least disturbed by
other effects in the system). We perform separate runs to gather
overall and individual collection statistics. We perform all of our
performance experiments on a 3.2GHz Intel Pentium 4 with hyper-
threading enabled, an 8KB 4-way set associative L1 data cache,
a 12Kµops L1 instruction trace cache, a 512KB unified 8-way set
associative L2 on-chip cache, and 1GB of main memory, running
Linux 2.6.0.

34



(a) Benchmark Statistics (b) Type Points-From Statistics (c) Space Overhead
# of # of # of # edges # edges %

Alloc Colltn types types per type per TPFG pru- TIB TIB+Cork
Benchmark MB whl gen bm +VM avg max avg max avg max ned MB %H MB %H Diff
Eclipse 3839 73 11 1773 3365 667 775 2 203 4090 7585 42.2 0.53 0.011 0.70 0.015 0.167
fop 137 9 0 700 2292 423 435 3 406 1559 2623 45.2 0.36 0.160 0.55 0.655 0.495
pmd 518 36 1 340 1932 360 415 3 121 967 1297 66.0 0.30 0.031 0.44 0.186 0.155
ps 470 89 0 188 1780 314 317 2 93 813 824 66.3 0.28 0.029 0.39 0.082 0.053
javac 192 15 0 161 1753 347 378 3 99 1118 2126 45.8 0.28 0.071 0.43 0.222 0.151
jython 341 39 0 157 1749 351 368 2 114 928 940 66.2 0.28 0.041 0.39 0.112 0.071
jess 268 41 0 152 1744 318 319 2 89 844 861 66.0 0.27 0.049 0.38 0.143 0.094
antlr 793 119 6 112 1704 320 356 2 123 860 1398 55.8 0.27 0.016 0.39 0.282 0.266
bloat 710 29 5 71 1663 345 347 2 101 892 1329 50.6 0.26 0.017 0.38 0.064 0.047
jbb2000 ** ** ** 71 1663 318 319 2 110 904 1122 59.0 0.26 ** 0.38 ** **
jack 279 47 0 61 1653 309 318 2 107 838 878 66.2 0.26 0.042 0.37 0.131 0.089
mtrt 142 17 0 37 1629 307 307 2 91 820 1047 57.5 0.26 0.081 0.37 0.258 0.177
raytrace 135 20 0 36 1628 305 306 2 91 814 1074 56.1 0.26 0.085 0.37 0.272 0.187
compress 106 6 3 16 1608 286 288 2 89 763 898 60.9 0.25 0.105 0.36 0.336 0.231
db 75 8 0 8 1600 289 289 2 91 773 787 66.1 0.25 0.160 0.35 0.467 0.307
Geomean 303 27 n/a 104 1813 342 357 2 116 1000 1303 57.4 0.29 0.048 0.41 0.168 0.145

Table 1. Benchmark Characteristics. **Volumes for SPECjbb2000 depend on how long we allow the warehouse to run.

For SPECjvm and DaCapo benchmarks, we use the stan-
dard large inputs. Since SPECjbb2000 measures throughput as
operations per second for a duration of 2 minutes for an in-
creasing number of warehouses (1 to 8) and each warehouse is
strictly independent, we change the default behavior. To perform
a performance-overhead comparison, we use pseudojbb, a vari-
ant of SPECjbb2000 that executes a fixed number of transac-
tions. For memory-leak analysis, we configure SPECjbb2000
to run only one warehouse for one hour. For Eclipse, we use
the DaCapo benchmark for general statistics and performance-
overhead comparisons and version 3.1.2 to reproduce a docu-
mented memory leak by repeatedly comparing two directory struc-
tures (Eclipse bug#115789).

3.2 Space Overhead

Table 1(b) reports TPFG space overhead statistics. Columns one
and two (# of types) report the average and maximum number
of types in the heap during any particular garbage collection. We
notice that while many more types exist in the system, an average of
44% of them are present in the heap at a time. This feature reduces
the number of potential candidates that Cork must analyze.

Table 1(b) shows the average (column 3) and maximum (col-
umn 4) number of reference edges per type node in the TPFG. We
find that most type nodes have a very small number of outgoing
reference edges (2 on average). The more prolific a type is in the
heap, the greater the number of reference edges in its node (up to
406). We measure the average and maximum number of reference
edges in any TPFG (columns 5 and 6) and the percent of those our
heuristics prune because their ranks drop below zero (re � 0) (col-
umn 7). These results demonstrate that the number of references
edges is linear in the number of type nodes in practice.

Finally, Table 1(c) shows the space requirements for the type
information block before (TIB) and the overhead added by Cork
(TIB+Cork). While Cork adds significantly to the TIB information,
it adds only modestly to the overall heap (0.145% on average and
never more than 0.5% (column 5)). For the longest-running and
largest program, Eclipse, Cork has a tiny space overhead (0.004%).
Thus Cork is both scalable and space-efficient in practice.

3.3 Performance Overhead Results

Cork’s overhead results from constructing the TPFG during scan-
ning and from differencing between TPGFs to find growth at the
end of each collection phase. Figure 5 graphs the normalized geo-
metric mean over all benchmarks to show overhead in scan time,

(b) Rank
(a) Decay Factor Threshold

Benchmark 0% 15% 25% 0 100 200
Eclipse bug#115789 0 6 6 12 6 6
fop 2 2 2 35 2 1
pmd 0 0 0 11 0 0
ps 0 0 0 3 0 0
javac 0 0 0 71 0 0
jython 0 0 1 3 0 0
jess 0 1 2 9 1 1
antlr 0 0 0 9 0 0
bloat 0 0 0 33 0 0
jbb2000 0 4 4 10 4 4
jack 0 0 0 9 0 0
mtrt 0 0 0 3 0 0
raytrace 0 0 0 4 0 0
compress 0 0 0 4 0 0
db 0 0 0 2 0 0

Table 2. Number of types reported in at least 25% of garbage
collection reports: (a) Varying the decay factor from Ratio Ranking
Technique (Rt

thres � 100). We choose a decay factor f � 15%.
(b) Varying the rank threshold from Ratio Ranking Technique
( f � 15%). We choose rank threshold Rt

thres � 100.

collector (GC) time, and total time. In each graph, the y-axis rep-
resents time normalized to the unmodified Jikes RVM using the
same collector, and the x-axis graphs heap size relative to the mini-
mum size each benchmark can run in a mark-sweep collector. Each
x represents one program. It shows Cork’s average overhead in a
generational collector to be 11.1% to 13.2% for scan time; 12.3%
to 14.9% for collector time; and 1.9% to 4.0% for total time. Indi-
vidual overhead results range higher, but Cork’s average overhead
is low enough to consider using it online in a production system.

3.4 Achieving Accuracy

Cork’s accuracy depends on its ability rank and report growing
types. We experiment with different sensitivities for both the decay
factor f and the rank threshold Rthres. Table 2 shows how changing
the decay factor changes the number of reported types. We find that
the detection of growing types is not very sensitive to small changes
in the decay factor. We choose a moderate decay factor ( f �
15%) for which Cork accurately identifies the only growing data
structures in our benchmarks without any false positives. Table 2(b)
shows how increasing the rank threshold eliminates false positives
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Figure 5. Geometric Mean Overhead Graphs over all benchmarks for generational collector

from our reports. Additionally we experiment with different rank
thresholds and find that a moderate rank threshold (Rthres � 100)
is sufficient to eliminate any false positives. An extended technical
report contains more analysis of both the decay factor and the rank
threshold [16].

3.5 Finding and Fixing Leaks

Cork identifies heap growth in four of our benchmarks: fop, jess,
SPECjbb2000 and Eclipse. For space constraints, we describe
SPECjbb2000 and Eclipse in detail. Descriptions of all bench-
marks can be found in an extended technical report [16].

SPECjbb2000

The SPECjbb2000 benchmark models a wholesale company with
several warehouses (or districts). Each warehouse has one terminal
where customers can generate requests: e.g., place new orders or
request the status of an existing order. The warehouse executes op-
erations in sequence, with each operation selected from the list of
operations using a probability distribution. It implements this sys-
tem entirely in software using Java classes for database tables and
Java objects for data records (roughly 25MB of data). The objects
are stored in memory using BTree and other data structures.

RRT analysis reports four candidates: Order, Date, New-
Order, and OrderLine. The rank of the four corresponding
type nodes oscillates between collections making it difficult to de-
termine their relative importance. Examining the slices of the four
reported type nodes reveals the reason. There is an interrelation-
ship between all of the candidates and if one is leaking then the
rest are as well. The top of Figure 6(a) graphically shows the slice
Cork reported (the shaded types are growing). Notice that despite
the prolific use of Object[] in SPECjbb2000, its type node vol-
ume jitters to such a degree that it never shows sufficient growth to
be reported as leaking. Since the slice includes all type nodes with
rt � Rt

thres and reference edges with re � 0, the slice sees beyond
the Object[] to the containing data structures.

We correlate Cork’s results with SPECjbb2000’s implementa-
tion. We find that orders are placed in an orderTable, imple-
mented as a BTree, when they are created. When they are com-
pleted during a DeliveryTransaction, they are not properly removed
from the orderTable. By adding code to remove the orders from
the orderTable , we eliminate this memory leak. Figure 6(b)
shows the heap occupancy, before and after the bug fix, running
SPECjbb2000 with one warehouse for one hour. It took us only a
day to find and fix this bug in this large program that we had never
studied previously.
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Figure 6. Fixing SPECjbb2000

Eclipse

Eclipse version 3.1.2 is a widely-used integrated development en-
vironment (IDE) written in Java [30]. Eclipse is a good benchmark
because it is big, complex, and open-source. Eclipse bug#115789
documents an unresolved memory leak in the Eclipse bug reposi-
tory from September 2005. We recreate this bug by repeatedly com-
paring the contents of two directories structures.

Cork reports six candidates: File, Folder, Path, Ar-
rayList, Object[], and ResourceCompareInput$-
FilteredBufferedResourceNode . Figure 7(a) shows the
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Figure 7. Fixing Eclipse bug#115789

slices for the candidates, the close interrelationship between them,
and several possible roots of the heap growth. Upon analysis,
we eliminated several roots (indicated by dotted edges in Fig-
ure 7(a)) reducing the possible roots to one: a linked list created
by ResourceCompareInput$MyDiffNode.

Correlating Cork’s results with the Eclipse implementation
showed that upon completion, the differences between the two di-
rectory structures are displayed in the CompareEditorInput
which is a dialog that is added to the NavigationHistory .
Further scrutiny showed that the NavigationHistoryEntry
managed by a reference counting mechanism was to blame. When
a dialog was closed, the NavigationHistoryEntry reference
count was not decremented correctly resulting in the dialog never
being removed from the NavigationHistory . Figure 7(b)
shows the heap occupancy graphs before and after fixing the mem-
ory leak. This bug took us about three and a half days to fix, the
longest of any of our benchmarks, due to the size and complexity
of Eclipse and our lack of expertise on the implementation de-
tails. While we fixed the major source growth in the heap, there
remains a small growth which at the time of this writing we have
not investigated.

4. Related Work
The problem of detecting memory leaks is well studied. Compile-
time analysis can find double free and missing frees [14] and is

complimentary to our work. Offline diagnostic tools accurately de-
tect leaks using a combination of heap differencing [10, 11, 20]
and fined-grained allocation/usage tracking [8, 13, 24, 25, 28, 29].
These approaches are expensive and often require multiple exe-
cutions and/or separate analysis to generate complex reports full
of low-level details about individual objects. In contrast, Cork’s
completely online analysis reports summaries of objects by type
while concisely identifying the dynamic data structure containing
the growth. Online diagnostic tools relies on detecting when ob-
jects exceed their expected lifetimes [19] and/or detecting when an
object becomes stale [7, 9]. We improve on the efficiency of these
techniques. However, they differentiate in-use objects from those
not-in use, adding additional information to their reports.

The closest related work is Leakbot [12, 17, 18] which com-
bines offline analysis with online diagnosis to find data structures
with memory leaks. Leakbot uses JVMPI to take heap snapshots of-
floaded to another processor for analysis (we call this offline analy-
sis since it is not using the same resources as the program although
it may occur concurrently with program execution). By offloading
the expensive part if its analysis to another processor (heap differ-
encing and ranking parts of the object graph which may be leaking),
Leakbot minimizes the impact on the application and the perceived
overhead of the analysis. Thus, Leakbot relies on an additional pro-
cessor and multiple copies of the heap – a memory overhead poten-
tially 200% or more that is proportional to the heap – to perform
heap differencing and report object level statistics. Cork, on the
other hand, summarizes object instances in a TPFG graph while
minimizing the memory overhead (less than 1%) and allowing it to
run continuously and concurrently with the application.

5. Conclusion
This paper introduces a novel and efficient way to summarize the
heap to identify types which cause systematic heap growth, the data
structures which contains them, and the allocation site(s) which al-
locate them. We implement this approach in Cork, a tool that iden-
tifies growth in the heap and reports slices of a summarizing type
points-from graph. Cork calculates this information by piggyback-
ing on full-heap garbage collections. We show that Cork adds only
2.3% to total time on moderate to large heaps in a generational
collector. Cork precisely identifies data structures with unbounded
heap growth in four popular benchmarks: fop, jess, jbb2000, and
Eclipse and we use its reports to analyze and eliminate memory
leaks. Cork is highly-accurate, low-overhead, scalable, and is the
first tool to find memory leaks with low enough overhead to con-
sider using in production VM deployments.
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[23] C. Runciman and N. Röjemo. Heap Profiling for Space Efficiency.
In E. M. J. Launchbury and T. Sheard, editors, Advanced Functional
Programming, Second International School-Tutorial Text, pages 159–
183, London, United Kingdome, August 1996. Springer-Verlag.

[24] M. Serrano and H.-J. Boehm. Understanding Memory Allocation
of Scheme Programs. In ICFP ’00: Proceedings of the Fifth ACM
SIGPLAN International Conference on Functional Programming,
pages 245–256, Montréal, Québec, Canada, September 2000.
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