
Dynamically Discovering Likely Program
Invariants to Support Program Evolution

Michael D. Ernst, Jake Cockrell, William G. Griswold, Member, IEEE, and

David Notkin, Member, IEEE Computer Society

AbstractÐExplicitly stated program invariants can help programmers by identifying program properties that must be preserved when

modifying code. In practice, however, these invariants are usually implicit. An alternative to expecting programmers to fully annotate

code with invariants is to automatically infer likely invariants from the program itself. This research focuses on dynamic techniques for

discovering invariants from execution traces. This article reports three results. First, it describes techniques for dynamically discovering

invariants, along with an implementation, named Daikon, that embodies these techniques. Second, it reports on the application of

Daikon to two sets of target programs. In programs from Gries's work on program derivation, the system rediscovered predefined

invariants. In a C program lacking explicit invariants, the system discovered invariants that assisted a software evolution task. These

experiments demonstrate that, at least for small programs, invariant inference is both accurate and useful. Third, it analyzes scalability

issues, such as invariant detection runtime and accuracy, as functions of test suites and program points instrumented.

Index TermsÐProgram invariants, formal specification, software evolution, dynamic analysis, execution traces, logical inference,

pattern recognition.

æ

1 INTRODUCTION

INVARIANTS play a central role in program development.
Representative uses include refining a specification into a

correct program, statically verifying properties such as type
declarations, and runtime checking of invariants encoded as
assert statements.

Invariants play an equally critical role in software
evolution. In particular, invariants can protect a program-
mer from making changes that inadvertently violate
assumptions upon which the program's correct behavior
depends. The near absence of explicit invariants in existing
programs makes it all too easy for programmers to
introduce errors while making changes.

An alternative to expecting programmers to annotate
code with invariants is to automatically infer invariants.
This research focuses on the dynamic discovery of invar-
iants: The technique is to execute a program on a collection
of inputs and infer invariants from captured variable traces.
Fig. 1 shows the architecture of the Daikon invariant
detector. As with other dynamic approaches, such as
testing and profiling, the accuracy of the inferred invariants

depends in part on the quality and completeness of the test
cases; additional test cases might provide new data from
which more accurate invariants can be inferred.

The inference of invariants from program traces and its
application to software evolution raises a number of
technical questions. How can invariants be detected? Can
the inference process be made fast enough? What kind of
test suite is required to infer meaningful invariants? What
techniques can be used to minimize irrelevant invariants
that are unlikely to aid a programmer in the task at hand?
How can the required information be extracted from
program runs? Can programmers productively use the
inferred invariants in software evolution? This article
provides partial answers to these questions in the form of
three results stemming from our initial experiences with
this approach.

The first result is a set of techniques for discovering
invariants from execution traces and a prototype invariant
detector, Daikon, that implements these techniques. Invar-
iants are detected from program executions by instrument-
ing the source program to trace the variables of interest,
running the instrumented program over a set of test cases,
and inferring invariants over both the instrumented vari-
ables and over derived variables that are not manifest in the
original program. The essential idea is to test a set of possible
invariants against the values captured from the instrumen-
ted variables; those invariants that are tested to a sufficient
degree without falsification are reported to the programmer.
Section 3 discusses the invariant detection engine; the
discussion of instrumentation is deferred to Section 8.

The second result is the application of Daikon to two sets
of target programs. The first set of programs appear in The
Science of Programming [39]. These programs were derived
from formal preconditions, postconditions, and loop invar-
iants. Given runs of the program over randomly-generated

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001 99

. M.D. Ernst is with the Department of Electrical Engineering and
Computer Science and the Laboratory for computer Science, Massachusetts
Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139.
E-mail: mernst@lcs.mit.edu.

. J. Cockrell is with Macromedia, Inc., 101 Redwood Shores Parkway,
Redwood City, CA 94065. E-mail: jcockrell@macromedia.com.

. W.G. Griswold is with the Department of Computer Science and
Engineering, University of California, San Diego, 0114, La Jolla, CA
92093-0114. E-mail: wgg@cs.ucsd.edu.

. D. Notkin is with the Department of Computer Science and Engineering,
University of Washington, Box 352350, Seattle WA 98195-2350.
E-mail: notkin@cs.washington.edu.

Manuscript received 15 Nov. 1999; revised 21 Apr. 2000; accepted 1 May
2000.
Recommended for acceptance by D. Garlan.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 112142.

0098-5589/01/$10.00 ß 2001 IEEE

inputs, Daikon discovers those same program properties,
plus some additional ones (we introduce this result as
motivation in Section 2). This first experiment demonstrates
that dynamic invariant detection produces invariants that
are accurate. The second set of programsÐC programs,
originally from Siemens [43] and modified by Rothermel and
Harrold [72]Ðis not annotated with invariants, nor is there
any indication that invariants were used explicitly in their
construction. Section 4 shows how numeric invariants
dynamically inferred from one of these programs assisted
in understanding and changing it. This scenario also shows
that dynamic invariant discovery is complementary to static
techniques (which examine the program text but do not run
the program). This second experiment demonstrates that
dynamic invariant detection produces invariants that are
useful.

The third result, presented in Section 5, is a quantitative
analysis of scalability issues. The analysis demonstrates that
inference running time is linearly correlated to the number
of program points being traced, the square of the number of
variables in scope at a program point, and the size of the
test suite. Thus, choices of program points and variables
over which to detect invariants can control invariant
detection time. While there are many potential invariants,
most of them are quickly falsified, contributing little to
overall runtime. Experiments on test suite selection suggest
that the set of invariants inferred tends to stabilize with
growing test suite size, reducing the need for large test
suites and, thus, limiting inference time. Section 6 correlates
the number of invariants with program correctness.
Section 7 discusses some initial work concerning the
adequacy of automatically generated test suites for invar-
iant inference.

Finally, Section 9 surveys related work, Section 10
discusses ongoing and future work, and Section 11
concludes the paper.

2 REDISCOVERY OF INVARIANTS

To introduce dynamic invariant detection and illustrate
Daikon's output, we present the invariants detected in a
simple program taken from The Science of Programming [39],
a book that espouses deriving programs from specifications.
Unlike typical programs, for which it may be difficult to
determine the desired output of invariant detection, many
of the book's programs include preconditions, postcondi-
tions, and loop invariants that embody the properties of the
computation that the author considered important. These
specifications form a ªgold standardº against which an

invariant detector can be judged. Thus, these programs are
ideal initial tests of our system.

Daikon successfully reports all the formally-specified
preconditions, postconditions, and loop invariants in
chapters 14 and 15 of the book. (After this success, we did
not feel the need to continue the exercise with the following
chapters.) Chapter 14 is the first containing formally-
specified programs; previous chapters present the under-
lying mathematics and methodology. These programs
perform simple tasks, such as searching, sorting, changing
multiple variables consistently, computing GCD, and the
like. We did not investigate a few programs whose
invariants were described via pictures or informal text
rather than mathematical predicates.

All the programs are quite small and we built simple test
suites of our own. These experiments are not intended to be
conclusive, but to be a good initial test. The programs are
small enough to show in full in this article, along with the
complete Daikon output. Additionally, they illustrate a
number of important issues in invariant detection.

As a simple example of invariant detection, consider a
program that sums the elements of an array (Fig. 2). We
transliterated this program to a dialect of Lisp enhanced
with Gries-style control constructs such as nondeterministic
conditionals. Daikon's Lisp instrumenter (Section 8) added
code that writes variable values into a data trace file; this
code was automatically inserted at the program entry
(ENTER), at the loop head (LOOP), and at the program exit
(EXIT). We ran the instrumented program on 100 ran-
domly-generated arrays of length 7 to 13, in which each
element was a random number in the range ±100 to 100,
inclusive. Fig. 3 shows the output of the Daikon invariant
detector given the data trace file.

100 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 1. Architecture of the Daikon tool for dynamic invariant inference.

Fig. 2. Gries array sum program (Program 15.1.1 [39, p. 180]) and its
formal specification. The program sums the values in array b (of length
n) into result variable s. The statement i; s :� 0; 0 is a parallel
(simultaneous) assignment of the values on the right-hand side of the
:= to the variables on the left-hand side. The do-od form repeatedly
evaluates the condition on the left-hand side of the ! and, if it is true,
evaluates the body on the right-hand side; execution of the form
terminates when the condition evaluates to false.

This is neither the best nor most realistic test suite; it

happens to be the first one we tried when testing Daikon.

The results illustrate potential shortcomings of the

approach and motivate improvements that handle them.

Fig. 4 shows Daikon's output when the array sum

program is run over a different test suite. Sections 3

and 7 discuss the selection of test suites.
The preconditions (invariants at the ENTER program

point) of Fig. 3 record that N is the length of array B, that N

falls between 7 and 13 inclusive, and that the array elements

are always at least ÿ100. The first invariant, N � size�B�, is

crucial to the correctness of the program, yet was omitted

from the formal invariants stated by Gries. Gries's stated

precondition, N � 0, is implied by the boxed output,
N 2 �7; ::; 13�, which is shorthand for N � 7 and N � 13.

The postconditions (at the EXIT program point) include
the Gries postcondition, S � sum�B�; Section 3.2 describes
inference over functions such as sum. In addition, Daikon
discovered that N and B remain unchanged; in other words,
the program has no side effects on those variables.

The loop invariants (at the LOOP program point) include
those of Gries, along with several others. One of these
additional invariants bounds the maximum value of the
array elements, in complement to the minimum value noted
in the precondition and postcondition invariants. Section 3.1
discusses why it is reported as a loop invariant but not in
the preconditions or postconditions and [27] shows how to
eliminate such invarients.

In Fig. 3, invariants that appear as part of the formal
specification of the program in the book are boxed for
emphasis. Invariants beyond those can be split into three
categories. First are invariants erroneously omitted from the
formal specification but detected by Daikon, such as
N � size�B�. Second are properties of the test suite, such
as N 2 �7::13�. These invariants provide valuable informa-
tion about the data set and can help validate a test suite or
indicate the usage context of a function or other computa-
tion. Third are extraneous, probably uninteresting invar-
iants, such as N 6� B�ÿ1�, which are further discussed in
Section 10.1 and eliminated by [27].

In this example, Daikon detected N � size�B� because
that property holds in the test cases, which were written to
satisfy the intent of the author (as made clear in the book).
To express this intent, the postcondition should have been
s � �P j : 0 � j < size�B� : b�j��. The same code could be
used in a different way, to sum part of an array with

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 101

Fig. 3. Invariants inferred for the Gries array sum program (Fig. 2)

over 100 randomly generated input arrays. Invariants are shown for

the entry (precondition) and exit (postcondition) of the program, as

well as the loop head (loop invariant). Daikon successfully

rediscovered the invariants in the program's formal specification

(Fig. 2); those goal invariants are boxed for emphasis. B[-1] is

shorthand for B[size(B)-1], the last element of array B, and

orig(var) represents var's value at the start of procedure execution.

Invariants for elements of an array are listed indented under the

array; in this example, no array has multiple elementwise invariants.

The number of samples in the right-hand column is the number of

times each program point was executed; the loop iterates multiple

times for each test case, generating multiple samples. The counts

of values, also in the right-hand column, indicate how many distinct

variable values were encountered. For instance, although the

program was exited 100 times, the boxed postcondition S = sum(B)

indicates that variable S (and sum(B)) had only 96 distinct final

values on those 100 executions.

Fig. 4. Invariants inferred for the Gries array sum program (Fig. 2) over

an input set whose array lengths and element values were chosen from

exponential distributions, but with the same expected array lengths and

element values as the uniform distributions used in Fig. 3. Invariants in

Fig. 3 that were specific to that test suite do not appear in this output.

precondition N � size�B� and the existing postcondition. A
different test suite could indicate such uses of the program.

The fact that Daikon found the fundamental invariants in

the Gries programsÐincluding crucial ones not specified by

GriesÐdemonstrates the potential of dynamic invariant

detection. (For this toy program, which was small enough to

exhaustively discuss in this article, static analysis could

produce the same result. However, static analysis cannot

report true but undecidable properties or properties of the

program context. Furthermore, static analysis of language

features such as pointers remains beyond the state of the art

because of the difficulty of representing the heap, which

forces precision-losing approximations. Dynamic analysis

does not suffer these drawbacks, so it complements static

analysis.) Section 4 shows Daikon's application to a more

realistic program that was constructed without the use of

formal invariants. Before that, however, Section 3 describes

how Daikon operates.

3 INFERRING INVARIANTS

There are two principal challenges to inferring the
invariants presented in the previous section: choosing what
invariants to infer and performing the inference. A third
challenge, capturing the program's behavior for inference,
is discussed Section 8.

Daikon infers invariants at specific program points such
as procedure entries and exits and, optionally, loop heads.
The instrumented program provides Daikon, for each
execution of such a program point, with the values of
variables in scope. Daikon checks for invariants involving a
single variable (a constraint that holds over its values) or
multiple variables (a relationship among the values of the
variables). The invariants are as follows, where x, y, and z
are variables, and a, b, and c are computed constants:

. Invariants over any variable:

- Constant value: x � a indicates the variable is a
constant.

- Uninitialized: x � uninit indicates the variable is
never set.

- Small value set: x 2 fa; b; cg indicates the vari-
able takes on only a small number of different
values.

. Invariants over a single numeric variable:

- Range limits: x � a; x � b, and a � x � b
(printed as x in [a..b]) indicate the mini-
mum and/or maximum value.

- Nonzero: x 6� 0 indicates the variable is never set
to 0; see Section 3.1 for details on when such an
invariant is reported.

- Modulus: x � a �mod b� indicates that x mod b
� a always holds.

- Nonmodulus: x 6� a �mod b� is reported only if
x mod b takes on every value besides a.

. Invariants over two numeric variables:

- Linear relationship: y � ax� b.
- Ordering comparison: x < y; x � y; x > y;

x � y; x � y; x 6� y.

- Functions: y � fn�x� or x � fn�y�, for fn one of
Python's built-in unary functions (absolute
value, negation, bitwise complement); addi-
tional functions are trivial to add.

- Invariants over x� y: Any invariant from the list
of invariants over a single numeric variable,
such as x� y � a �mod b�.

- Invariants over xÿ y: As for x� y; this sub-
sumes ordering comparisons and can permit
inference of properties such as xÿ y > a, which
Daikon prints as x > y� a.

. Invariants over three numeric variables:

- Linear relationship: z � ax� by� c, y � ax�
bz� c, or x � ay� bz� c.

- Functions: z � fn�x; y�, for fn one of Python's
built-in binary functions (min, max, multiplica-
tion, and, or, greatest common divisor; compar-
ison, exponentiation, floating point rounding,
division, modulus, left and right shifts); addi-
tional functions are trivial to add. The other
permutations of hx; y; zi are also tested (three
permutations for symmetric functions, listed
before the parenthesis's semicolon, and six
permutations for nonsymmetric functions).

. Invariants over a single sequence variable:

- Range: Minimum and maximum sequence
values, ordered lexicographically; for instance,
this can indicate the range of string or array
values.

- Element ordering: Whether the elements of each
sequence are nondecreasing, nonincreasing, or
equal; in the latter case, each sequence contains
(multiple instances of) a single value, though
that value may differ from sequence to se-
quence.

- Invariants over all sequence elements (treated as
a single large collection): For example, in Fig. 3,
all elements of array B are at least ÿ100.

The sum invariants of Fig. 3 do not appear here
because sum(B) is a derived variable, which is
described in Section 3.2.

. Invariants over two sequence variables:

- Linear relationship: y � ax� b, elementwise.
- Comparison: x < y; x � y; x > y; x � y; x � y;

x 6� y, performed lexicographically.
- Subsequence relationship: x is a subsequence of

y or vice versa.
- Reversal: x is the reverse of y.

. Invariants over a sequence and a numeric variable:

- Membership: i 2 s.

For each variable or tuple of variables, each potential
invariant is instantiated and tested. For instance, given
variables x, y, and z, each potential unary invariant is
checked for x, for y, and for z; each potential binary
invariant is checked for hx; yi, for hx; zi, and for hy; zi; and
each potential ternary invariant is checked for hx; y; zi. A
potential invariant is checked by examining each sample in
turn; a sample is a tuple of values for the instrumented

102 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

variables at a program point, stemming from one execution
of that program point. As soon as a sample not satisfying
the invariant is encountered, the invariant is known not to
hold and is not checked for any subsequent samples
(though other invariants may continue to be checked).
Thus, the cost of computing invariants tends to be
proportional to the number of invariants discovered (see
also Section 5).

As a simple example, consider the C code

int inc(int *x, int y) {

*x += y;

return *x;

}

At the procedure exit, value tuples might include (the first
line is shown for reference):

h orig�x�; orig��x�; orig�y�; x; �x; y; return i
h 4026527180; 2; 1; 4026527180; 3; 1; 3 i
h 146204; 13; 1; 146204; 14; 1; 14 i
h 4026527180; 3; 1; 4026527180; 4; 1; 4 i
h 4026527180; 4; 1; 4026527180; 5; 1; 5 i
h 146204; 14; 1; 146204; 15; 1; 15 i
h 4026527180; 5; 1; 4026527180; 6; 1; 6 i
h 4026527180; 6; 1; 4026527180; 7; 1; 7 i

..

.

This value trace admits invariants including x � orig�x�, y �
orig�y� � 1; �x � orig��x� � 1; and return � �x.

The invariants listed above are inexpensive to test and do

not require full-fledged theorem proving. For example, the

linear relationship x � ay� bz� c with unknown coeffi-

cients a, b, and c and variables x, y, and z has three degrees

of freedom. Consequently, three (linearly independent)

tuples of �x; y; z� values are sufficient to determine the

coefficients, after which checking requires only a few

arithmetic operations and an equality check. As another

example of inexpensive checking, a common modulus

(variable b in x � a �mod b�) is the greatest common divisor

of the differences among list elements.
To reduce source language dependence, simplify the

implementation, and improve error checking, Daikon

supports only two forms of data: scalar number (including

characters and booleans) and sequence of scalars; all trace

values must be converted into one of these forms. For

example, an array A of tree nodes (each with a left and a

right child) would be converted into two arrays: A.left

containing (object IDs for) the left children and A.right for

the right children. This design choice avoids the inference-

time overhead of interpretation of data structure informa-

tion. Because declared types are also recorded (in a separate

file), mapping all program types to this limited set does not

conflate different types. Invariants over the original objects

can be recovered from Daikon's output because it computes

invariants across the arrays, such as finding relationships

over the ith element in each. For example, a�i�:left <

a�i�:right is reported as a:left�i� < a:right�i�, which a post-

processing step could easily convert to the former repre-

sentation by referring to the original program type

declarations.

We produced the list of potential invariants by proposing

a basic set of invariants that seemed natural and generally

applicable, based on our programming and specification

experience. We later added other invariants we found

helpful in analyzing programs and that we believed would

be generally useful; we did this only between experiments

rather than biasing experiments by tuning Daikon to

specific programs. We also removed from our original list

some invariants that turned out to be less useful in practice

than we had anticipated. The list does not include all the

invariants that programmers might find useful. For in-

stance, Daikon does not yet follow arbitrary-length paths

through recursive data structures (see Section 10 and [30]).

Nor does Daikon compute invariants such as a linear

relationship over four variables, nor test every data

structure for the red-black tree invariant. Omitting such

invariants controls cost and complexity: Section 5 notes that

the number of invariants checked can significantly affect

Daikon's runtime. In general, we balanced performance and

the likely general utility of the reported invariants. Over

time, we expect to modify Daikon's list of invariants, based

on comments from users and on improvements in the

underlying inference technology. (Users can easily add their

own domain-specific invariants and derived variables

(Section 3.2) by writing a small amount of code.) Even the

current list is useful: It enabled the successful detection of

the Gries invariants and useful invariants in the Siemens

suite (Section 4).
Invariants can be viewed as forming a lattice based on

subsumption (logical implication). The implementation
takes advantage of these relationships in order to improve
both performance and the intelligibility of the output (see
Section 10.1). Perhaps some additional advantage could be
gained by further formalizing this lattice.

3.1 Invariant Confidence

Not all unfalsified invariants should be reported. If there
are few unique value tuples at a program point (because the
program point is executed few times or is frequently
executed with the same variable values), then relationships
over those few distinct variable values may be mere
coincidences, even though the properties always held on
the test runs. Reporting too many spurious invariants could
discourage programmers from looking through the list for
better-supported invariants.

One simple solution to the problem is to use a better
test suite. A larger, more complete test suite is likely to
include counterexamples to coincidental properties that
hold in smaller test sets. Because generating ideal test
suites is difficult (see also Sections 5.1.3 and 7) and to
improve invariant detection output even for deficient test
suites, Daikon includes a method for computing invariant
confidences.

For each detected invariant, Daikon computes the

probability that such a property would appear by chance

in a random input. If that probability is smaller than a user-

specified confidence parameter, then the property is

considered noncoincidental and is reported. In other words,

Daikon assumes a distribution and performs a statistical

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 103

test in an attempt to discredit the null hypothesis, which

states that the observed values were generated by chance

from the distribution. If the null hypothesis is rejected at a

certain level of confidence, then the observed values are

noncoincidental and their unusual property is worth

reporting. (This probability limit is not a confidence on

the likelihood that the reported invariants are correct over

all possible inputs; rather, it is used to decide whether a

particular invariant is worth reporting to the user.)
For the purposes of this articleÐin part to demonstrate

spurious invariants like those of Fig. 3Ðwe set the

probability limit to 0.01, to report invariants that are no

more than 1 percent likely to have occurred by chance. For

actual use, we recommend a substantially smaller value: If

the system checks millions of potential invariants, then

reporting thousands of spurious invariants is likely to be

unacceptable.
As a concrete example of a statistical test, suppose the

reported values for variable x fall in a range of size r that

includes 0 (suppose x ranges from r
2 to ÿ r

2ÿ 1), but that

x 6� 0 for all test cases. If the values are uniformly

distributed, then the probability that a single instance of

x is not 0 is 1ÿ 1
r . Given s samples, the probability that x

is never 0 is �1ÿ 1
r�s. If this probability is less than a user-

defined confidence level, then the invariant x 6� 0 is

reported. Tests for x 6� y and (non)modulus tests are

analogous. As another example, ranges for numeric

variables (such as c 2 �32::126� or x > 0) are also not

reported unless they appear to be noncoincidental. A limit

is reported if the several values near the range's extrema

all appear about as often as would be expected (the

distribution appears to be uniform and stops at the

observed minimum or maximum), or if the extremum

appears much more often than would be expected (as if

greater or lesser values have been clipped to that value).
The 100 random arrays used in the experiment of Fig. 3

happened to support only one boundedness inference (all

elements � ÿ100). On a second run, over 100 arrays selected

from the same distribution, both bounds were inferred and,

for larger test suites, both bounds were always inferred.

Fig. 4 shows the result of running Daikon on a different set

of 100 arrays; the output is almost precisely the Gries

invariants.
In Figs. 3 and 4, some invariants are reported at the loop

head, but not at the procedure entry or exit, even though the

same array values were visible at all program points. The

reason is that 100 samples were insufficient to support any

inequality inferences, but the loop head is executed more

times. We have subsequently enhanced our implementation

to record whether each variable has been set since the last

time the program point was encountered; counting only the

first occurrence of a particular variable value eliminates all

the extra loop invariants from Figs. 3 and 4. Details are

reported in [27].

3.2 Derived Variables

Computing invariants over manifest program variables can

be inadequate for a programmer's needs. For instance, if

array a and integer lasti are both in scope, then

a[lasti] may be of interest, even though that expression

is not a source code variable and may not appear in the

program text.
Therefore, Daikon adds certain ªderived variablesº

(actually expressions) to the list it is given as input. These
derived variables are the following:

. Derived from any sequence s:

- Length (number of elements): size(s).
- Extremal elements: s[0], s[1], s[size(s)-

1], s[size(s)-2]; the latter two are reported
as s[-1], s[-2] for brevity, where the negative
indices suggest indexing from the end rather
than the beginning of the sequence. Including
the second and penultimate elements (in addi-
tion to the first and last) accommodates header
nodes and other distinguished uses of extremal
elements.

. Derived from any numeric sequence s:

- sum: sum(s),
- minimum element: min(s),
- maximum element: max(s).

. Derived from any sequence s and any numeric
variable i:

- Element at the index: s[i], s[i-1] (as in the
a[lasti] example above). Both the element at
the specified index and the element immediately
preceding it are introduced as derived variables
because programmers sometimes use a max-
imum (the last valid index) and sometimes a
limit (the first invalid index).

- Subsequences: s[0..i], s[0..i-1], where
the notation s[a..b] indicates the portion of
s spanning indices a to b, inclusive. As in the
above case, two subsequences are introduced
because numbers may indicate a maximum
valid index or a length.

. Derived from function invocations: number of calls
so far. Daikon computes this from a running count
over the trace file.

Daikon treats derived variables just like other variables,
permitting it to infer invariants that are not hard-coded into
its list. For instance, if size(A) is derived from sequence A,
then the system can report the invariant i < size�A� without
hard-coding a less-than comparison check for the case of a
scalar and the length of a sequence. Thus, the implementa-
tion can report compound relations that we did not
necessarily anticipate.

Variable derivation and invariant inference can also
avoid unnecessary work by examining previously-
computed invariants. Therefore, derived variables are not
introduced until invariants have been computed over
previously existing variables and derived variables are
introduced in stages rather than all at once. For instance, for
sequence A, the derived variable size(A) is introduced
and invariants are computed over it before any other
variables are derived from A. If j � size�A�, then there is no

104 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

sense in creating the derived variable A[j]. When a
derived variable is only sometimes sensible, as when j is
only sometimes a valid index to A, no further derivations
are performed over A[j]. Likewise, A[0..size(A)-1] is
identical to A, so it need not be derived.

Derived variables are guaranteed to have certain
relationships with other variables; for instance, A[0] is a
member of A and i is the length of A[0..i-1]. Daikon
does not compute or report such tautologies. Likewise,
whenever two or more variables are determined to be equal,
one of them is chosen as canonical and the others are
removed from the pool of variables to be derived from or
analyzed, reducing both computation time and output size.

Deriving variables from other derived variables could
eventually create an arbitrary number of new variables. In
order to avoid overburdening the system (and introducing
baroque, unhelpful variables), Daikon halts derivation after
a fixed number of iterations, limiting the depth of any
potential derivation and the number of derived variables.

4 USE OF INVARIANTS

As discussed in Section 2, dynamic invariant detection
accurately rediscovered the known invariants for the Gries
programs. This section reports on a second experiment that
indicates that inferred invariants can be of substantial
assistance in understanding, modifying, and testing a
program that contains no explicitly-stated invariants. To
determine whether and how derived invariants aid pro-
gram modification, two programmers working as a team
modified a program (from the Siemens suite [43] as
modified by Rothermel and Harrold [72]) using both
traditional tools and invariants produced by the prototype
invariant detector Daikon.

This section lays out the task, describes the program-
mers' activity in modifying the program, and discusses how
the use of invariants is qualitatively different from more
traditional styles of gathering information about programs.

4.1 The Task

The Siemens replace program takes a regular expression
and a replacement string as command-line arguments, then
copies an input stream to an output stream while replacing
any substring matched by the regular expression with the
replacement string. The replace program consists of
563 lines of C code and contains 21 procedures. The
program has no comments or other documentation, which
is regrettably typical for real-world programs.

The regular expression language of replace includes
Kleene-* closure [55] but omits Kleene-+ closure, so we
decided that this would be a useful and realistic extension.
In preparation for the change, we instrumented and ran
replace on 100 test cases randomly selected from the 5,542
provided with the Siemens suite. Given the resulting trace,
Daikon produced invariants at the entry and exit of each
procedure. We provided the output to the programmers
making the change, who then worked completely indepen-
dently of us. As described below, they sometimes used the
dynamically detected invariants and sometimes found
traditional tools and techniques more useful.

4.2 Performing the Change

The programmers began by studying the program's call

structure and high-level definitions (essentially a static

analysis) and found that it is composed of a pattern parser,

a pattern compiler, and a matching engine. To avoid

modifying the matching engine and to minimize changes

to the parser, they decided to compile an input pattern of

the form hpati+ into the semantically equivalent hpatihpati*.
The initial changes were straightforward and were based

on informal program inspection and manual analysis. In

particular, simple text searches helped the programmers

find how ª*º was handled during parsing. They mimicked

the constant CLOSURE of value '*' with the new constant

PCLOSURE (for ªplus closureº) of value '+' and made

several simple changes, such as adding PCLOSURE to sets

that represent special classes of characters (in functions

in_set_2 and in_pat_set).
They then studied the use of CLOSURE in function

makepat, since makepat would have to handle PCLOSURE

analogously. The basic code in makepat (Fig. 5) determines

whether the next character in the input is CLOSURE; if so, it

calls the ªstar closureº function, stclose (Fig. 6), under

most conditions (and the exceptions should not differ for

plus closure). The programmers duplicated this code

sequence, modifying the copy to check for PCLOSURE and

to call a new function, plclose. Their initial body for

plclose was a copy of the body of stclose.
To determine appropriate modifications for plclose,

the programmers studied stclose. The initial, static study

of the program determined that the compiled pattern is

stored in a 100-element array named pat. They speculated

that the uses of array pat in stclose's loop manipulate

the pattern that is the target of the closure operator, adding

characters to the compiled pattern using the function

addstr.
The programmers wanted to verify that the loop was

indeed entered on every call to stclose. Since this could

depend on how stclose is called, which could depend in

turn on unstated assumptions about what is a legal call to

stclose, they decided to examine the invariants for

stclose rather than attempt a global static analysis of

the program. The initialization and exit conditions in

stclose's loop imply the loop would not be entered if

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 105

Fig. 5. Function makepat's use of constant CLOSURE in Siemens
program replace.

*j were equal to lastj, so they examined the invariants

inferred for those variables on entry to stclose:

�j � 2

lastj � 0

lastj � �j:
The third invariant implies that the loop body might not be
executed (if lastj � �j, then jp is initialized to lastj-1 and
the loop body is never entered), which was inconsistent
with the programmers' initial belief.

To find the offending values of lastj and *j, they
queried the trace database for calls to stclose in which
lastj � �j, since these are the cases when the loop is not
entered. (Daikon includes a tool that takes as input a
program point and a constraint and produces as output the
tuples in the execution trace database that satisfyÐor,
optionally, falsifyÐthe constraint at the program point.)
The query returned several calls in which the value of *j is
101 or more, exceeding the size of the array pat. The
programmers soon determined that, in some instances, the
compiled pattern is too long, resulting in an unreported
array bounds error. This error was apparently not noticed
previously, despite a test suite of 5,542 test cases.

Excluding these exceptional situations, the loop body in
stclose always executes when the function is called,
increasing the programmers' confidence that the loop
manipulates the pattern to which the closure operator is
being applied. To allow them to proceed with the Kleene-+
extension without first fixing this bug, we recomputed the
invariants without the test cases that caused the improper
calls to stclose.

Studying stclose's manipulation of array pat (Fig. 6)
more carefully, they observed that the loop index is
decremented and pat is both read and written by
addstr (Fig. 7). Moreover, the closure character is
inserted into the array not at the end of the compiled
pattern, but at index lastj. Looking at the invariants for
pat, they found pat 6� orig�pat�, which indicates that pat

is always updated. To determine what stclose does to

pat, they queried the trace database for values of pat at

the entry and exit of stclose. For example:

Test case: replace ªab*º ºAº

values of parameter pat for calls to stclose:

in value: pat = ªcacbº

out value: pat = ªca*cbº

This suggests that the program compiles literals by

prefixing them with the character c and puts Kleene-*

expressions into prefix form. (One of the authors indepen-

dently discovered this fact through careful study of the

program text.) In the compiled pattern ca*cb, ca stands for

the character a, cb stands for the character b, and *

modifies cb.
The negative indexing and assignment of * into position

lastj moves the closed-over pattern rightward in the

array to make room for the prefix *. For a call to plclose

the result for the above test case should be cacb*cb, which

would match one or more instances of character b rather

than zero or more. The new implementation of Kleene-+

requires duplicating the previous pattern, rather than

shifting it rightward, so the Kleene-+ implementation can

be a bit simpler. After figuring out what addstr is doing

with the address of the index passed in (it increments the

index unless the array bound is exceeded), the program-

mers converged on the version of plclose in Fig. 8.
To check that the modified program does not violate

invariants that should still hold, they added test cases for

Kleene-+ and we recomputed the invariants for the

modified program. As expected, most invariants re-

mained unchanged, while some differing invariants

verified the program modifications. Whereas stclose

has the invariant �j � orig��j� � 1, plclose has the

invariant �j � orig��j� � 2. This difference was expected,

since the compilation of Kleene-+ replicates the entire

target pattern, which is two or more characters long in its

compiled form.

106 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 6. Function stclose in Siemens program replace. This was the template for the new plclose function (Fig. 8).

4.3 Invariants for makepat

In the process of changing replace, the programmers also
investigated several invariants discovered for function
makepat (among others). In determining when stclose

is calledÐto learn more about when the new plclose will
be calledÐthe makepat invariants showed them that
parameter start (tested in Fig. 5) is always 0 and
parameter delim, which controls the outer loop, is always
the null character (character 0). These invariants indicated
that makepat is used only in specialized contexts, saving
considerable effort in understanding its role in pattern
compilation. The programmers reported doing mental
partial evaluation in order to understand the specific use
of the function in the program.

The programmers had hypothesized that both lastj and
lj in makepat should always be less than local j (i.e.,
lastj and lj refer, at different times, to the last generated
element of the compiled pattern, whereas j refers to the next
place to append). Although the invariants for makepat

confirmed this relation over lastj and j, no invariant
between lj and j was reported. A query on the trace
database at the exit of makepat returned several cases in
which j is 1 and lj is 100, which contradicted the
programmers' expectations and prevented them from in-
troducing bugs based on a flawed understanding of the code.

Another inferred invariant was

calls�in set 2� � calls�stclose�:
Since in_set_2 is only called in the predicate controlling
stclose's invocation (see Fig. 5), the equal number of calls
indicates that none of the test cases caused in_set_2 to
return false. Rather than helping modify the program,
this invariant indicates a property of the particular 100 test
cases we used. It suggests a need to run replace on more
of the provided test cases to better expose replace's
special-case behavior and produce more accurate invariants
(see also Section 5).

4.4 Invariant Uses

In the task of adding the Kleene-+ operator to the Siemens
replace program, dynamically detected invariants played
a number of useful roles.

Explicated data structures. Invariants and queries over
the invariant database helped explicate the undocumented
structure of compiled regular expressions, which the
program represents as strings.

Confirmed and contradicted expectations. In function
makepat, the programmers expected that lastj < j and
lj < j. The first expectation was confirmed, increasing their
confidence in their understanding of the program. The
second expectation was refuted, permitting them to correct
their misunderstanding and preventing them from introdu-
cing a bug based on a flawed understanding.

Revealed a bug. In function stclose, the programmers
expected that lastj < �j (this *j is unrelated to j in
makepat). The counterexample to this property evidenced
a previously undetected array bounds error.

Showed limited use of procedures. Two of the parameters
to function makepat were the constant zero. Its behavior in

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 107

Fig. 8. Function plclose in the extended replace program. It was written by copying stclose (Fig. 6), then modifying the copy.

Fig. 7. Function addstr in Siemens program replace.

that special caseÐwhich was all that was required in order
to perform the assigned taskÐwas easier to understand
than its full generality.

Demonstrated test suite inadequacy. The number of
invocations of two functions (and the constant return value
of one of them, which the programmers noticed later)
indicated that one branch was never taken in the small test
suite. This indicated the need to expand the test suite.

Validated program changes. Differences in invariants
over *j in stclose and plclose showed that in one
respect, plclose was performing as intended. The fact that
invariants over much of the rest of the program remained
identical showed that unintended changes had not been
made, nor had changes in modified parts of the program
inadvertently affected the computations performed by
unmodified parts of the program.

4.5 Discussion

Although the use of dynamically detected invariants was
convenient and effective, everything learned about the
replace program could have been detected via a
combination of careful reading of the code, additional static
analyses (including lexical searches), and selected program
instrumentation such as insertion of printf statements or
execution with a debugger. However, adding inferred
invariants to these techniques provides several qualitative
benefits.

First, inferred invariants are a succinct abstraction of a
mass of data contained in the data trace. The programmer is
provided with informationÐin terms of manifest program
variables and expressions at well-defined program
pointsÐthat captures properties that hold across all runs.
These invariants provide substantial insight that would be
difficult for a programmer to extract manually from the
trace or from the program using traditional means.

Second, inferred invariants provide a suitable basis for
the programmer's own, more complex inferences. The
reported invariants are relatively simple and concern
observable entities in the program. Programmers might
prefer to be told ª*j refers to the next place to append a
character into the compiled pattern,º but this level of
interpretation is well beyond current capabilities. However,
the programmer can examine the program text or perform
supporting analyses to better understand the implications
of the reported invariants. For example, the presence of
several related invariants indicating that *j starts with a
zero value and is regularly incremented by one during the
compilation of the pattern allowed the programmers to
quickly determine the higher-level invariant. The basic
nature of reported invariants do not render them useless.

Third, the programmers reported that seeing the inferred
invariants led them to think more in terms of invariants
than they would have otherwise. They believed that this
helped them to do a better job and make fewer errors than
they would have otherwise, even when they were not
directly dealing with the Daikon output.

Fourth, invariants provide a beneficial degree of seren-

dipity. Scanning the invariants reveals facts that program-

mers would not have otherwise noticed and almost surely

would not have thought to check. An example, even in this

small case, is the expectation that the program was correct,

because of its thousands of tests; dynamic invariant

detection helped find a latent error (where the index

exceeded the array bounds in some cases). This ability to

draw human attention to suspicious but otherwise over-

looked aspects of the code is a strength of this approach. A

programmer seeking one specific piece of information or

aiming to verify a specific invariant and uninterested in any

other facts about the code may be able to use dynamic

invariant detection to advantage, but will not get as much

from it as a programmer open to other, possibly valuable,

information.
Finally, two tools provided with Daikon proved useful.

Queries against the trace database help programmers delve

deeper when unexpected invariants appear or when

expected invariants do not appear. For example, the

inferred invariants contradicted expectations regarding the

preconditions for stclose and clarifying information was

provided by supporting data. This both revealed a bug and

simplified an implementation. The other tool, an invariant

comparator, reveals how two sets of invariants differ,

enabling comparison of programs, versions of a program,

test suites, or settings of the invariant detector. It verified

some aspects of the correctness of the program change.
No technique can make it possible to evolve systems that

were previously intractable to change. But our initial

experience with inferred invariants shows promise in

simplifying evolution tasks both by concisely summarizing

the program trace data and providing a means for querying

the trace database for additional insight.

5 SCALABILITY

The time and space costs of dynamic invariant inference

grow with the number of program points and variables

instrumented, number of invariants checked, and number

of test cases run. However, the cost of inference is hard to

predict. For example, Daikon generates derived variables

while analyzing traces, and which derived variables are

introduced depends on the trace values. Also, Daikon stops

testing for an invariant as soon as it is falsified, meaning

that running time is sensitive to the order in which variable

value tuples are examined. Finally, selection of test

casesÐboth how many and which onesÐimpact what

invariants are discovered. This section presents the results

of several experiments to determine the costs of invariant

inference (Section 5.1) and the stability of the reported

invariants as the test suite increases in size (Section 5.2).

Based largely on the results of these experiments, Section 10

suggests ways to accelerate inference, improve scalability,

and manage the reporting of invariants.

5.1 Performance

To gain insight on performance-related scalability issues,

we measured invariant detection runtime over the Siemens

replace program [43], [72]. We aimed to identify

quantitative, observable factors that a user can control to

108 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

manage the time and space requirements of the invariant
detector.

Briefly, invariant detection time is:

. Potentially cubic in the number of variables in scope
at a program point (not the total number of variables
in the program). Invariants involve at most three
variables, so there are a cubic number of potential
invariants. In other words, invariant detection time
is linear in the number of potential invariants at a
program point. However, most invariants are falsi-
fied very quickly and only true invariants need be
checked for the entire run, so invariant detection
time at a program point is really linear in the
number of true invariants, which is a small constant
in practice.

. Linear in the number of samples (the number of
times a program point is executed), which deter-
mines how many sets of values for variables are
provided to Daikon. This value is linearly related to
test suite size; its cost can be reduced by sampling.

. Linear in the number of instrumented program
points because each point is processed indepen-
dently. In the default case, the number of instru-
mented program points is proportional to the size of
the program, but users can control the extent of
instrumentation to improve performance if they
have no interest in libraries, intend to focus on part
of the program, etc. Daikon's command-line para-
meters permit users to skip over arbitrary classes,
functions, and program points.

Informally, invariant detection time can be characterized as

Time = O((|vars|3 � falsetime + |trueinvs| � |testsuite|)
� |program|),

where vars is the number of variables at a program point,
falsetime is the (small constant) time to falsify a potential
invariant, |trueinvs| is the (small) number of true invariants
at a program point, |testsuite| is the size of the test suite,
and |program| is the number of instrumented program
points. The first two products multiply a count of invariants
by the time to test each invariant.

The rest of this section fleshes out the intuition sketched
above and justifies it via experiments. Section 5.1.1
describes the experimental methodology. Section 5.1.2
reports how the number of variables in scope at an
instrumented program point affects invariant detection
time and Section 5.1.3 reports how the number of test cases
(program runs) affects invariant detection time. Section 5.1.4
considers how other factors affect invariant detection time.
Because each instrumented program point is processed
independently, program size affects invariant detection
time only insofar as larger programs afford more instru-
mentation points and more global variables. This implies
that analysis of a portion of a large program is no more
difficult than complete analysis of a smaller program.

5.1.1 Methodology

We instrumented and ran the Siemens replace program
on subsets of the 5,542 test cases supplied with the
program, including runs over 500, 1,000, 1,500, 2,000,

2,500, and 3,000 randomly-chosen test inputs, where each
set is a subset of the next larger one. We also ran over all
5,542 test cases, but our initial prototype implementation
ran out of memory, exceeding 180MB, for one program
point over 3,500 inputs and for a second program point
over 4,500 inputs. (The replace program has 21 proce-
dures (42 instrumentation points), but one of the routines,
which performs error handling, was never invoked, so we
omit it henceforth.) The implementation could reduce
space costs substantially by using a different data
representation or by not storing every tuple of values
(including every distinct string and array value) encoun-
tered by the program. For instance, the system might only
retain certain witnesses and counterexamples, for use by
the query tool, to checked properties. The witnesses and
counterexamples help to explicate the results when a user
asks whether a certain property is satisfied in the trace
database, as described in Section 4.2.

Daikon infers invariants over an average of 71 variables
(6 original, 65 derived; 52 scalars, 19 sequences) per
instrumentation point in replace. On average, 1,000 test
cases produce 10,120 samples per instrumentation point
and the current implementation of Daikon takes 220 seconds
to infer the invariants for an average instrumentation point.
For 3,000 test cases, there are 33,801 samples and processing
takes 540 seconds.

We ran the experiments on a 450MHz Pentium II. Daikon
is written in the interpreted language Python [79]. Daikon
has not yet been seriously optimized for time or space,
although at one point we improved performance by nearly
a factor of ten by inlining two one-line procedures. In
addition to local optimizations and algorithmic improve-
ments, use of a compiled language such as C could improve
performance by another order of magnitude or more.

5.1.2 Number of Instrumented Variables

The number of variables over which invariants are checked
is the most important factor affecting invariant detection
runtime. This is the number of variables in scope at a
program point, not the total number of variables in the
program, so it is generally small and should grow very
slowly with program size, as more global variables are
introduced. On average, each of the 20 functions in
replace has three parameters (two pointers and one
scalar), but those translate to five checked variables
because, for arrays and other pointers, the address and
the contents are separately presented to the invariant
detector. On average, there are two local variables (includ-
ing the return value, if any) in scope at the procedure exit;
replace uses no global variables. The number of derived
variables is difficult to predict because it depends on the
values of other variables, as described in Section 3.2. On
average, about ten variables are derived for each original
one; this number holds for a wide variety of relative
numbers of scalars and arrays. In all of our statistics, the
number of scalars or of sequences has no more (sometimes
less) predictive power than the total number of variables.

Fig. 9 plots growth in invariant detection time against
growth in number of variables. Each data point of Fig. 9
compares invariant detection times for two sets of variables
at every procedure exit in replace using a 1,000-element

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 109

test suite. One set of variables is the initial argument values,
while the other set adds final argument values, local
variables, and the return value. The larger set was 1.4 to
7.5 times as large as the smaller one; this is the range of the
x axis of Fig. 9. The absolute number of variables ranges
from 14 to 230. This choice of variable sets for comparison is
somewhat arbitrary; however, it can be applied consistently
to all the program points, it produces a range of ratios of
sizes for the two sets, and the results are repeatable for
multiple test suite sizes. We used the same test suite for
each run and we did not compare inference times at
different program points, because different program points
are executed different numbers of times (have different
sample sizes), generate different numbers of distinct values
(have different value distributions), and induce different
invariants; our goal is to measure only the effect of number
of variables.

Fig. 9 indicates that invariant detection time grows
approximately quadratically with the number of variables
over which invariants are checked. (This is implied by the
linear relationship over the ratios. When ratios vr � v2

v1
and

tr � t2
t1

are linearly related with slope s, then vr � str ÿ s� 1
because tr � 1 when vr � 1 and, thus, v / ts. For the 1,000
test cases of Fig. 9, the slope is 1.8, so v / t1:8.) The quadratic
growth is explained by the fact that the number of possible
binary invariants (relationships over two variables) is also
quadratic in the number of variables at a program point.

To verify our results, we repeated the experiment with a
test suite of 3,000 inputs. The results were nearly identical to
those for 1,000 test cases: The ratios closely fitted (R2 � 0:89)
a straight line with slope 2.1.

Fig. 9 contains only 17 data points, not all 20. Our timing-
related graphs omit three functions whose invariant
detection runtimes were under one second since runtime
or measurement variations could produce inaccurate
results. The other absolute runtimes range from 4.5 to
2,100 seconds.

5.1.3 Test Suite Size

The effect of test suite size on invariant detection runtime is
less pronounced than the effect of number of variables.
Fig. 10 plots growth in time against growth in number of
test cases (program runs) for each program point. Most of
these relationships are strongly linear: nine have R2 above
0.99, nine others have R2 above 0.9, and five more have R2

above 0.85. The remaining twelve relationships have
runtime anomalies of varying severity; the data points
largely fall on a line, usually with a single exception.
Although the timings are reproducible, we have not yet
isolated a cause for these departures from linearity. We are
in the midst of reimplementing Daikon and plan to repeat
the experiment with the new implementation to see
whether these aberrations remain.

Although runtime is (for the most part) linearly related
to test suite size, the divergent lines of Fig. 10 show that the
slopes of these relationships vary considerably. These
slopes are not correlated with the number of original
variables (the variables in scope at the program point), total
(original and derived) variables, variables of scalar or
sequence type, or any other measure we tested. Therefore,
we know of no way to predict the slopes or the growth of
runtime with test suite size.

5.1.4 Other Factors

We compared a large number of factors in an attempt to
find formulas relating them. Our hope was to relate
runtime directly to factors under the user's control, such as
number of test cases, so that users can predict invariant
detection runtime.

The best single predictor for invariant detection runtime
is the number of pairs of values encountered by the
invariant detector; Fig. 11 plots that linear relationship.
Runtime is also correlated with total number of values, with
number of values per variable, with total number of
samples, and with test suite size (as demonstrated above),

110 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 9. Change in invariant detection runtime versus change in number of variables. A least-squares trend line highlights the relationship; its R2 value

is over 0.89, indicating good fit. Each data point compares inference over two different sets of variables at a single instrumentation point, for invariant

inference over 1,000 program runs. (For 3,000 test cases, the graph is similar, also with R2 � 0:89.) If one run has v1 variables and a runtime of t1
and the other has v2 variables and a runtime of t2, then the x axis measures v2

v1
and the y axis measures t2

t1
. The trendline equation is y � 1:8xÿ 0:92,

indicating that doubling the number of variables tends to increase runtime by a factor of 2.5, while increasing the number of variables fivefold

increases runtime by eight times.

but in none of those cases is the fit as good as with number
of pairs of values and it is never good enough for
prediction. Runtime was not well-correlated with any other
factors (or products or sums of factors) that we tried.

Although the number of pairs of values is a good
predictor for runtime and is correlated with the number of
values (but not with the ratio of numbers of scalar and
sequence variables), it cannot itself be predicted from any
other factors.

Unsurprisingly, the number of samples (number of times
a particular program point is executed) is linearly related to
test suite size (number of program runs). The number of
distinct values is also well-correlated with the number of
samples. The number of distinct variable values at each
instrumentation point also follows an almost perfectly linear
relationship to these measures, with about one new value
per 20 samples. We expected fewer new values to appear in
later runs. However, repeated array values are rare and even
a test suite of 50 inputs produced 600 samples per function
on average, perhaps avoiding the high distinct-variable-
values-per-sample ratio we expected with few inputs.

5.2 Invariant Stability

A key question in invariant inference is what kind and how
large a test suite is required to get a reliable, useful set of
invariants. Too few test cases can result in both a small
number of invariants, because confidence levels are too low,
and more false invariants, because falsifying test cases were
omitted. Running many test cases, however, increases
inference times linearly, as demonstrated in Section 5.1.3.

To explore what test suite size is desirable for invariant

inference, we compared, pairwise, the invariants detected

on replace for different numbers of randomly selected

test cases. Figs. 12 and 13 chart the number of identical,

missing, and different invariants reported between two test

suites, where the smaller test suite is a subset of the larger.

Missing invariants are invariants that were reported in one

of the test suites but not in the other. Daikon always detects

all invariants that hold over a test suite and are in its

vocabulary: all invariants of the forms listed in Section 3,

over program variables, fields, and derived variables of the

forms listed in Section 3.2. Any invariant that holds over a

test suite also holds over a subset of that test suite.

However, a detected invariant may not be reported if it is

not statistically justified (Section 3.1) and in certain other

circumstances (see Section 10.1 and [31]). All comparisons

of invariants are of reported invariants, which is the output

the user sees.
Figs. 12 and 13 separate the differences into potentially

interesting ones and probably uninteresting ones. A
difference between two invariants is considered uninterest-
ing if it is a difference in a bound on a variable's range or if
both invariants indicate a different small set of possible
values (called ªsmall value setº in Section 3); all other
differences are classified as potentially interesting.

Some typical uninteresting invariant range differences

are the following differences in invariants at the exit of

function putsub when comparing a test suite of size 1,000

to one of size 3,000:

1,000 tests: s1 >= 0 (96 values)

3,000 tests: s1 in [0..98] (99 values)

1,000 tests: i in [0..92] (73 values)

3,000 tests: i in [0..99] (76 values)

A difference in a bound for a variable is more likely to be a
peculiarity of the data than a significant difference that will
change a programmer's conception of the program's opera-
tion. In particular, that is the case for these variables, which
are indices into arrays of length 100. The uninteresting
category also contains variables taking on too few values to
infer a more general invariant, but for which that set of
values differs from one set of runs to another.

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 111

Fig. 10. Invariant detection runtime as a function of number of test cases (program runs). The plot contains one data point for each program point and

test suite sizeÐsix data points per program point. Lines are drawn through some of these data sets to highlight the growth of runtime as test suite

size increases.

All other differences are reported in Figs. 12 and 13 as
potentially interesting. For example, when comparing a test
suite of size 2,000 to one of size 3,000, the following
difference is reported at the exit of dodash:

1,000 tests: *j >= 2 (105 values)

3,000 tests: *j = 0 (mod 2) (117 values)

Such differences, and some missing invariants, may merit
closer examination.

Examination of the output revealed that substantive
differences in invariants, such as detecting result � i in one
case but not another, are rareÐfar fewer than one per
procedure on average. Most of the invariants discovered in
one procedure but not in another were between clearly
incomparable or unrelated quantities (such as a compar-
ison between an integer and an address, or between two
elements of an array or of different arrays) or were artifacts
of the particular test cases (such as adding �i 6� 5 �mod 13�
to �i � 0). Other invariant differences result from different
values for pointers and uninitialized array elements. For

example, the minimum value found in an array might be

ÿ128 in one set of runs and ÿ120 in another, even though

the array should contain only (nonnegative) characters.

Other nonsensical values, such as the sum of the elements

of a string, also appeared frequently in differing invariants.

Important future directions of research will include

reporting, or directing the user to, more relevant invariants

and determining which invariant differences are significant

and which can be safely ignored.
In Figs. 12 and 13, the number of identical unary

invariants grows modestly as the smaller test suite size

increases. Identical binary invariants show a greater

increase, particularly in the jump from 500 to 1,000 test

cases. Especially in comparisons with the 3,000 case test

suite, there are some indications that the number of

identical invariants is stabilizing, which might indicate

asymptotically approaching the true set of invariants for a

program. (Daikon found all the invariants Gries listed

(Section 2) and other experiments have had similar results.)

112 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig. 12. Invariant similarities and differences versus 2,500 test cases for
the Siemens replace program. The chart compares invariants
computed over a 2,500-element test suite with invariants computed
over smaller test suites that were subsets of the 2,500-element test
suite.

Fig. 13. Invariant similarities and differences versus 3,000 test cases for
the Siemens replace program. The chart compares invariants
computed over a 3,000-element test suite with invariants computed
over smaller test suites that were subsets of the 3,000-element test
suite.

Fig. 11. Number of pairs of values is the best predictor of invariant detection runtime (R2 � 0:94). The number of pairs of values is the number of

distinct hx; yi pairs, where x and y are the values of two different variables in a single sample (one particular execution of a program point). The

number of pairs of variables is not predictable from (though correlated with) number of test inputs and number of variables.

Inversely, the number of differing invariants is reduced

as the smaller test suite size increases. Both unary and

binary differing invariants drop off most sharply from 500

to 1,000 test cases; differences with the 3,000 case test set

then smooth out significantly, perhaps stabilizing, while

differences with the 2,500 case test set drop rapidly. Missing

invariants follow a similar pattern. The dropoff for unary

invariants is largely due to fewer uninteresting invariants,

while the dropoff for binary invariants is due to fewer

interesting invariants.
For replace and randomly-selected test suites, there

seems to be a knee somewhere between 500 and 1,000 test

cases: That is, the benefit per randomly-selected test case

seems greatest in that range. Such a result, if empirically

validated, could reduce the cost of selecting test cases,

producing execution traces, and computing invariants.
Figs. 12 and 13 paint somewhat different pictures of

invariant differences. Differences are smaller in compar-

isons with the 2,500-element test suite, while values tend to

level off in comparisons with the 3,000-element test suite.

Only 2.5 percent of binary invariants detected for the 2,000

or 2,500 case test suites are not found identically in the other

and the number of invariants that differ is in the noise,

though these are likely to be the most important differences.

For comparisons against the 2,500 test case suite, these

numbers drop rapidly as the two test suites approach the

same size. When the larger test suite has size 3,000, more

invariants are different or missing, and these numbers

stabilize quickly. The 3,000 case test suite appears to be

anomalous: Comparisons with other sizes show more

similarity with the numbers and patterns reported for the

2,500 case test suite. We did such comparisons for both

smaller test suites and larger ones (the larger comparisons

omitted the one or two functions for which our invariant

database ran out of memory for such large numbers of

samples). Our preliminary investigations have not revealed

a precise cause for the larger differences between the

3,000 case test suite and all the others, nor can we accurately

predict the sizes of invariant differences; further investiga-

tion is required in order to understand these phenomena.

6 INVARIANTS AND PROGRAM CORRECTNESS

This section compares invariants detected across a large
collection of programs written to the same specification. We
found that correct versions of programs give rise to more
invariants than incorrect programs.

We examined 424 student programs from a single
assignment for the introductory C programming course at
the University of Washington (CSE 142, Introductory
Programming I). The grades assigned to the programs
approximate how well they satisfy their specification. They
are not a perfect measure of adherence to the specification
because points may be deducted for poor documentation,
incorrectly formatted output, etc.

The programs all solve the problem of fair distribution of
pizza slices among computer science students. Given the
number of students, the amount of money each student
possesses, and the number of pizzas desired, the program
calculates whether the students can afford the pizzas. If so,
then the program calculates how many slices each student
may eat, as well as how many slices remain after a fair
distribution of pizza.

We manually modified the programs to use the same
test suite, to remove user interaction, and to standardize
variable names. Invariant detection was performed over
200 executions of each program, resulting in 3 to
28 invariants per program. From the invariants detected
in the programs that received perfect grades, we selected
eight relevant invariants, listed in Fig. 14. The list does
not include trivial invariants such as slices per � 0,
indicating that students never receive a negative number
of slices, as well as uninteresting invariants such as
slices � pizza price� 75, which is an artifact of the 200 test
cases. These invariants can be valuable in understanding
test suites and some aspects of program behavior, but
that was not the focus of this experiment.

Fig. 15 displays the number of relevant invariants that
appeared in each program. There is a relationship between
program correctness (as measured by the grade) and the
number of relevant invariants detected: Low-grade pro-
grams tend to exhibit fewer relevant invariants, while high-
grade programs tend to exhibit more.

The correlation between program correctness and the
number of relevant invariants detected is not perfect. The

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 113

Fig. 14. The eight relevant invariants of the student pizza distribution
programs. The first two variables are the program inputs; the test suite
used up to 50 people trying to order up to 10 pizzas. Every program
satisfied these two invariants. The problem specified that pizzas cost $9
or $11. In the test suite, there is up to $40 left after paying for the pizzas
(the maximal possible number of pizzas is not necessarily ordered) and
each person receives no more than three slices. The last invariant
embodies the requirement that there be fewer leftover pizza slices than
people eating.

Fig. 15. The relationship between grade and the number of goal
invariants (Fig. 14) found in student programs. For instance, all
programs with a grade of 12 exhibited either two or three goal invariants,
while most programs with a grade of 18 exhibited four or more
invariants. A grade of 18 was a perfect score, and none of the
424 programs exhibited more than six, or fewer than two, of the eight
relevant invariants.

main reason for the discrepancy was that some programs
calculate key values in a printf statement and never store
them in a variable. Indeed, the programs were specified
(and graded) in terms of their output rather than for
returning or storing values. Programs with a more
algorithmic or data-structure bent, or performing less trivial
computations, would probably be more likely to return or
store their results, exposing them to invariant inference.

7 TEST SUITES FOR INVARIANT DISCOVERY

So far, Daikon has produced adequate invariants from
randomly generated tests (for the Gries programs, Section 2)
and from preexisting test suites (for the Siemens programs,
Section 4). However, we have not yet characterized the
properties of a test suite (besides size) that make it
appropriate for dynamic invariant detection. Furthermore,
it is desirable for test suite construction to be affordable.
This section reports the quality of invariants resulting from
test suites generated by two semiautomatic, relatively
inexpensive methods: simple random test-case generation
(Section 7.1) and grammar-driven test-case generation
(Section 7.2).

For Siemens programs replace (string pattern replace-
ment), schedule (process scheduling), and tcas (aircraft
collision avoidance), we compare invariants resulting from
automatically generated test suites and (a random selection
of) the hand-crafted test cases from Siemens [43] as
modified by Rothermel and Harrold [72].

7.1 Randomly-Generated Test Suites

The simplest method of generating test cases is to randomly
generate inputs of the proper types. Random testing is
cheap, but it has poor coverage and is most effective at
finding highly peculiar bugs [42].

Our randomly generated test suites failed to execute
many portions of the program. Thus, Daikon did not
produce many of the invariants resulting from the hand-
crafted input cases. For example, random generation
produces few valid input pattern strings for the replace

program, so the functions that read and construct the
pattern were rarely reached.

For functions that were entered, the random test cases
produced many invariants identical to the ones derived
from the Siemens test cases and few additional ones. For
example, schedule's function init_prio_queue adds
processes to the active process queue. Daikon correctly
produced the invariant i � num proc at the end of its loop.
Many of the discovered invariants were related to program
behaviors that are largely independent of the procedure's
actual parameters.

Random test cases did reveal how the program behaves
with invalid inputs. For example, tcas performs no
bounds checks on a statically declared fixed-sized array.
When an index specified by the input was out of bounds,
the resulting invariants showed the use of garbage values in
determining the aircraft's collision avoidance response.

7.2 Grammar-Generated Test Suites

Randomly generating test cases from a grammar that
describes valid inputs holds more promise than fully

random testing. The grammar can ensure a large number
of correct inputs and biasing the grammar choices can
produce more representative test cases. Compared to
random test generation, the grammar-driven approach
produced invariants much closer to those achieved with
the Siemens test cases, but they also required more effort to
produce.

The three programs had no specifications, so we derived
grammars describing valid program inputs by looking at
the source or at comments, when available. In general, this
was straightforward, although in some cases where input
combinations could not occur together, we added explicit
constraints to the generator. In the case of replace, we
enhanced the generator to occasionally insert instances of
the produced pattern in the target string in which to
perform replacements, ensuring that substitution functions
are exercised.

We also arranged for the grammars to produce some
invalid inputs. In some cases, introducing errors simplified
the grammars. For example, we permitted any character to
fill a pattern format in replace's test generation grammar,
even when the pattern language prohibits regular expres-
sion metacharacters.

The table in Fig. 16 compares the invariants produced
from the grammar-driven test cases to invariants produced
from the Siemens suite for each of the three programs, using
100 test cases. The grammar-driven test cases produced
many of the invariants found with the Siemens test cases.
Many of the differing invariants do not appear to be
relevant (an inherently subjective assessment). In replace,
many differing invariants resulted from the larger range of
characters produced by the generator, compared to those of
the Siemens test cases. Many other differing invariants are
artifacts of erroneous or invalid input combinations
produced by either the generated or Siemens test cases.
However, some of the differences are significant, resulting
from input combinations that the grammar-based genera-
tion method did not produce.

Although more investigation is required, there is some
evidence that with reasonable effort in generating test cases,
we can derive useful invariants. In particular, grammar-
driven test-case generators may be able to produce
invariants roughly equivalent to those produced by a test
suite designed for testing. A programmer need not build a
perfect grammar-driven test-case generator, but rather one
that executes the program trace points sufficiently often.
The detected invariants indicate shortcomings of the test
suite. Random selection of values within the constraints of
the grammar is acceptable, even beneficial, for invariant
inference. Furthermore, an imperfect grammar can help

114 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

Fig 16. Number of identical and differing invariants between invariants
produced from grammar-driven test cases and from the Siemens test
cases for each of the three Siemens programs. Each test suite
contained 100 test cases.

exercise error conditions that are needed to fully under-
stand program behavior.

8 PROGRAM INSTRUMENTATION

Daikon's input is a sequence of variable value tuples for
every program point of interest to the programmer.

Instrumentation inserted at each of the program points

captures this information by writing out variable values
each time the program point is executed. Daikon includes

fully automatic instrumenters for C, Java, and Lisp.

8.1 Data File Format

At each program point of interest, the instrumented

program writes to a data trace file the values of all variables
in scope, including global variables, procedure arguments,

local variables, and (at procedure exits) the return value.

The instrumenter also creates, at instrumentation time, a
declaration file describing the format of the data trace file.

The declaration file lists, for each instrumented program

point, the variables being instrumented, their types in the
original program, their representations in the trace file, and

the sets of variables that may be sensibly compared [68] (see

Section 10.1).
For every instrumented program point, then, the trace

file contains a list of tuples of values, one value per

instrumented variable. For instance, suppose procedure p

has two formal parameters, is in the scope of three global
variables, and is called twelve times. When computing a

precondition for p (that is, when computing an invariant at

p's entry point), the invariant engine would be presented a
list of twelve elements, each element being a tuple of five

variable values (one for each visible variable). Daikon's
instrumenters also output a modification bit for each value

that indicates whether the variable has been set since the

last time this program point was encountered. This permits
Daikon to ignore garbage values in uninitialized variables

and to prevent unchanged values encountered multiple

times from overcontributing to invariant confidence (see
Section 10.1 for details). Fig. 17 shows an excerpt from a

data trace file.
In languages like C with explicit pointers (or in Java

when the JVM gives access to an object ID), references are
output both as an address (or object ID) and as a content (an

object or array). This permits comparisons over both the

references and over contents.
As noted in Section 3, Daikon operates only over scalar

numbers (including characters and booleans) and arrays of

numbers. Thus, values must be converted into one of these

forms. For instance, a record r is converted into a collection
of variables with the natural names r.a, r.b, etc. An array

of structures is converted into a set of parallel arrays (one

for each structure slot, appropriately named to make their
origin clear).

Daikon accepts an arbitrary number of trace files and

declaration files as input, permitting aggregation of multi-

ple program runs and production of a single set of
invariants (which are generally superior to those from any

single run).

8.2 Instrumentation Approach

The Daikon front ends add instrumentation to a program
by source-to-source translation. Each instrumenter oper-
ates by parsing the program source into an abstract
syntax tree (AST), determining which variables are in
scope at each program point, inserting code at the
program point to dump the variable values into an
output file, and unparsing the AST to a file as source
code, which can be compiled and run in the standard
way. Adding instrumentation to a program is much faster
than compiling it. Although instrumenting a program by
modifying its object code would permit improved preci-
sion (for instance, in determining exactly which memory
locations have been accessed or hooking into the exact
point at which a variable is modified) and allow
instrumentation of arbitrary binaries, it offers substan-
tially greater obstacles to an implementation. For exam-
ple, standard debugging tools can be used on
instrumented source code without any special effort to
maintain symbol tables, debugging source is easier and
more portable than doing so for assembly, and instru-
mented source code is entirely platform-independent.
Invariant inference makes most sense when a program
is being modified, which requires access to the program
source anyway. Source code instrumentation also simpli-
fies instrumenting just part of a system (such as only
certain files).

For the relatively small, compute-bound programs we
have examined so far, the instrumented code can be slowed
down by more than an order of magnitude because the
programs become I/O-bound. We have not yet optimized
trace file size or writing time; another approach would be to
perform invariant checking online rather than writing
variable values to a file.

We have implemented instrumenters for C, Lisp, and
Java. Section 8.3 discusses the C front end, which was used
for the experiment described in Section 4. The Lisp
instrumenter, which was used for the experiment described
in Section 2, is similar, though simpler in some respects (for

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 115

Fig. 17. The first three records in the data trace file for the Gries array
sum program of Fig. 2, from which the invariants of Fig. 3 were derived.
B is an array of integers and the other variables are integers. These
records give variable values at program entry and at the start of the first
two loop iterations. The complete data trace file contains 1,307 records.

instance, it need not be concerned with determining array
sizes nor avoiding segmentation faults). The Java front end
is discussed elsewhere [31].

8.3 Instrumenting C Programs

Instrumenting C programs to output variable values
requires care because of uninitialized variables, side effects
in called procedures, uncertainty whether a pointer is a
reference to an array or to a scalar, partially uninitialized
arrays, and sequences not encoded as arrays. The Daikon
front end for C, which is based on the EDG C front end [28],
manages these problems in part by maintaining runtime
status information on each variable in the program and in
part with simplifying assumptions.

The instrumented program contains, for each variable in
the original program, an associated status object whose
scope is the same as that of the variable (for pointers, the
malloc and free functions are instrumented to create and
destroy status objects). The status object contains a mod-
ification timestamp, the smallest and largest indices used so
far (for arrays and pointers into arrays), and whether a
linked list can be made from the object (for structures, this is
true if one of the slots has the same type as, or is a pointer
to, the whole structure). When the program manipulates a
variable, its status object may also be updated. For instance,
an assignment copies status information from the source to
the destination.

In order to provide accurate information about proce-
dure parameters and to track modifications in called
procedures, a variable and its status object are passed to
(or returned from) a procedure together. If a variable is
passed by reference, so is its status object; if a variable is
passed by value, so its status; and if a function argument is
not an lvalue (that is, if the argument is a literal, function
call, or other nonassignable expression), then a dummy
status object is created and passed by value. For instance,
the function declaration and use

ele* get_nth_element(list* a_list, int n){...}

my_ele = get_nth_element(my_list, 4);

would be instrumented as

ele* get_nth_element(list* a_list,

var_status *a_list_status,

int n, var_status n_status,

var_status *retval_status)

{ ... }

my_ele = get_nth_element(my_list, my_status,

4, dummy_status(),

my_ele_status);

Tracking variable updates. The modification timestamp
in a variable's status object not only prevents the writing of
garbage values to the data trace file (an ªuninitializedº
annotation is written instead), but also prevents the
instrumenter from dereferencing an uninitialized pointer,
which could cause a segmentation fault. Daikon's problem
is more severe than that faced by other tracers, such as
Purify [45], which only examine memory locations that are
referenced by the program itself. Code instrumented by

Daikon examines and potentially dereferences all variables
visible at a program point.

The modification timestamp is initially set to ªunin-
itialized,º then is updated whenever the variable is
assigned. For instance, the statement p = foo(j++);

becomes, in the instrumented version,

record_modification(&p_var_status),

record_modification(&j_var_status),

p = foo(j++, j_var_status);

The comma operator in C (used in the first two lines; the
comma in the third line separates function arguments)
sequentially evaluates its two operands, which allows the
instrumented program to perform side effects in an
arbitrary expression without introducing new statements
that could affect the program's abstract syntax tree and
complicate the source-to-source translator.

Pointers. C uses the same type, T � , for a pointer to a
single object of type T and for (a pointer to) an array of
elements of type T. An incorrect assumption about the
referent of a variable of type T � can result in either loss of
information (by outputting only a single element when the
referent is actually an array) or in meaningless values or a
program crash (by outputting an entire block of memory,
interpreted as an array, when the referent is actually a
single object). The Daikon front end for C discriminates the
two situations with a simple static analysis of the program
source. Any variable that is the base of an array indexing
operation, such as a in expression a[i], is marked as an
array rather than a scalar.

Even if a variable is known to point into an array, the size
of that array is not available from the C runtime system.
More seriously, many C programs allocate arrays larger
than they need and use only a portion of them. Unused
sections of arrays present the same problems to instrumen-
tation as do uninitialized variables. To determine the valid
portion of an array, a variable status object contains the
smallest and largest integers used to index an array. This
information is updated at each array index operation. For
instance, the expression a[j] is translated to

i[record_array_index(i_var_status, j)],

where function record_array_index returns its second
argument (an index), as well as updating its first argument
(a variable status) by side effect. The minimal and maximal
indices are used when writing arrays to the data trace file in
order to avoid walking off the end (or the valid portion) of
an array. Although this approach is not sound (for instance,
it works well while an array-based implementation of a
stack is growing, but irrelevant data can be output if the
stack then shrinks), it has worked in practice. It always
prevents running off the end of an array, because assigning
to the array variable updates the variable status. For
character arrays, the instrumenter assumes that the valid
data is terminated by the null character '\0'. Although not
universally true, this seems to work well in practice. (The
programs we tested, and many but not all programs in
practice, do not use character buffers which have explicit
lengths rather than being null-terminated.)

When a structure contains a slot whose type is a pointer
to the structure type, that structure can be used as a
linkÐthe building block for linked lists. Daikon cannot

116 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

directly reason about such lists because of its limited
internal data formats. The C instrumenter works around
this limitation by constructing and outputting a sequence
consisting of the elements reachable through that pointer.
(Actually, the sequence of structures is converted into a
collection of sequences, one per structure slot, as described
in Section 3.)

9 RELATED APPLICATIONS AND TECHNIQUES

This section discusses uses of program invariants, presents
other dynamic and static approaches for determining
invariants, and considers how discovered invariants might
be checked by other methods.

9.1 Other Applications of Invariants

This article has focused on the dynamic inference of
invariants for applications in software evolution. Invariants,
however, have many uses in computer science. Dynami-
cally inferred invariants also could be used in many
situations that declared or statically inferred invariants
can and, in some cases, the application of dynamic ones
may be more effective.

Invariants provide valuable documentation of a pro-
gram's operation and data structures. Discovered invariants
can be inserted into a program as assert statements for
further testing or to ensure that detected invariants are not
later violated as code evolves. They can also double-check
existing documentation or assert statements, particularly
since program self-checks are often ineffective [58]. Addi-
tionally, a nearly-true invariant may indicate a bug or
special case that should be brought to the programmer's
attention.

Invariants may assist in test-case generation or validate a
test suite. As observed in Section 4, invariants in the
resulting program runs can indicate insufficient coverage of
certain program states. Dynamic invariants form a program
spectrum [71], which can help assess the impacts of change
on software.

Detected invariants could bootstrap or direct a (manual
or automatic) correctness proof. This would make Daikon
sound and would help bootstrap users who do not wish to
fully hand-annotate their programs before taking advantage
of theorem-provers or other static verifiers. The low-level
execution information used in profile-directed compilation
could be augmented with higher-level invariants to enable
better optimization for the common case.

9.2 Dynamic Inference

9.2.1 Machine Learning

Artificial intelligence research provides a number of
techniques for extracting abstractions, rules, or general-
izations from collections of data [64]. Most relevant to our
research is an application of inductive logic programming
(ILP) [70], [14], which produces a set of Horn clauses
(effectively, first-order if-then rules) that express the
learned concepts, to construct invariants from variable
values on particular loop executions [3].

Traditional AI and machine learning techniques are not
applicable to our problem for a variety of reasons mostly
relating to the nature of the training sets. First, most

learning systems, including ILP, must be trained on a set of
examples marked with correct answers before they can
produce useful results. Also, to preclude the generation of
hypotheses that overgeneralize the training data, learning
systems often apply additional techniques such as supply-
ing counterexamples in the training set, adding domain-
specific knowledge, or requiring an extra inference step to
find the minimal positive generalization of the initial
hypothesis. We have no access to counterexamples. Our
domain knowledge comes in the limited form of fixed
classes of hypotheses (invariants) to test. Second, we do not
have the experimental control required by learning systems
to perform reinforcement learning, in which a trainer or the
environment rewards or penalizes an agent for each action
it takes. In other words, we are performing observational
rather than experimental discovery. Third, learning ap-
proaches, such as Bayesian and PAC learning, assume there
is noise in the input data and, hence, inaccuracies in
classification are acceptable or even beneficial. Our inputs
contain no noise: We know the exact values of all
instrumented variables at a program point. Accuracies that
are considered quite good in some subfields are not
acceptable in our domain. (Our approach characterizes the
training set perfectly; either approach can misclassify
additional data.) Fourth, our research focuses on compre-
hensibility of the resulting invariants and usefulness to
programmers. Approaches like neural networks can pro-
duce artifacts that predict results but have little explicative
power, nor is it possible to know under what circumstances
they will be accurate. Finally, most AI research addresses
problems different from ours. Clustering, for example,
groups similar examples under some domain-specific
similarity metric. Classification places examples into one
of a set of predefined categories and the categories require
definitions or, more commonly, a training set. Regression
attempts to learn a function over nÿ 1 variables producing
the nth, which is closer to our goal but still does not
subsume finding other relationships among variables.

Another related area is programming by example (or
programming by demonstration) [13], whose goal is
automation of repetitive user actions, such as might be
handled by a keyboard macro recorder. That research
focuses on the discovery of simple repeated sequences in
user input and on graphical user interfaces.

Dynamic invarient inference can be placed in the broad
framework of concept discovery in artificial intelligence
and it has a number of similarities with much of that
work. For instance, it requires a good input set; irrelevant
generalizations may result if the input set is too small or
is not representative of the population of possible inputs.
It generalizes over the data to find properties fitting a
specified grammar; although it explores that space, it does
not perform a directed search through it. And, it uses a
biasÐa choice of which properties are worth checking and
reporting to the user.

While our particular problem has not been directly
solved and many AI techniques are not applicable, we
believe that generalizing these techniques, or applying them
to subproblems of our task, can be fruitful.

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 117

9.2.2 Other Dynamic Approaches

Another approach to capturing and modeling runtime
system behavior uses event traces, which describe the
sequence of events in a possibly concurrent system, to
produce a finite state machine generating the trace. Cook
and Wolf [15], [16] use statistical and other techniques to
detect sequencing, conditionals, and iteration, both for
concurrent programs and for business processes. Users may
need to correlate original and discovered models that have
a different structure and/or layout, or may need to
iteratively refine model parameters to improve the output.
Verisoft [5] systematically explores the state space of
concurrent systems using a synthesized finite state machine
for each process. Andrews [2] compares actual behavior
against behavior of a user-specified model, indicating
divergences between the two.

Other dynamic analyses that examine program execu-
tions are used for software tasks from testing to debugging.
Program spectra (specific aspects of program runs, such as
event traces, code coverage, or outputs) [1], [71], [47] can
reveal differences in inputs or program versions. The
invariants detected in a program could serve as another
spectrum.

Lencevicius et al. [61] applies database optimizations to
the task of dynamically testing specified properties for all
objects in a system; we could use similar techniques in our
query tool.

Value profiling [10], [77], [11] addresses a subset of our
problem: detection of constant or near-constant variables or
instruction operands. Such information can permit runtime
specialization: The program branches to a specialized
version if a variable value is as expected. Runtime
disambiguation [66], [74], [48] is similar, though it focuses
on pointer aliasing. Many optimizations are valid only if
two pointers are known not to be aliased. Although static
determination of aliasing is beyond the state of the art, it
can be checked at runtime in order to use a specialized
version of the code. For pairs of pointers that are shown by
profiling to be rarely aliased, runtime reductions of 16±77
percent have been realized [66]. Other work is capable of
finding subsets of our invariants, such as ordering relation-
ships among pairs of variables [80] or simple linear
patterns for predicting memory access strides, which
permits more effective parallelization [52], [24], [59].

9.3 Static Inference

Work in formal methods [46], [22], [17] inspired this
research, which was motivated by a desire to find the
dynamic analog to static techniques involving programmer-
written specifications. We have adopted the Hoare-Dijkstra
school's notations and terminology, such as preconditions,
postconditions, and loop invariants, even though an
automatic system rather than the programmer produces
these properties and they are not guaranteed, only likely, to
be universally true. A number of authors note the
advantages of knowing such properties and suggest starting
with a specification before writing code [39], [60], [25].

Static analyses operate on the program text, not on
particular test runs, and are typically sound but conserva-
tive. As a result, properties they report are true for any
program run and, theoretically, they can detect all sound
invariants if run to convergence [9]. In particular, abstract

interpretation (often implemented as dataflow analysis)
starts from a set of equations specifying the semantics of
each program expression, then symbolically executes the
program, so that at each point, the values of all variables
and expressions are available in terms of the inputs. The
solution is approached either as the greatest lower bound of
decreasing approximations or as the least upper bound of
increasing approximations. The fixed point of the equations
(possibly reached after infinitely many iterations that
compute improving approximations, or by reasoning
directly about the fixed point) is the optimal invariants:
They imply every other solution.

In practice, static analyses suffer from several limitations.
They omit properties that are true but uncomputable and
properties that depend on how the program is used,
including properties of its inputs. More seriously, static
analyses are limited by uncertainty about properties beyond
their capabilities and by the high cost of modeling program
states; approximations that permit the algorithms to
terminate introduce inaccuracies. For instance, accurate
and efficient alias analysis is still beyond the state of the art
[18], [63], [85]; pointer manipulation forces many static
checkers to give up or to approximate, resulting in overly
weak properties. In other cases, the resulting property may
simply be the (infinite) unrolling of the program itself,
which conveys little understanding because of its size and
complexity. Because dynamic techniques can detect
context-dependent properties and can easily check proper-
ties that stymie static analyses, the two approaches are
complementary.

Some program understanding tools have taken the
abstract interpretation/dataflow approach. Specifications
can be constructed by extending a specification on the
inputs of a procedure to its output. This approach is similar
to abstract interpretation or symbolic execution, which,
given a (possibly empty) precondition and an operation's
semantics, determines the best postcondition. Givan [37],
[38] takes this approach and permits unverified procedural
implementations of specification functions to be used for
runtime checking. No indication of how many irrelevant
properties are output is provided. Gannod and Cheng [33],
[12] also reverse engineer (construct specifications for)
programs via the strongest postcondition predicate trans-
former. User interaction is required to determine loop
bounds and invariants. They also suggest ways to weaken
conditions to avoid overfitting specifications to implemen-
tations, by deleting conjuncts, adding disjuncts, and
converting conjunctions to disjunctions or implications
[34]. ADDS [44], [36] propagates data structure shape
descriptions through a program, cast as a traditional gen/
kill analysis. These descriptions include the dimensionality
of pointers and, for each pair of live pointer variables visible
at a program point, reachability of one from the other and
whether any common object is reachable from both. This
information permits the determination of whether a data
structure is a tree, a dag, or a cyclic graph, modulo
approximations in the analysis. Other shape analyses have
a similar flavor [76]. Jeffords and Heitmeyer [51] generate
state invariants for a state machine model from require-
ments specifications, by finding a fixed point of equations

118 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

specifying events that cause mode transitions. Compared to
analyzing code, this approach permits operation at a higher
level of abstraction and detection of errors earlier in the
software life cycle.

Some formal proof systems generate intermediate asser-
tions for help in proving a given goal formula by
propagating known invariants forward or backward in
the program [84], [41], [56], [19], [3]. In the case of array
bounds checking [75], [40], [57], [67], [86], the desired
property is obvious.

The Illustrating Compiler heuristically infers, via com-
pile-time pattern matching and type inferencing, the
abstract datatype implemented by a collection of concrete
operations, then graphically displays the data in a way that
is natural for that datatype [49].

ReForm [81] semiautomatically transforms, by provably
correct steps, a program into a specification. The Main-
tainer's Assistant [83] uses program transformation techni-
ques to prove equivalence of two programs (if they can be
transformed to the same specification or to one another).

Other related work includes staging and binding-time
analyses, which determine invariant or semi-invariant
values for use in partial evaluation [50].

9.4 Checking Invariants

A specification can be checked against its implementation
either dynamically, by running the program, or statically, by
analyzing it. Dynamic approaches are simpler to implement
and are rarely blocked by inadequacies of the analysis, but
they slow down the program and check only finitely many
runs. Numerous implementations of assert facilities exist
and some research has addressed making invariant debug-
ging and assertion languages more expressive or less
restrictive [35], [73], [54], [8], a topic that is often taken up
by research on static checking. Programmers tend to use
different styles for dynamically- and statically-checked
invariants; for instance, tradeoffs between completeness
and runtime cost affect what checks a programmer inserts.
Self-checking and self-correcting programs [7], [82] double-
check their results by computing a value in two ways or by
verifying a value that is difficult to compute but easy to
check. For certain functions, implementations that are
correct on most inputs (and for which checking is effective
at finding errors) can be extended to being correct on
all inputs with high probability. Dynamic checks are
not always effective in detecting errors. In one study, of
867 program self-checks, 34 were effective (located a bug,
including six errors not previously discovered by n-way
voting among 28 versions of a program), 78 were ineffective
(checked a condition but didn't catch an error), 10 raised
false alarms (and 22 new faults were introduced into the
programs), and 734 were of unknown efficacy (never got
triggered and there was no known bug in the code they
tested) [58].

Considerable research has addressed statically checking
formal specifications [69], [20], [65], [62], [53]; such work
could be used to verify likely invariants discovered
dynamically, making our system sound. Recently, some
realistic static specification checkers have been implemen-
ted. LCLint [29], [32] verifies that programs respect
annotations in the Larch/C Interface Language [78].

Although these focus on properties such as modularity,
which are already guaranteed in more modern languages,
they also include pointer-based properties, such as defin-
edness, nullness, and allocation state. ESC [21], [62], [23],
the Extended Static Checker, permits programmers to write
type-like annotations including arithmetic relationships and
declarations about mutability; it catches array bound errors,
nil dereferences, synchronization errors, and other pro-
gramming mistakes. LCLint and ESC do not attempt to
check full specifications, which remains beyond the state of
the art, but are successful in their more limited domains.
(Dependent types [69], [88], [87] make a similar tradeoff
between expressiveness and computability.) Neither LCLint
nor ESC is sound, but they do provide programmers
substantial confidence in the annotations that they check.
We are investigating integrating Daikon with one of these
systems in order to explore whether it is realistic to annotate
a program sufficiently to make it pass these checkers. (A
partially-annotated program could trigger even more
warning messages than an unannotated one.)

Although program checking is challenging, it can often
be automated. Determining what property to check is
considered even harder [84], [6]. Most research in this area
has focused on generation of intermediate assertions: Given
a goal to prove, systems such as STeP [3] attempt to find
sufficiently strong auxiliary predicates to permit a proof to
be performed automatically. They may do so by forward
propagation and generation of auxiliary invariants or by
backward propagation and strengthening of properties, as
discussed above. Our research is directly applicable since its
goal is discovery of properties at any program point.

10 ONGOING AND FUTURE WORK

Early experience with dynamic inference of invariants has
highlighted a number of issues that require further
research. This section briefly discusses increasing the
relevance of reported invariants, improving performance
performance, enhancing the way users see and manage the
reported invariants, and adding to the collection of checked
invariants. There are many other interesting areas for
investigation, such as evaluating and improving test suites
and formally proving the detected likely invariants.

10.1 Increasing Relevance

A naive implementation of the techniques described in this
article would run excessively slowly, produce many
uninteresting invariants, and omit certain useful invariants.
We call an invariant relevant if it assists a programmer in a
programming task. Perfect relevance is unattainable even in
the presence of ideal test suites since relevance depends on
the task and the programmer's experience, knowledge of
the underlying system, etc. However, we have developed
four techniques that generally improve the relevance of
dynamically detected invariants [27].

One of the techniquesÐexploiting unused polymor-
phismÐuses a two-pass approach to add desired invar-
iants to the output. Daikon respects declared types and
accepts only integer and integer array inputs. However,
runtime types can be detected by a first pass and this
information, which may be more specific than declared

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 119

polymorphic types, provided to a second pass which can
manipulate objects in ways specific to their actual values.

The other three techniques remove irrelevant invariants.
First, invariants that are logically implied by other invar-
iants in the output can be suppressed, which cuts down the
output without reducing its information content. Implica-
tions can also be exploited earlier in inference to save work.
Second, variables that can be statically proven to be
unrelated need not be compared. This saves runtime and
also avoids reporting of coincidentally true but unhelpful
and uninteresting properties. Third, variables which have
not been assigned since the last time an instrumentation
point was encountered can be ignored. Otherwise, they
would contribute to confidence in an invariant even though
no change has occurred (as for a loop-invariant value
repeatedly encountered at a loop head).

10.2 Improving Performance

Some of the techniques for improving relevance, mentioned
immediately above, aid performance by reducing the
number of variables that are considered by the inference
engine. But there are other ways to mitigate combinatorial
blowups (in instrumentation output size, inference time,
and number of results) due to the potentially large numbers
of program points to instrument, variables to examine at
each point, and invariants to check over those variables.

One such approach is to address the granularity of
instrumentation, which affects the amount of data gathered
and, thus, the time required to process it. Inferring loop
invariants or relationships among local variables can
require instrumentation at loop heads, at function calls, or
elsewhere, whereas determining representation invariants
or properties of global variables does not require so many
instrumentation points; perhaps module entry and exit
points would be sufficient. When only a part of the program
is of interest, the whole program need not be instrumented;
in the replace study, we often recomputed invariants over
just a single procedure in order to make invariant detection
complete faster. Similarly, the choice of variables instru-
mented at each program point also affects inference
performance. When some are not of interest, they can be
skipped and variables that cannot have changed since the
last instrumentation point need not be reexamined. Finally,
supplying fewer test cases results in faster runtimes at the
risk of less precise output.

The inference engine can be directly sped up by checking
for fewer invariants; this is particularly useful when a
programmer is focusing on part of the program and is not
interested in certain kinds of properties (say, ternary
functions). Derived variables can likewise be throttled to
save time or increased to provide more extensive coverage.
More complicated derived variables may be added for
complex expressions that appear in the program text;
derived variables or invariants may also involve functions
defined in the program.

Finally, as mentioned earlier, the Daikon implementation
is written in the interpreted, object-oriented language
Python [79] and we have not optimized the implementation
in any significant way. Significant performance improve-
ments appear to be feasible.

10.3 Viewing and Managing Invariants

It may be difficult, perhaps overwhelming, for a program-
mer to sort through a large number of inferred invariants.
This was an issue with replace, in which Daikon reported
dozens of invariants per program point, only some of which
were useful for the particular task. The relevance improve-
ments above should help significantly in this regard.
However, additional tools for viewing and managing the
invariants could also help.

As one example, we developed a tool that retrieves the
variable±value tuples that satisfy or falsify a user-specified
property. As another example, we are considering devel-
oping a text editor that can provide a list of invariants for
the program point or variable at the cursor. A programmer
could also be permitted to filter out classes of invariants.

Ordering the reported invariants according to category or

predicted usefulness could also help a programmer find a

relevant invariant more quickly. The invariant differencing

tool can indicate how a program change has affected the

computed invariants.
Selective reporting of invariants could also improve the

performance of invariant inference. For example, if the user

interface presents invariants on demand, the invariants

could be computed on demand as well. In replace, for

example, the average program point required 220 seconds

of inference time. With an order of magnitude speed

improvement due to implementation in a compiled lan-

guage, combined with filtering of unwanted classes of

invariants, perhaps over one or a few variables, on-demand

inference time could be limited to a few seconds and the

start-up costs for inference would be limited to running the

test cases.

10.4 Richer Invariants

We are pursuing techniques that find and report more

sophisticated invariants. At present, the two most critical

improvements are discovering invariants over pointer-

based recursive data structures, such as linked lists, trees,

and graphs, and computing conditional (and disjunctive)

invariants, such as p � NULL or �p > i. These two improve-

ments are symbiotic, as the trivial example shows. Our

current design for handling pointer-based data structures is

to linearize them, in a variety of ways, during instrumenta-

tion, and then look for invariants over the linearized

sequences. Conditional invariants are detected by splitting

the data trace into two parts, performing invariant inference

over each part, and combining the results. The data can be

split in a number of ways: random and exhaustive splitting

of the traces; exceptions to invariants being tested; splitting

on special values, such as common constants (like zero and

one) or extremal values found earlier; and using static

analysis to identify potential predicates for splitting.

Preliminary results are reported elsewhere [30].

11 CONCLUSIONS

This research demonstrates the feasibility and effectiveness
of discovering program invariants based on execution
traces. This technique automatically detected all the stated

120 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

invariants in a set of formally-specified programs; further-
more, the invariants detected in a C program proved useful
in a software evolution task. The techniques and prototype
implementation are adequately fast when applied to
modest programs.

Working on evolution tasks with programs that we did
not write gave us insights into the strengths and
weaknesses of dynamic invariant detection, the specific
techniques, and the Daikon tool. Moreover, the use of
dynamically inferred invariants qualitatively affected
programmers, encouraging them to think in terms of
invariants where they might otherwise not have. With a
variety of improvements, as discussed in the previous
section, there is significant promise that the approach
could be applicable to the evolution of larger systems.

This promise holds despite the fact that the invariant
detector may discover invariants that are not universally
true for all potential executions. A local static analysis can
reveal useful invariants that are universally true of a
function, no matter how it is used. A whole-program
analysis can discover stronger properties of a function, in
particular, properties that are dependent on the contexts in
which function is called (as discussed in Section 9). A
dynamic invariant detector can report yet stronger invar-
iants that depend on the data sets over which the program
may be run. The ability to achieve the last also admits
invariants that are only true of the particular test suite
chosen and these are not generally discernible by the user
from the other kinds of invariants. Regardless, some
inferred invariants are capable of pointing out flaws in
the test suite and directing its improvement (as discussed in
Section 4).

Focusing on the general task of software evolution as
well as on the task-driven needs of a programmer has led to
effective solutions. For instance, our technique need not
find a complete specification or every interesting invariant,
nor find only interesting or correct invariants. Rather, the
technique must enable a programmer to evolve systems
more effectively than before. This point of view has guided
even the most technical aspects of the research. For instance,
we chose a highly uniform design for the invariant engine,
modeling only scalar integer variables and arrays of those
scalars. All other types must be mapped to these types and
nonvariable entities must be mapped to variables. Although
the choices constrain what invariants the system infers, it
provides useful invariants at an acceptable cost. Focusing
on the software evolution task has also guided choices such
as checking for a fixed set of invariant classes, computing
confidence levels, and even the data we capture during
instrumentation.

The Daikon invariant detector is available at http://
sdg.lcs.mit.edu/~mernst/daikon/.

ACKNOWLEDGMENTS

This is a revised and extended version of a paper that
appeared in ICSE '99 [26].

Aung Thaung performed the analysis of student pro-
grams reported in Section 6. Vibha Sazawal provided
valuable assistance with statistical analysis. Gregg Rother-
mel shared his modified versions of the Siemens test

programs. Many of our colleagues provided comments on

our ideas; we are particularly grateful for the early feedback

of Craig Chambers, Oren Etzioni, Tessa Lau, David

Madigan, and Jared Saia. Greg Badros, Craig Chambers,

Tessa Lau, Todd Millstein, Jon Nowitz, Steve Wolfman, and

the anonymous ICSE '99 and IEEE Transactions on Software

Engineering referees improved this article by critiquing

previous versions. Daniel Jackson, Vass Litvinov, George

Necula, James Noble, and the referees suggested related

work.
This work was supported by the US National Science

Foundation grants CCR-9506779 and CCR-9508745, an

IBM Cooperative Fellowship, and a gift from Edison

Design Group [28]. This research was conducted while

M.D. Ernst and J. Cockrell were at the University of

Washington.

REFERENCES

[1] D. Abramson, I. Foster, J. Michalakes, and R. Socic, ªRelative
Debugging: A New Methodology for Debugging Scientific
Applications,º Comm. ACM, vol. 39, no. 11, pp. 69±77, Nov. 1996.

[2] J.H. Andrews, ªTesting Using Log File Analysis: Tools, Methods
and Issues,º Proc. 13th Ann. Int'l Conf. Automated Software Eng.
(ASE '98), pp. 157±166, Oct. 1998.

[3] N. Bjùrner, A. Browne, and Z. Manna, ªAutomatic Generation of
Invariants and Intermediate Assertions,º Theoretical Computer
Science, vol. 173, no. 1, pp. 49±87, Feb. 1997.

[4] I. Bratko and M. Grobelnik, ªInductive Learning Applied to
Program Construction and Verification,º Knowledge Oriented
Software Design: Extended Papers from the IFIP TC 12 Workshop
Artificial Intelligence from the Information Processing Perspective,
(AIFIPP '92), J. Cuena, ed., pp. 169±182, 1993.

[5] B. Boigelot and P. Godefroid, ªAutomatic Synthesis of Specifica-
tions from the Dynamic Observation of Reactive Programs,º Proc.
Third Int'l Workshop Tools and Algorithms for the Construction and
Analysis of Systems (TACAS '97), pp. 321±333, Apr. 1997.

[6] S. Bensalem, Y. Lakhnech, and H. Saidi, ªPowerful Techniques for
the Automatic Generation of Invariants,º Proc. Eighth Int'l Conf.
Computer Aided Verification (CAV), pp. 323±335, July/Aug. 1996.

[7] M. Blum, ªDesigning Programs to Check Their Work,º Proc. Int'l
Symp. Software Testing and Analysis, T. Ostrand and E. Weyuker,
eds., p. 1, June 1993.

[8] E.C. Chan, J.T. Boyland, and W.L. Scherlis, ªPromises: Limited
Specifications for Analysis and Manipulation,º Proc. 20th Int'l
Conf. Software Eng., pp. 167±176, Apr. 1998.

[9] P.M. Cousot and R. Cousot, ªAutomatic Synthesis of Optimal
Invariant Assertions: Mathematical Foundations,º Proc. ACM
Symp. Artificial Intelligence and Programming Languages, pp. 1±12,
Aug. 1977.

[10] B. Calder, P. Feller, and A. Eustace, ªValue Profiling,º Proc. 27th
Ann. Int'l Symp. Microarchitecture (MICRO-97), pp. 259±269, Dec.
1997.

[11] B. Calder, P. Feller, and A. Eustace, ªValue Profiling and
Optimization,º J. Instruction Level Parallelism, vol. 1, Mar. 1999,
http://www.jilp.org/vol1/.

[12] B.H.C. Cheng and G.C. Gannod, ªAbstraction of Formal Specifica-
tions from Program Code,º Proc. Third Int'l Conf. Tools for Artificial
Intelligence (TAI '91), pp. 125±128, Nov. 1991.

[13] Watch What I Do: Programming by Demonstration, A. Cypher,
D.C. Halbert, D. Kurlander, H. Lieberman, D. Maulsby, B.A.
Myers, and A. Turransky eds., Cambridge, Mass.: MIT Press, 1993.

[14] W.W. Cohen, ªGrammatically Biased Learning: Learning Logic
Programs Using an Explicit Antecedent Description Language,º
Artificial Intelligence, vol. 68, pp. 303±366, Aug. 1994.

[15] J.E. Cook and A.L. Wolf, ªDiscovering Models of Software
Processes from Event-Based Data,º ACM Trans. Software Eng.
and Methodology, vol. 7, no. 3, pp. 215±249, July 1998.

[16] J.E. Cook and A.L. Wolf, ªEvent-Based Detection of Concurrency,º
Proc. ACM SIGSOFT '98 Symp. Foundations of Software Eng., pp. 35±
45, Nov. 1998.

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 121

[17] E.M. Clarke, J.M. Wing, R. Alur, R. Cleaveland, D. Dill, A.
Emerson, S. Garland, S. German, J. Guttag, A. Hall, T. Henzinger,
G. Holzmann, C. Jones, R. Kurshan, N. Leveson, K. McMillan, J.
Moore, D. Peled, A. Pnueli, J. Rushby, N. Shankar, J. Sifakis, P.
Sistla, B. Steffen, P. Wolper, J. Woodcock, and P. Zave, ªFormal
Methods: State of the Art and Future Directions,º ACM Computing
Surveys, vol. 28, no. 4, pp. 626±643, Dec. 1996.

[18] D.R. Chase, M. Wegman, and F.K. Zadeck, ªAnalysis of Pointers
and Structures,º Proc. SIGPLAN '90 Conf. Programming Language
Design and Implementation, pp. 296±310, June 1990.

[19] D.D. Dunlop and V.R. Basili, ªA Heuristic for Deriving Loop
Functions,º IEEE Trans. Software Eng., vol. 10, no. 3, pp. 275±285,
May 1984.

[20] M.B. Dwyer and L.A. Clarke, ªData Flow Analysis for Verifying
Properties of Concurrent Programs,º Proc. Second ACM SIGSOFT
Symp. Foundations of Software Eng. (SIGSOFT '94), pp. 62±75, Dec.
1994.

[21] D.L. Detlefs, ªAn Overview of the Extended Static Checking
System,º Proc. First Workshop Formal Methods in Software Practice,
pp. 1±9, Jan. 1996.

[22] E.W. Dijkstra, A Discipline of Programming. Englewood Cliffs, N.J.:
Prentice-Hall, 1976.

[23] D.L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J.B. Saxe,
ªExtended Static Checking,º SRC Research Report 159, Compaq
Systems Research Center, Dec. 1998.

[24] D. Bruening, S. Devabhaktuni, and S. Amarasinghe, ªSoftspec:
Software-Based Speculative Parallelism,º MIT/LCS Technical
Memo, LCS-TM-606, Apr. 2000.

[25] G. Dromey, Program Derivation: The Development of Programs from
Specifications, Addison-Wesley, 1989.

[26] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin, ªDynami-
cally Discovering Likely Program Invariants to Support Program
Evolution,º Proc. 21st Int'l Conf. Software Eng., pp. 213±224, May
1999.

[27] M.D. Ernst, A. Czeisler, W.G. Griswold, and D. Notkin, ªQuickly
Detecting Relevant Program Invariants,º Proc. 22nd Int'l Conf.
Software Eng., pp. 449-458, June 2000.

[28] Edison Design Group, C++ Front End Internal Documentation,
version 2.28 ed., Mar. 1995, http://www.edg.com.

[29] D. Evans, J. Guttag, J. Horning, and Y.M. Tan, ªLCLint: A Tool for
Using Specifications to Check Code,º Proc. Second ACM SIGSOFT
Symp. the Foundations of Software Eng. (SIGSOFT '94), pp. 87±97,
Dec. 1994.

[30] M.D. Ernst, W.G. Griswold, Y. Kataoka, and D. Notkin,
ªDynamically Discovering Pointer-Based Program Invariants,º
Technical Report UW-CSE-99-11-02, Univ. of Washington, Seattle,
Wash., Nov. 1999.

[31] M.D. Ernst, ªDynamically Discovering Likely Program Invar-
iants,º PhD thesis, Dept. of Computer Science and Eng., Univ. of
Washington, Seattle, Wash., Aug. 2000.

[32] D. Evans, ªStatic Detection of Dynamic Memory Errors,º Proc.
SIGPLAN '96 Conf. Programming Language Design and Implementa-
tion, pp. 44±53, May 1996.

[33] G.C. Gannod and B.H.C. Cheng, ªStrongest Postcondition
Semantics as the Formal Basis for Reverse Engineering,º
J. Automated Software Eng., vol. 3, nos. 1-2, pp. 139±164, June 1996.

[34] G.C. Gannod and B.H.C. Cheng, ªA Specification Matching Based
Approach to Reverse Engineering,º Proc. 21st Int'l Conf. Software
Eng., pp. 389±398, May 1999.

[35] M. Golan and D.R. Hanson, ªDUELÐA Very High-Level
Debugging Language,º Proc. 1993 USENIX Conf., pp. 107±117,
Jan. 1993.

[36] R. Ghiya and L.J. Hendren, ªIs It a Tree, a DAG, or a Cyclic
Graph? A Shape Analysis for Heap-Directed Pointers in C,º Proc.
23rd Ann. ACM SIGPLAN-SIGACT Symp. Principles of Programming
Languages, pp. 1±15, Jan. 1996.

[37] R. Givan, ªInferring Program Specifications in Polynomial-Time,º
Proc. Third Int'l Symp. Static Analysis (SAS '96), pp. 205±219, Sept.
1996.

[38] R.L. Givan Jr., ªAutomatically Inferring Properties of Computer
Programs,º PhD thesis, Mass. Inst. of Technology, Cambridge,
Mass., June 1996.

[39] D. Gries, The Science of Programming, New York: Springer-Verlag,
1981.

[40] R. Gupta, ªA Fresh Look at Optimizing Array Bound Checking,º
Proc. SIGPLAN '90 Conf. Programming Language Design and
Implementation, pp. 272±282, June 1990.

[41] S.M. German and B. Wegbreit, ªA Synthesizer of Inductive
Assertions,º IEEE Trans. Software Eng., vol. 1, no. 1, pp. 68±75,
Mar. 1975.

[42] D. Hamlet, ªRandom Testing,º Encyclopedia of Software Eng., 1994.

[43] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, ªExperiments
on the Effectiveness of Dataflow- and Controlflow-Based Test
Adequacy Criteria,º Proc. 16th Int'l Conf. Software Eng., pp. 191±
200, May 1994.

[44] L.J. Hendren, J. Hummel, and A. Nicolau, ªAbstractions for
Recursive Pointer Data Structures: Improving the Analysis and
Transformation of Imperative programs,º Proc. SIGPLAN '92 Conf.
Programming Language Design and Implementation, pp. 249±260,
June 1992.

[45] R. Hastings and B. Joyce, ªPurify: A Tool for Detecting Memory
Leaks and Access Errors in C and C++ Programs,º Proc. USENIX
Conf., pp. 125±138, Jan. 1992.

[46] C.A.R. Hoare, ªAn Axiomatic Basis for Computer Programming,º
Comm. ACM, vol. 12, no. 10, pp. 576±583, Oct. 1969.

[47] M.J. Harrold, G. Rothermel, R. Wu, and L. Yi, ªAn Empirical
Investigation of Program Spectra,º ACM SIGPLAN/SIGSOFT
Workshop Program Analysis for Software Tools and Eng. (PASTE
'98), pp. 83±90, June 1998.

[48] A.S. Huang, G. Slavenburg, and J.P. Shen, ªSpeculative Disambi-
guation: A Compilation Technique for Dynamic Memory Dis-
ambiguation,º Proc. 21st Ann. Int'l Symp. Computer Architecture,
pp. 200±210, Apr. 1994.

[49] R. Henry, K.M. Whaley, and B. Forstall, ªThe University of
Washington Illustrating Compiler,º Proc. SIGPLAN '90 Conf.
Programming Language Design and Implementation, pp. 223±246,
June 1990.

[50] N.D. Jones, C.K. Gomard, and P. Sestoft, Partial Evaluation and
Automatic Program Generation. Prentice Hall Int'l, 1993.

[51] R. Jeffords and C. Heitmeyer, ªAutomatic Generation of State
Invariants from Requirements Specifications,º Proc. ACM SIG-
SOFT '98 Symp. Foundations of Software Eng., pp. 56±69, Nov. 1998.

[52] R.W.M. Jones, ªA Strategy for Finding the Optimal Data
Placement for Regular Programs,º master's thesis, Dept. of
Computing, Imperial College, 1996.

[53] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U.
Hensel, and H. Tews, ªReasoning About Java Classes,º Object-
Oriented Programming Systems, Languages, and Applications (OOP-
SLA '98), pp. 329±340, Oct. 1998.

[54] M. Karaorman, U. Holzle, and J. Bruno, ªjContractor: A Reflective
Java Library to Support Design by Contract,º Technical Report
TRCS98-31, Univ. of Calif., Santa Barbara, Jan. 1999.

[55] S.C. Kleene, ªRepresentation of Events in Nerve Nets and Finite
Automata,º Automata Studies, Annals of Math. Studies 34,
C.E. Shannon and J. McCarthy, eds., pp. 3±40, 1956.

[56] S. Katz and Z. Manna, ªLogical Analysis of Programs,º Comm.
ACM, vol. 19, no. 4, pp. 188±206, Apr. 1976.

[57] P. Kolte and M. Wolfe, ªElimination of Redundant Array
Subscript Range Checks,º Proc. SIGPLAN '95 Conf. Programming
Language Design and Implementation, pp. 270±278, June 1995.

[58] N.G. Leveson, S.S. Cha, J.C. Knight, and T.J. Shimeall, ªThe Use of
Self Checks and Voting in Software Error Detection: An Empirical
Study,º IEEE Trans. Software Eng. vol. 16, no. 4, pp. 432±443, 1990.

[59] S.-W. Liao, A. Diwan, R.P. Bosch, Jr., A. Ghuloum, and M.S. Lam,
ªSUIF Explorer: An Interactive and Interprocedural Parallelizer,º
Proc. Seventh ACM SIGPLAN Symp. Principles and Practice of Parallel
Programming (PPOPP '99), pp. 37±48, May 1999.

[60] B. Liskov and J. Guttag, Abstraction and Specification in Program
Development. Cambridge, Mass.: MIT Press, 1986.

[61] R. Lencevicius, U. HoÈ lzle, and A.K. Singh, ªQuery-Based
Debugging of Object-Oriented Programs,º Proc. Conf. Object-
Oriented Programming, Systems, Languages, and Applications,
pp. 304±317, Oct. 1997.

[62] K.R.M. Leino and G. Nelson, ªAn Extended Static Checker for
Modula-3,º Proc. Compiler Construction: Seventh Int'l Conf. (CC '98),
pp. 302±305, Apr. 1998.

[63] W. Landi and B.G. Ryder, ªA Safe Approximate Algorithm for
Interprocedural Pointer Aliasing,º Proc. SIGPLAN '92 Conf.
Programming Language Design and Implementation, pp. 235±248,
June 1992.

[64] T.M. Mitchell, Machine Learning. McGraw-Hill Series in Computer
Science, Boston, Mass.: WCB/McGraw-Hill, 1997.

122 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 27, NO. 2, FEBRUARY 2001

[65] G. Naumovich, L.A. Clarke, L.J. Osterweil, and M.B. Dwyer,
ªVerification of Concurrent Software with FLAVERS,º Proc. 19th
Int'l Conf. Software Eng., pp. 594±595, May 1997.

[66] A. Nicolau, ªRun-Time Disambiguation: Coping with Statically
Unpredictable Dependencies,º IEEE Trans. Computers, vol. 38,
no. 5, pp. 663±678, May 1989.

[67] G.C. Necula and P. Lee, ªThe Design and Implementation of a
Certifying Compiler,º Proc. ACM SIGPLAN '98 Conf. Programming
Language Design and Implementation, pp. 333±344, June 1998.

[68] R. O'Callahan and D. Jackson, ªLackwit: A Program Under-
standing Tool Based on Type Inference,º Proc. 19th Int'l Conf.
Software Eng., pp. 338±348, May 1997.

[69] F. Pfenning, ªDependent Types in Logic Programming,º Types in
Logic Programming, F. Pfenning, ed., chapter 10, pp. 285±311, 1992.

[70] J.R. Quinlan, ªLearning Logical Definitions from Relations,º
Machine Learning, vol. 5, pp. 239±266, 1990.

[71] T. Reps, T. Ball, M. Das, and J. Larus, ªThe Use of Program
Profiling for Software Maintenance with Applications to the Year
2000 Problem,º Proc. Sixth European Software Eng. Conf. and Fifth
ACM SIGSOFT Symp. Foundations of Software Eng. (ESEC/FSE '97),
pp. 432±449, Sept. 1997.

[72] G. Rothermel and M.J. Harrold, ªEmpirical Studies of a Safe
Regression Test Selection Technique,º IEEE Trans. Software Eng.,
vol. 24, no. 6, pp. 401±419, June 1998.

[73] D.S. Rosenblum, ªA Practical Approach to Programming with
Assertions,º IEEE Trans. Software Eng., vol. 21, no. 1, pp. 19±31,
Jan. 1995.

[74] B. Su, S. Habib, W. Zhao, J. Wang, and Y. Wu, ªA Study of Pointer
Aliasing for Software Pipelining Using Run-Time Disambigua-
tion,º Proc. 27th Ann. Int'l Symp. Microarchitecture (MICRO-97),
pp. 112±117, Nov./Dec. 1994.

[75] N. Suzuki and K. Ishihata, ªImplementation of an Array Bound
Checker,º Proc. Fourth Ann. ACM Symp. Principles of Programming
Languages, pp. 132±143, Jan. 1977.

[76] M. Sagiv, T. Reps, and R. Wilhelm, ªParametric Shape Analysis
via 3-Valued Logic,º Proc. 26th Ann. ACM SIGPLAN-SIGACT
Symp. Principles of Programming Languages, pp. 105±118, Jan. 1999.

[77] A. Sodani and G.S. Sohi, ªAn Empirical Analysis of Instruction
Repetition,º Architectural Support for Programming Languages and
Operating Systems (ASPLOS-VIII), pp. 35±45, Oct. 1998.

[78] Y.M. Tan, ªFormal Specification Techniques for Promoting Soft-
ware Modularity, Enhancing Documentation, and Testing Speci-
fications,º Technical Report MIT/LCS/TR-619, Mass. Inst. of
Technology, Laboratory for Computer Science, June 1994.

[79] G. van Rossum, Python Reference Manual, 1.5 ed., Dec. 1997.
[80] M. Vaziri and G. Holzmann, ªAutomatic Detection of Invariants

in Spin,º SPIN 98: Papers from the Fourth Int'l SPIN Workshop, Nov.
1998.

[81] M.P. Ward, ªProgram Analysis by Formal Transformation,º The
Computer J., vol. 39, no. 7, pp. 598±618, 1996.

[82] H. Wasserman and M. Blum, ªSoftware Reliability via Run-Time
Result-Checking,º J. ACM, vol. 44, no. 6, pp. 826±849, Nov. 1997.

[83] M. Ward, F.W. Calliss, and M. Munro, ªThe Maintainer's
Assistant,º Proc. Int'l Conf. Software Maintenance, pp. 307±315,
1989.

[84] B. Wegbreit, ªThe Synthesis of Loop Predicates,º Comm. ACM,
vol. 17, no. 2, pp. 102±112, Feb. 1974.

[85] R.P. Wilson and M.S. Lam, ªEfficient Context-Sensitive Pointer
Analysis for C Programs,º Proc. SIGPLAN '95 Conf. Programming
Language Design and Implementation, pp. 1±12, June 1995.

[86] H. Xi and F. Pfenning, ªEliminating Array Bound Checking
Through Dependent Types,º Proc. ACM SIGPLAN '98 Conf.
Programming Language Design and Implementation, pp. 249±257,
June 1998.

[87] H. Xi and F. Pfenning, ªDependent Types in Practical Program-
ming,º Proc. 26th Ann. ACM SIGPLAN-SIGACT Symp. Principles of
Programming Languages, pp. 214±227, Jan. 1999.

[88] C. Zenger, ªIndexed Types,º Theoretical Computer Science, vol. 187,
pp. 147±165, 1997.

Michael D. Ernst holds the SB and SM degrees
from the Massachusetts Institute of Technology.
He received the PhD degree in computer
science and engineering from the University of
Washington, prior to which he was a lecturer at
Rice University and a researcher at Microsoft
Research. He is an assistant professor in the
Department of Electrical Engineering and Com-
puter Science and in the Laboratory for Compu-
ter Science at the Massachusetts Institute of

Technology. His primary technical interest is programmer productivity,
encompassing software engineering, program analysis, compilation,
and programming language design. However, he has also published in
artificial intelligence, theory, and other areas of computer science.

Jake Cockrell received the BS degree in computer science from the
University of Virginia and the MS degree in computer science and
engineering from the University of Washington. He currently works at
Macromedia as an engineer on the Dreamweaver team.

William G. Griswold received the BA degree in
mathematics from the University of Arizona in
1985 and the PhD degree in computer science
from the University of Washington in 1991. He is
an associate professor in the Department of
Computer Science and Engineering at the
University of California, San Diego. He is on
the program committee for the 2000 Interna-
tional Conference on Software Engineering, an
associate editor for IEEE Transactions on Soft-

ware Engineering, and an officer of ACM SIGSOFT. His research
interests include software evolution and design, software tools, and
program analysis. He is a member of the IEEE and the IEEE Computer
Society.

David Notkin received the ScB degree at Brown
University in 1977 and the PhD degree at
Carnegie Mellon University in 1984. He is the
Boeing Professor of computer science and
engineering at the University of Washington.
Dr. Notkin received the US National Science
Foundation Presidential Young Investigator
Award in 1988, served as the program chair of
the First ACM SIGSOFT Symposium on the
Foundations of Software Engineering, served as

program cochair of the 17th International Conference on Software
Engineering, chaired the steering committee of the International
Conference on Software Engineering (1994-1996), served as charter
associate editor of both ACM Transactions on Software Engineering and
Methodology and the Journal on Programming Languages, serves as an
associate editor of the IEEE Transactions on Software Engineering, was
named as an ACM Fellow in 1998, serves as the chair of ACM
SIGSOFT, and received the 2000 University of Washington Distin-
guished Graduate Mentor Award. His research interests are in software
engineering in general and in software evolution in particular. He is a
member of the IEEE Computer Society.

ERNST ET AL.: DYNAMICALLY DISCOVERING LIKELY PROGRAM INVARIANTS TO SUPPORT PROGRAM EVOLUTION 123

