
  

Cork: Dynamic Memory Leak 
Detection for Garbage-
Collected Languages

Aaron Brown
Colin Kern

4/24/2007



  

Outline

● Motivation
– Memory Management Errors

– Garbage Collectors

● Solution: Cork
– Type Points-From Graphs

– Detecting Heap Growth

– Correlating to Data Structures

– Efficiency and Scalability 



  

Outline

● Results
– Case Studies

– Effect of Parameters

– Overhead

● Related Work
● Conclusions



  

Motivation: Memory 
Management Errors

● Three types of errors occur with explicit 
memory management
– Dangling pointers

– Lost pointers

– Unnecessary references



  

Motivation: Dangling Pointers

● Data being pointed to is freed
● Pointer is dereferenced

int main()
{

int* x;
x = malloc(sizeof(int));
*x = 5;
free(x);           //x is now a dangling pointer
printf(“%d”, *x);  //ERROR

}



  

Motivation: Lost Pointers

● All pointers pointing to heap data are 
removed, but the data was not freed.

int main()
{

int *x, *y, *z;
x = malloc(sizeof(int));
y = x;
*x = 5;
z = malloc(sizeof(int));
x = y = z;     //The memory x and y pointed to still

                 //exists.
}



  

Motivation: Unnecessary 
References

● Pointers and memory are kept for data 
that is not used again.

● A type of memory leak.

int main()
{

int *x;
x = malloc(sizeof(int));
*x = 5;
printf(“%d”, *x);
...            //The program continues, but x is not

                 //used again.
}



  

Motivation: Garbage Collection

● Garbage collection:

– Fixes dangling pointers

– Fixes lost pointers

– DOES NOT FIX unnecessary references.
● Memory leaks cause performance degradation 

and possible crashing.



  

Approach: Cork

Garbage Collector

Generate TPFG

Heap
State

Dynamic Object
Graph

Detect Heap Growth

Identify
Type and Data Structure

Candidates



  

Dynamic Object Graph

● Generated by garbage collector
● Node: A data object allocated in the heap
● Edge: A pointer from one object in the 

heap to another object.

H1

B1 N1

C1 C2 C3P1 P2 P3 P4



  

TPFG Generator

● TPFG: Type Points-From Graph

● Node: A type defined by the program

– The number indicates the amount of space of all currently 
dynamically allocated objects of this type.

● Edge: Indicates one type being referenced by another 
type

– The number indicates the amount of space of all the objects 
being referenced.

H:256

B:256

N:256

C:192

P:128 P|N:64
P|H:128

C|H:192

C|B:128

C|N:64



  

Advantages of TPFG

● Minimizes cost by building during the 
scanning phase of garbage collection.

● Uses volume instead of simple counters.
– Helps to detect array growth when the 

number of arrays does not change.

● Using volume also causes larger types to 
be weighted heavier that smaller types.  
– Is this good?



  

Detecting Heap Growth

● TPFG produced each time the garbage 
collector executes.

● Differences between consecutive TPFGs 
are analyzed.

● Types that are growing are considered 
candidate leaks.

● Candidates are ranked using the Ratio 
Ranking Technique (RRT).



  

Heap Growth Example



  

Ratio Ranking Technique

● Ranks according to ratio of volumes 
between two consecutive TPFGs.

● Uses a threshold value to choose 
candidate leaks.

● Uses a decay factor, 0 < f < 1, to adjust 
for jitter.



  

Correlating Data Structures and 
Allocation Sites

● Cork attempts to correlate growing nodes 
and edges in the TPFGs with
– The corresponding type

– The data structure containing that type

– The location where the structure was 
allocated

● To do this, Cork produces “slices” of the 
TPFG.



  

Generating a Slice

● Start at a 
candidate node

● Follow growing 
edges

● Stop when the 
current node is not 
growing and there 
are no growing 
edges leaving the 
node



  

Efficiency and Scalability

● Cork only needs to keep the previous 4 
TPFGs to be accurate.

● Cork uses the TIB (Type Information 
Block).  TIB or an equivalent structure is 
required by Java and C#.

● In theory, the number of edges in a TPFG 
grows quadratically, but in practice it is 
linear.



  

Cork in Other Collectors

● Cork is compatible with any scanning 
collector.

● Cork performs its analysis only when the 
entire heap is scanned.

● If the entire heap is never scanned, Cork 
can combine data from multiple scans as 
long as the combined data considers the 
entire heap.



  

Cork in Other Languages

● Cork is designed to work with 
polymorphically typed languages
– Java, C#

● Cork could be modified to use other types 
of languages
– Other methods would be required to track 

global type information

– This would increase the overhead of Cork



  

Outline

● Results
– Case Studies

– Effect of Parameters

– Overhead

● Related Work
● Conclusions



  

Methodology

● Implementation
– Used the MMTk

● Memory Management Toolkit
● Allows the testing of new garbage collection 

algorithms

– Ran under Jikes RVM
● Research Virtual Machine
● Testbed for VM technologies



  

Empirical Questions

● Can Cork be used to successfully find 
bugs?

● Is the overhead low enough to be 
generally deployable?

● How do the parameters affect Cork?



  

Case Study – FOP

● FOP
– Renders XSL-FO documents

– 150k lines of code

● Problem
– Excessive heap usage



  

Case Study – FOP

● Cork Reports
– Leak report points to the ArrayList object



  

Case Study – FOP

● Cork Reports
– ArrayList Slice Report and Allocation Sites 

report narrow the search



  

Case Study – FOP

● Observations
– Heap growth was not a memory leak

● Side-effect of XSL-FO specification
● Developers concurred with the analysis



  

Case Study – SPECjbb2000

● SPECjbb2000
– Business Middleware Benchmark

– Emulates a 3-tier system with the bulk of the 
benchmark handling the middleware portion

– ~30k Lines of code

● Problem
– Known memory leak



  

Case Study – SPECjbb2000

● Cork Slice Report



  

Case Study – SPECjbb2000

● Observations
– Orders added to Btree, never removed

● Time to Fix
– 1 day of work to find and fix the bug



  

Case Study – Eclipse

● Eclipse
– IDE/Software Framework/Kitchen Sink

– ~2 Million Lines of code

● Problem
– Unresolved memory leak

– Bug #115789

● Wrote a script to induce the memory leak



  

Case Study – Eclipse

● Cork Slice Report



  

Case Study – Eclipse

● Observations
– Homegrown reference counting 

implementation

● Time to Fix
– 3.5 days of work to find and fix the bug

– The authors weren't familiar with the 
codebase



  

Overhead

● Ran a series of 15 benchmarks
– SPECjvm, DaCapo, SPECjbb2000, Eclipse

● Performance Overhead
– 1.4-4% longer execution on average

– The worst case saw ~18% longer execution 
time

● Space Overhead
– 0.145% extra heap usage on average

– The worst case saw 0.5% extra heap usage



  

Effect of Threshold Parameters

Threshold: 0/50 0% 10% 25% 50% 0% 10% 25% 50%
False Positives 930 443 213 89 176 42 8 1
False Negatives 0 0 0 0 0 0 0 2
Correct 7 7 7 7 7 7 7 4

Threshold: 100/200 0% 10% 25% 50% 0% 10% 25% 50%
False Positives 102 13 0 0 67 3 0 0
False Negatives 0 0 0 5 0 0 1 5
Correct 7 7 7 2 7 7 6 2

● Tunes Cork's sensitivity to different 
patterns in heap usage

● If too low, it will generate false positives
● If too high, it will miss leaks



  

Effect of Decay Factor

0% 5% 10% 15% 20% 25%
False Positives 0 0 0 0 0 2
False Negatives 5 0 0 0 0 0
Correct 2 7 7 7 7 7

● Prevents CORK from missing objects due 
to temporary decreases in growth in an 
otherwise growing heap usage

● If too low, it will miss valid leaks
● If too high, it will generate false positives



  

Other Approaches

● Compile-time analysis
– Can be used to find double frees and missing 

frees

– Heine and Lam, 2003

● Offline analysis
– Heap differencing

● De Pauw, et al., 1998, De Pauw, et al., 2000

– Allocation tracking
● Hastings and Joyce 1992, Serrano and Baum 

2000, Shaham, et al. 2000, Campan, et al. 2002



  

Other Approaches

● Online analysis
– Expected lifetime tracking

● Qin et al. 2002

– Tracking object “staleness”
● Chilimbi and Hauswirth 2004, Bond and McKinley 

2006

● Leakbot
– Online leak detection system that analyzes 

an application's heap on a separate processor

–  Mitchell and Sevitzky 2003, Gupta and 
Palanki 2005



  

Conclusions

● Cork is a low-overhead memory leak 
detector
– Could be deployed on production applications

● Effectively identifies the source of the 
leak
– Few false positives if configured properly


