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Abstract

Model checking has proven to be an effective technology
for verification and debugging in hardware and more re-
cently in software domains. With the proliferation of multi-
core architectures and a greater emphasis on distributed
computing, model checking is an increasingly important
software quality assurance technique that can complement
existing testing and inspection methods.

We believe that recent trends in both the requirements for
software systems and the processes by which systems are de-
veloped suggests that domain-specific model checking en-
gines may be more effective than general purpose model
checking tools. To overcome limitations of existing tools
which tend to be monolithic and non-extensible, we have
developed an extensible and customizable model checking
framework called Bogor. In this article, we summarize how
Bogor provides direct support for modeling object-oriented
designs and implementations, how its modeling language
and algorithms can be extended and customized to create
domain-specific model checking engines, and how Bogor
can be deployed in broader software development context
contexts in conjunction with complementary quality assur-
ance techniques.

1. Motivation

Temporal logic model checking [11] is a powerful frame-
work for reasoning about the behavior of computing sys-
tems. Model checkers exhaustively check a finite-state
model of a system for violations of a system requirement
formally specified as a formula in some temporal logic (e.g.,
Linear Temporal Logic (LTL) [37]), as an automata, or as
a collection of assertions. The system model may be con-
structed by hand or derived automatically from other arti-
facts such as source code, executables, or higher-level de-
signs using various abstraction techniques. Model checking
has been so successful in the hardware domain that virtually
all major chip manufacturers employ it as a central part of
the quality assurance process.
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In recent years, the use of model checking has been
growing in the software domain and it has been been ap-
plied, in various forms, to reason about a wide-variety of
software artifacts. For example, model checking frame-
works have been applied to reason about software process
models (e.g., [33]), different families of software require-
ments models (e.g., [8]), architectural frameworks (e.g.,
[24]), design models, (e.g., [26]), and system implemen-
tations (e.g., [4, 7, 12, 25]).

Several additional factors are driving interest in using
model checking to complement existing software quality
assurance techniques. The widespread use of concurrency
primitives in programming languages like Java and C#, the
proliferation of multicore processors, and the growing de-
pendence on large-scale distributed computing applications
means that the vast majority of programmers will be pro-
gramming in concurrent/multi-threaded settings. The po-
tential of model checking technology for: (a) detecting cod-
ing flaws that are hard to detect using existing quality assur-
ance methods (e.g., such as bugs that arise from unantici-
pated interleavings in concurrent and distributed programs),
and (b) verifying that system models and implementations
satisfy crucial temporal properties and other light-weight
specifications has led a number of international corpora-
tions and government research labs such as Microsoft [4],
IBM [5], Lucent [25], NEC [32], NASA [7], and Jet Propul-
sion Laboratories (JPL) [29] to fund their own software
model checking projects.

1.1. Trends that motivate domain-specific
model checking

The effectiveness of the software model checking ap-
plications cited above has in most cases relied on the fact
that the researchers applying model checking had a detailed
knowledge of the model checking tool being applied and
understood very clearly (perhaps as the result of extensive
experimentation) how to (a) map the problem being mod-
eled to the tool in a manner that would draw on the strengths
of the tool, and (b) how to configure the tool for optimal
performance. In some cases, researchers were not satisfied



with the results of mapping their problem to an available
configuration of an existing tool, and they found it nec-
essary to study an existing model checking framework in
detail in order to customize it [8, 13]. In other cases, re-
searchers had the insight that they needed to develop a new
framework targeted to the semantics of a family of artifacts
(e.g., Java programs [7]) or a specific domain (e.g., device
drivers [4]).

We believe there are a number of trends both in the re-
quirements of computing systems and in the processes by
which they are developed that will drive persons and orga-
nizations interested in applying model checking technology
to rely increasingly on customization/adaptation of exist-
ing tool frameworks or construction of new model checking
tools.

e Model-driven development: Increasing emphasis on
using a rich collection of interlinked models at a va-
riety of levels of abstraction for not only software de-
sign but also software implementation will drive re-
searchers to look beyond model checkers with fixed
input languages that target a single level of abstrac-
tion. Current technology allows model checking to be
applied at the source code and byte code (or machine
code) level as well as higher level models — but for the
most part, different tools with different characteristics
are used for these different levels of abstraction. We
envision a single integrated framework in which arti-
facts at all levels of abstraction are checkable, in which
relationships such as refinement/conformance are es-
tablished by model checking collections of artifacts at
different levels of abstraction, and in which verifica-
tion models are formed by composing: (a) analyzable
models from which code is automatically generated,
(b) manually written source that was not amenable
to auto-generation, and (c) high-level specifications of
cross-cutting aspects such as synchronization or event
delivery policies.

o Product-line architectures and reusable middle-
ware infrastructure: Large-scale distributed systems
are increasingly built on top of middleware frame-
works such as CORBA and .NET and use software
product-line architectures that encourage the reuse of
software components and infrastructure across appli-
cations. The size (often 100’s of thousands of lines of
code) and the complexity of this infrastructure (which
often contains extensive use of object-oriented de-
sign patterns and complex heap structures) will make
it difficult to apply existing techniques for model-
extraction from source code, but the high degree of
reuse of this infrastructure will make it feasible to con-
struct custom-built verification model components and
checking engines that are tailored to those frameworks.

Moreover, as greater automation is sought in develop-
ment and validation processes, developers will have
a greater difficulty applying general purpose model
checking tools which require a higher degree of con-
figuration and interaction, and product-line architects
will increasingly seek to reduce developer involvement
by building model checking infrastructure that is dedi-
cated to a particular software architecture, domain, and
development process.

Synergistic blending of automated quality assur-
ance techniques: Each quality assurance technique
has certain strengths and weaknesses. Static analyses
achieve full coverage and scale well but are limited to
a particular set of properties and generates false alarms
due to approximations inherent in each analysis. Test-
ing is flexible and well-understood, but creating test
cases is burdensome and achieving desired coverage
levels (especially for concurrent programs) is often
difficult. Run-time monitoring and dynamic analy-
sis are highly precise methods, but introduce over-
head and only cover execution paths associated with
particular program runs. Model-checking techniques
provide coverage of concurrent behaviors and sched-
uler non-determinism but suffer from scalability prob-
lems. Symbolic execution can provide property check-
ing without test cases and generate path conditions and
test cases, but also suffers from scalability issues and
cannot deal well with concurrency.

There is expanding interest in exploring how these
techniques can be synergistically integrated. For
example, dynamic analysis techniques can discover
likely invariant properties concerning aliasing, lock-
ing, and object-ownership that would be burdensome
to specify manually, and soundness of these proper-
ties (realized as program-level annotations) can be es-
tablished with complete coverage using static analysis
[1]. Model checking engines can be used on very ab-
stract program models to generate test plans for model-
driven testing [38]. Statically-computed object “es-
cape” and points-to information can be used to drive
partial-order optimizations in model checking [18].
These integrations benefit from the ability to “open
up” tool internals and thereby enable direct interaction
with the primary model checking data structures and
algorithms.

Sheer variety of application domains and compu-
tation models: As software is embedded in an ever
broadening range of devices and as software increases
in scale, verification experts will increasingly move
away from general purpose solutions as they seek to
achieve scalability by developing search algorithms,
state-storage approaches, and model reduction strate-



gies that leverage properties of a particular domain.
For example, we have observed that reduction meth-
ods designed for a particular application domain (e.g.,
Java programs) may be ineffective for a different appli-
cation domain such as avionics systems where timing
issues play a greater role. Conversely, we have found
that the specialized quasi-cyclic structure of compu-
tation in a certain class of avionics systems enables
dramatic optimizations in state space search and state
storage strategies that are customized for this particu-
lar domain [14, 19].

Thus, there is a need for model checking tools that sup-
port customization and extensibility that are easily embed-
ded or encapsulated in larger development tools, and that
can be flexibly arranged in the workflow of realistic soft-
ware development processes. Existing model checkers, in-
cluding widely used tools such as SPIN [29], FDR2 [22],
and NuSMV [10], are designed to support a fixed input
language using a fixed collection of state-space represen-
tation, reduction and exploration algorithms. The capabili-
ties of these tools has evolved over time, but that evolution
has been limited to the capabilities that the tool developer
themselves found useful or desirable. Moreover, most ex-
isting tools do not provide direct support for features found
in object-oriented software systems. Recent versions of the
SPIN model checker allow one to include C source directly
in the Promela modeling language. Even though this does
allow for a degree of extensibility, one might hope for more
comprehensive extensibility mechanisms that are part of the
overall design of the model checking framework.

While it is possible to continue the practice of cannibal-
izing and modifying existing model checkers, or building
new model checkers from scratch, the level of knowledge
and effort required for such activities currently prevents
many domain experts who are not necessarily experts in
model checking from successfully applying model check-
ing to software analysis. Even though experts in differ-
ent areas of software engineering have significant domain
knowledge about the semantic primitives and properties of
families of artifacts that could be brought to bear to pro-
duce cost-effective semantic reasoning via model checking,
in order to make effective use of model checking technol-
ogy these experts should not be required to build their own
model checker or to pour over the details of an existing
model checker implementation while carrying out substan-
tial modifications.

2. Bogor: a customizable and extensible frame-
work

To meet the challenges of using model checking in the
context of current trends in software development outlined

above, we have constructed an extensible and highly mod-
ular explicit-state model checking framework called Bo-
gor [39, 43]. Using Bogor, we seek to enable more effective
incorporation of domain knowledge into verification mod-
els and associated model checking algorithms and optimiza-
tions, by focusing on the following principles.

e Direct Support of Object-Oriented Languages: Bo-
gor provides a rich base modeling language including
features that allow for dynamic creation of objects and
threads, garbage collection, virtual method calls and
exception handling. For these primitives, we have ex-
tended Bogor’s default algorithms to support state-of-
the-art model reduction/optimization techniques that
we have developed [18, 40] for object-oriented soft-
ware that use existing techniques such as collapse com-
pression [29], heap symmetry [30], thread symme-
try [6], and partial-order reductions.

o Extensible Modeling Language: Bogor’s modeling
language can be extended with new primitive types,
expressions, and commands associated with a partic-
ular domain (e.g, multi-agent systems, avionics, and
security protocols) and a particular level of abstraction
(e.g., design models, source code, and byte code)

e Open Modular Architecture:  Bogor’s well-
organized module facility allows new algorithms (e.g.,
for state-space exploration, and state storage) and new
optimizations (e.g., heuristic search strategies, and
domain-specific scheduling) to be easily swapped in
to replace the default model checking algorithms.

e Design for Encapsulation: Bogor is written in Java
and comes wrapped as a plug-in for Eclipse — an open
source and extensible universal tool platform from
IBM. This allows Bogor to be deployed as a stand-
alone tool with a rich graphical user interface and a va-
riety of visualization facilities, or encapsulated within
other development or verification tools for a specific
domain.

e Pedagogical Materials: Even with a tool that is de-
signed for extensibility, creating customizations re-
quires a significant amount of knowledge about the in-
ternal architecture. To communicate this knowledge,
we have developed an extensive collection of tutorial
materials and examples. Moreover, we believe that
Bogor is an excellent pedagogical vehicle for teaching
foundations and applications of model checking be-
cause it allows students to see clean implementations
of basic model checking algorithms and to easily en-
hance and extend these algorithms in course projects.
Accordingly, we have developed a comprehensive col-
lection of course materials [44] that have already been



used in graduate level courses on model checking at
several institutions.

In short, Bogor aims to be not only a robust and feature-
rich software model checking tool that handles the lan-
guage constructs found in modern large-scale software sys-
tem designs and implementations, it also aims to be a model
checking framework that enables researchers and engineers
to create families of domain-specific model checking en-
gines.

3. Bogor’s support for object-oriented lan-
guage features

Bogor checks systems specified in a revised version of
the Bandera Intermediate Representation (BIR) [31]. The
previous version of BIR was designed to be an intermedi-
ate language used by our Bandera tool set [12] for translat-
ing Java programs to the input languages of existing model
checkers such as SPIN. Thus, this earlier version provided
direct support for modeling Java features such as threads,
Java locks (supporting wait/notify), and a bounded form of
heap allocation. To facilitate the construction of translators
to back-end model checkers like SPIN, BIR control-flow
and actions are stated in a guarded command format which
is quite close to the format used to specify systems in model
checker input languages like Promela.

Our experience with Bandera and other tools such as
JPF [7] and dSpin [13] has led us to conclude that soft-
ware model checking can be more effectively supported by
a new infrastructure that has at its core an extensible model
checker that is designed to support software directly rather
than relying on translations to model checkers that do not
provide direct support for modeling many of the language
features found in modern software. As part of this transi-
tion to a new infrastructure, we have revised the definition
of BIR to include a number of new features such as the BIR
extension mechanism, generic types and polymorphic func-
tions, type-safe function pointers, virtual function/method
tables, and exceptions.

BIR comes in two flavors: a higher-level language with
structured control-flow statements often used in hand-coded
models, and a lower-level language with explicit control lo-
cations and explicit control successors (e.g., specified with
goto statements) often used as the target of automatic model
compilers.

Figure 1 provides a simple list-manipulating system that
illustrates features of high-level BIR.

e Lines 3 and 8 illustrate the use of BIR records to repre-
sent the data portions of objects. Object (line 3) repre-
sents the top element in an object inheritance hierarchy
and includes no fields. ListNode (lines 8 extends Ob-
ject to add fields used to form a linked list.
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ystem LanguageFeatures

record Object {}

throwable record NullPointerException {}
throwable record lllegalArgumentException {}

record ListNode extends Object {
ListNode next;
int data;

}

function createNode(int data, ListNode tail)
returns ListNode {
ListNode n;

n := new ListNode;
n.data := data;
n.next := tail;
return n;

}

function sumAllElementsOver5(ListNode head)
returns int {
int firstElementData;
int total;

// provoke NPE if bad parameter passed in
firstElementData := head.data;

/] iterative loop...
while head != null do
head := head.next;

// guarded choice

choose
when <head.data > 5> do
total := total + head.data;
else do skip;
end
end

return total;

}

active thread MAIN() {
NullPointerException npe;
IllegalArgumentException iae;

ListNode n;
int length;
try
/] first a call that succeeds
length := sumAllElementsOver5 (
createNode (
5,
createNode (
7

null)));

// now provoke an exception that’s handled below

length := sumAllElementsOver5(null);
catch (IlllegalArgumentException iae)
skip ;
catch (NullPointerException npe)
skip;
end

}

Figure 1. lllustration of High-level BIR Lan-
guage Features
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function sumAllElementsOver5(ListNode head)
returns int {

int firstElementData;

int total;
boolean temp$0;
int temp$1;
loc locO:
do {
firstElementData := head.data;
} goto loct;
loc loc1:
do {
temp$0 := head != null;
} goto loc2;
loc loc2:
when temp$0 do {
} goto loc3;
when !(temp$0) do {
} goto loc10;
loc loc3:
do {
head := head.next;
} goto loc4;
loc loc4:
when head.data > 5 do invisible {
} goto loc5;
when !((head.data > 5)) do invisible {
} goto loc8;
loc loc5:
do {
temp$1 := head.data;
} goto loc6;
loc loc6:
do {
total := total + temp$1;

} return total;

}

Figure 2. lllustration of Low-level BIR Lan-
guage Features

e Lines 5 and 6 illustrate the use of BIR records to imple-
ment the data portion of an exception (in these cases,
the exceptions contain no data fields).

e Lines 13-21 and Lines 23-44 define functions creat-
eNode and sumAllElementsOver5. createNode il-
lustrates the dynamic creation of a list node. sumaAl-
|[ElementsOver5 uses several high-level control con-
structs.

e The system main thread at lines 46—69 illustrates the
use of BIR’s exception mechanism.

Figure 2 presents low-level BIR corresponding to the defini-
tion of sumAllElementsOver5 in Figure 1. High-level and
low-level BIR can be freely mixed within a program model.

In contrast to the input languages used in almost all
other model checkers (including SPIN [29], NuSMV [10],
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extension Set for myPackage.SetModule {
// declare a new type identifier (Set.type)
typedef type <’a>;

// create a set with zero or more elements
expdef Set.type<’a> create<’a>('a ...);

// non—deterministically choose an element
expdef ’a chooseElement<’a>(Set.type <’a>);

// check for emptiness
expdef boolean isEmpty <’a>(Set.type <’a>);

/! check predicate over all elements

expdef boolean forAll <’a>('a —> boolean, Set.type<’a>);

// add an element to a set

actiondef add<’a>(Set.type<’a>, ’'a);

// remove an element from a set
actiondef remove<’a>(Set.type<’a>, ’'a);

}

Figure 3. Bogor Set Extension Declaration
(excerpts)

SLAM [3], and BLAST [28]), BIR supports unbounded dy-
namic creation of both thread and heap objects with auto-
matic reclamation by garbage collection. Moreover, BIR
provides a state-of-the-art canonical heap representation
that seems essential for effective checking of highly dy-
namic concurrent software systems. Such systems generate
many heap instances that differ in the relative position of al-
located objects but that are actually observationally equiva-
lent (i.e., the heap instances can not be distinguished by any
Java memory operations). Due to positional differences of
object placement in heaps, conventional representations of
heaps as, for example, arrays of memory cells would yield
different states for these heaps. However, Bogor’s canonical
heap representation (based on work by Iosif on dSpin [13])
ensures that heaps that are observationally equivalent map
to the same state. This dramatically reduces the number of
states generated when checking highly dynamic systems.

4. Bogor’s extensible modeling language

Bogor’s extension facility allows modelers to add new
types, expressions, and commands to the base modeling lan-
guage. To create an extension, one first writes an extension
declaration that specifies the new symbols and associated
arities to be introduced into the name-spaces for types, ex-
pressions, and actions. Next, a Java package is written to
implement the semantics of each of the new types, expres-
sions, and actions specified in the extension declaration.

For example, Figure 3 illustrates an extension declara-
tion for a set abstract data type. Line 1 gives the name of the
extension (Set) and the name of the Java package that con-
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// declare some record types representing two kinds
/1 of resources

record Resource { boolean isFree; }

record Disk extends Resource { }

record Display extends Resource { }

// declare a resource pool represented as a set
Set.type<Resource> resourcePool;

// declare a resource variable
Resource resource;

loc loc1:

do { // create the pool and creates two processes
resourcePool := Set.create<Resource>
(new Disk, new Disk, new Display);
} goto loct;

loc loc2: live {resource}
when | Set.isEmpty<Resource>(resourcePool)
do { // choose an element and remove it
resource := Set.choose<Resource>
(resourcePool);
Set.remove<Resource >(resourcePool ,
resource);
} goto loc3;

loc loc3: live {resource}
do { // add the resource back to pool
Set.add<Resource >(resourcePool,
resource);
} return;

Figure 4. Bogor Set Extension Use (excerpts)

tains its implementation (myPackage.SetModuleSet).
Line 3 declares a polymorphic type to represent the type of
set elements. Lines 6, 9, and 12 define new expressions to
create a set with the supplied arguments as elements (here
“...” specifies that the expression can take a variable num-
ber of arguments), to non-deterministically pick an element
from the set (chooseElement), and to test a set for empti-
ness (iISEmpty). The forAll expression in line 15 illustrates
a higher-order operation that returns true if a supplied pred-
icate (first argument) holds for each element of a given set
(second argument). Lines 18 and 21 define actions that add
and remove elements from a set. Figure 4 provides some
fragments of a BIR model that illustrate the use of the set
extension.

It is important to note that an extension declaration does
not extend the BIR grammar, but only adds names to the set
of names of built-in expressions, actions, etc. This means
that the developer does not need to extend the parser or
other syntactic support facilities. Rather, in the Java pack-
age implementing the set, the developer traverses the ex-
tension structure and implements the extension semantics
using well-defined APIs for BIR’s existing abstract syntax
trees and Bogor model checker components. The Bogor
web site [43] provides an extended tutorial on how to im-
plement the set extension described above.

Extensions provide a convenient way to realize domain-

specific abstractions of software components or layers, and
to address the input language gap for modeling domain-
specific software artifacts. Often times, there are compo-
nent/layers of the software that have a significant amount
of state that is irrelevant to the properties being checked.
Rather than maintaining a complete implementation of a
software component/layer using BIR’s variables, the Java
package implementing the extension can hold the state as-
sociated with the complex component/layer and only ex-
pose as much as is relevant at the BIR level. Since only
the BIR variables are held in Bogor’s state vector during
model checking, this can dramatically reduce the costs of
representing portions of a software system.

Hiding complex portions of the state in this manner
is not novel. For example, when modeling communica-
tion protocols using SPIN [29], channel data types (chan)
are often used to model message-passing channel in net-
works. This can be done because the specific implementa-
tion of the network channels is irrelevant with respect to the
properties being checked. The properties are usually only
concerned with the functional behavior of the channels,
i.e., rendezvous, asynchronous, synchronous, and sending
and receiving messages. Furthermore, properties are usu-
ally only concerned with a channel’s abstract states, i.e.,
the specific channel implementation state, for example, the
state of message retransmission protocols used to provide
the channel service, does not need to be exposed in the
model state. What is novel about BIR is that it does not
a priori hard-code such abstraction mechanisms for a par-
ticular domain — rather, BIR’s extension facility provides an
open-ended mechanism for adding any number of domain-
specific abstractions.

We now overview two substantive extensions that high-
light the power of this facility.

Modeling real-time CORBA Component Designs In
our work on the Cadena development environment (also
built in Eclipse) [26] for designing large-scale distributed
real-time embedded systems built using the CORBA Com-
ponent Model (CCM), we have extended Bogor’s model-
ing language to include APIs associated with CCM com-
ponents and an underlying real-time CORBA event service.
[14, 19]. This enables BIR models to easily create and ma-
nipulate abstractions of CCM components. Figure 5 shows
a very small excerpt of the BIR extension that enables cre-
ation and manipulation of components.

Using BIR CORBA event channel API extensions in
component behavior models enables a close correspon-
dence to the structure of actual CCM component business
logic implementations. Without such extension facilities,
the semantics of the CORBA event channel would need to
be coded directly in BIR — which would result in a huge
blowup in both the size and complexity of the BIR code



1 extension CAD for CADModule {
typedef Event;

typedef Component;

typedef Port;

// constructor operator
expdef CAD.Component createComponent(string name);

R e I SR

/! hook an object onto a component as
10 // a named port

11 actiondef registerPort (CAD.Component c,
12 CAD. Port p,

13 string name);

15 // get all the subscribers to an event—
16 // producing port
17 expdef ’'a[] getSubscribers <’a>(

18 CAD. Component c,
19 String eventPort);
20 }

Figure 5. Bogor Cadena Assembly Descrip-
tion Extension (excerpts)

and the associated statespace. By using a domain-specific
extension, the abstract semantics of the underlying event
channel can be implemented directly in Java (hiding this
complexity from the modeling level) and domain-specific
optimizations for state-space search can be implemented (as
explained in section 5).

Modeling machine instruction sets The Java Path Finder
[7] model checker pioneered the approach of defining a
model checker that works directly on the executable rep-
resentation of a program. Using BIR’s extension facilities,
one can easily build a model checker for virtually any ex-
ecution platform — each instruction for the platform (e.g.,
each Java byte code) is modeled directly as a new BIR ac-
tion or expression. We have implemented complete model
checkers for JVM byte code and .NET’s CLR using this
approach, and an undergraduate student at Brigham Young
university used this strategy to implement a model checker
for Motorola M68HC11 executables.

Figure 6 presents excerpts from a BIR extension for rep-
resenting the Java VM instruction set. Line 2 begins a
declaration that gives an integer tag for each JVM byte
code. Then, BIR actions are declared for common cate-
gories of byte code. For example, one represents instruc-
tions with one integer parameter (e.g., BIPUSH), Icl rep-
resents instructions that access local slots (e.g., ILOAD),
fld represents instruction that access object fields (e.g.,
GETSTATIC), typ represents instructions involving types
(e.g., CHECKCAST), Cmp represents comparison instruc-
tions (e.g., IFEQ), arr represents the MULT INANEWARRAY
instruction, and inC represents increment/decrement in-
structions (e.g., IINC). Each action takes as parameters
a frame that captures properties of the current execution

// define an integer tag representing each Java byte code

2 const Op { ACONSTNULL = 1;

10
11
12

3 ICONST M1 = 2;
4 ICONST.0 = 3;
5 ICONST1 = 4; ...}
6
7 // define a BIR action for categories of byte codes
s extension WM for ...W {
9 actiondef zro (W.F frame, int op);
actiondef one (VW.F frame, int op, int);
actiondef Icl (W.F frame, int op, int locallndex);
actiondef fld (VW.F frame, int op, string fieldName);
actiondef typ <’a>(VM.F frame, int op);
actiondef cmp (VW.F frame, int op, lazy boolean result);
actiondef arr <’a>(\VM.F frame, int dims);
actiondef inc (W.F frame, int var, int inc);
}

Figure 6. Bogor Java VM Extension Declara-
tion

loc 10$27:
do {
W.max(f, 3, 2); W.set<(|Process1|)>(f, "this”, 0);
WM. fId (f, Op.GETSTATIC, ”/| Deadlock.state |\\");
} goto I1;
loc I1:
do {
VM. zro (f, Op.ICONST_1);
} goto 12;
loc 12:
do {
VM. zro(f, Op.lIADD);
} goto 13%$27;
loc 13$27:
do {
VM. fld (f, Op.PUTSTATIC, "/| Deadlock.state |\\");
} goto 14$28;
loc 14$28:
do {
WM. fld (f, Op.GETSTATIC, /| Deadlock.lock1|\\");
} goto 15;
loc 15:
do {
VM. zro (f, Op.DUP);
} goto 16;
loc 16:
do {
VWM. Icl (f, Op.ASTORE, 1);
} goto 17;

Figure 7. Bogor Java VM Extension Use (ex-
cerpts)



context, an integer tag representing the particular Java byte
code being modeled, and additional arguments associated
with the particular instruction category. Figure 7 presents
excerpts of BIR model of bytecode program that uses the
declared extension. This model excerpt results from a direct
translation of a small Java program that contains a deadlock
(Deadlock.state and Deadlock.lock1 are names of vari-
ables in that program).

5. Bogor’s open architecture

Figure 8 presents the Bogor architecture. The architec-
ture of Bogor can be divided into three parts: (1) a front-end
that parses and type checks a given model expressed in the
BIR modeling language, (2) interpretive components that
implements the values the state transformations implied by
BIR’s semantics, and (3) model checking engine compo-
nents that implement search and state storage strategies.

All model checking tools include functional aspects for
state-space search, scheduling, and managing seen states.
However, in their implementations, these aspects are often
tangled, and thus insertion of alternate strategies or other
customizations is often quite difficult. One of the contribu-
tions of our work is not just to present a non-tangled im-
plementation, but moreover to present core components us-
ing widely-used and well-documented design patterns [23]
that hide irrelevant implementation details by encapsula-
tion, that reduce dependences between components, and
that build in strategies for parameterization, adaptation, and
extension.

For example, the ISearcher (implemented using the
STRATEGY pattern) defines the search method used. For ex-
ample, if depth-first search is used, then at any given state,
its children states will be explored first before exploring its
sibling states. The IStateManager (implemented using
the FACADE pattern) provides an interface for storing states
and for determining whether or not a state has been visited
before. The ISchedulingStrategist (STRATEGY
pattern) determines the scheduling strategy employed by the
model checker. The most common strategy of model check-
ers is to generate all possible interleavings of thread exe-
cutions. Other strategies include incorporation of support
for priority based scheduling. In addition, when process-
ing any inner-thread non-deterministic choice (e.g., associ-
ating multiply-enabled transitions within the same thread),
this module should be consulted to determine which transi-
tion to execute next. For example, in a full-state exploration
mode, the scheduler should make sure that every branch of
a non-deterministic choice should be explored. This mod-
ule is also consulted to determine which transformations are
enabled in a given state.

More details about Bogor modules can be found in [39]
and a complete listing of module APIs and examples of their

use can be found on the Bogor web-site [43].

6. Kiasan — symbolic execution in Bogor

One of the most significant customizations of Bogor to
date has been the development of Bogor/Kiasan' [16] — a
Bogor-based symbolic execution framework for the JVM
extensions of Figure 6. The research directions taken in
Kiasan were driven by the fact that best practices in soft-
ware development techniques heavily emphasize the de-
velopment of reusable and modular software, which al-
lows software components to be developed and maintained
independently. One of the main challenges of compo-
nent development is to ensure software compatibility across
independently-developed components. Kiasan, which en-
ables compositional verification of sequential Java pro-
grams, was developed to complement existing Bogor model
checking technology which focuses on non-compositional
verification of concurrent programs.

Kiasan was built by customizing the following Bogor
modules.

e IValueFactory: Traditional concrete value repre-
sentations are replaced by symbolic value representa-
tions. For values with composite structure (e.g., ob-
jects and arrays), this also involves creating the abil-
ity to form partial or incomplete composite representa-
tions that can be completed incrementally.

e IStateFactory: The conventional state represen-
tation that encodes global variables, program counters
for threads, heap data, call stack frames, etc. is en-
hanced to hold symbolic data values and to include
data constraints to represent path conditions.

e IStateManager: Kiasan’s symbolic execution en-
gine performs a stateless search. Thus, the traditional
model checker’s state storage and state matching im-
plementations are changed to never store states and to
always report that each state has not been encountered
before.

o JVM extension interpretation: The extension code for
intepreting the JVM byte code representations of Fig-
ure 6 is replaced by code that interprets byte codes
symbolically — including exploration of both paths
of conditionals (with accumulated path conditions) in
cases where branch conditions cannot be decided.

Kiasan is similar to other frameworks that perform sym-
bolic checking of Java programs (e.g., ESC/Java [21] and

IKiasan (k& ah sahn, Indonesian): to reason with analogy/symbolically
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Figure 8. Architecture and primary modules of Bogor

the symbolic execution engine of JPF [34]) in that it only ex-
plores a bounded portion of a program’s state space. How-
ever, Kiasan provides a number of useful capabilities that
move beyond capabilities of related tools, including

e automatic checking of code against user-supplied con-
tracts — pre/post-conditions, invariants, and assertions
including specifications that capture deep and strong
properties of heap data,

e compositional checking of methods/classes that lever-
ages method contracts of invoked methods to summa-
rize properties of invoked method implementations,

e ability to process implementations with partial or in-
complete contracts by processing invoked method im-
plementations directly instead of the contracts of those
methods,

o flexible control over the depth/coverage of checking
by adjusting tool parameters that bound the size of the
heap structures considered by Kiasan,

e automatic generation of both abstract and concrete
counterexample traces that indicate execution paths
leading to detected errors, and

e automatic generation of JUnit test caes that guarantee
complete path and heap coverage (within the resource
bounds used to configure Kiasan).

Two key innovations enable these capabilities. The first
innovation (building off [34]) is an improved strategy for
lazy expansion of heap structures so that information about
the heap is only instantiated when needed/touched. The sec-
ond innovation of Kiasan is a flexible approach for stating
the resource bounds that determine the explored state space.
Specifically, the bounds are stated in terms of the length of

public class LinkedList<E> {
class LinkedNode
{ E data; LinkedNode next; }
@NonNull LinkedNode head = new LinkedNode ();
//@ inv: isAcyclic ();

/x@ pre : isSorted(c)

@ && other.isSorted(c);

@ post: isSorted(c); @«/
void merge (@NonNull LinkedList<E> other,

@NonNull Comparator<E> c¢) {

LinkedList<E> Il = new LinkedList<E>();
LinkedNode n1 = this.head.nnext;
LinkedNode n2 = other.head.next;
while (n1 != null && n2 != null)

if (c.compare(nt.data, n2.data) < 0) {

Il .addLast(n1.data);
n1 = n1.next; }
else { |l .addLast(n2.data);
n2 = n2.next; }

while (n1 != null) {

Il .addLast(n1.data);

ni= ni.next; }
while (n2 != null) {

Il .addLast(n2.data);

n2=n2.next; }
head = Il .head;

Figure 9. A Merge Example (excerpts)

possible heap reference chains. This enables users to grad-
ually “dial up” the size/depth of the heap considered during
program checking.

Kiasan works on a specification language with features
similar to the Java Modeling Language (JML) [35], but we
did not design our approach around a particular specifica-
tion language. Instead, we only require a side-effect free
specification that is transformable to an effective executable
form. Existing methods such as jmlc for JML runtime
monitoring [9] can be employed to transform specification
into an executable form. In practice, one defines Kiasan



specification predicates as side-effect free Java methods.

To illustrate the capabilities and themes of Kiasan, con-
sider the Java program in Figure 9. This program merges
two sorted lists to obtain a resulting sorted list. Intuitively,
the merge method’s contract indicates that given a non-
null and sorted (from the preconditions @NonNull and
pre) acyclic list (from the invariant inv) with respect to
the specified Comparator c,the method merges the con-
tent of that list into the receiver list object (given that it is
also sorted) and as the result, the receiver object is also a
sorted acyclic list (1sAcyclic and isSorted are pure
Java methods, i.e., they do not modify existing objects). We
highlight several non-trivial challenges that Kiasan is able
to overcome when reasoning about such programs and spec-
ifications.

1. The compare method is open-ended, i.e., in contrast
to other approaches that require a complete system such
as [34] where the actual objects and the data being manipu-
lated must be known, in this example the actual implemen-
tation of the compare method is unknown (and there may
not even be an implementation for the type that will sub-
stitute E). Thus, the objects used to determine compare’s
result are unknown as the method may use any data that it
can reach. This example also poses greater challenges than
programs considered by other approaches that reason about
specific algorithms on data structures whose elements are of
scalar types or (Java’s) String [36, 47, 2]. In these other
approaches, the restriction to simpler types allows one one
to take advantage of the fact that the comparison operation
does not use data from other heap objects. In our setting,
the strongest specification we can have is that the compare
method is pure, and it returns either a negative integer, zero,
or a positive integer. Moreover, compare is a total order
relation, as specified in the Java 5 Application Programming
Interface (API) documentation.

2. The example also makes use of an addLast method
(which we omit for lack of space). This method only modi-
fies the last node’s next field of the receiver list object by
assigning its parameter to it. This is a case where it is ac-
tually easier to understand and use the implementation of a
method than its specification. Since Kiasan can reason us-
ing the implementation of an invoked method instead of be-
ing restricted to using its contract, one can focus on check-
ing merge first by using an implementation of addLast.
Thus, Kiasan avoids one of the usability problems that occur
when using pure compositional reasoning techniques such
as [21] that require comprehensive specifications up-front
before being able to check a program.

3. Consider strengthening the post-condition to ensure that
(1) the resulting list size is the sum of the receiver list size
before merging and the size of other, and (2) that all the
elements are drawn from the two original lists. This prop-
erty would be difficult to verify in other techniques that fo-

cus on properties of heap shapes [36], because these other
techniques use heap abstraction techniques that “summa-
rize” objects (which would likely not be able to keep track
of specific properties of an unbounded number of elements
in a list). This represents a trade-off between techniques:
while other techniques can soundly prove properties for un-
bounded heap shapes, Kiasan can establish stronger proper-
ties within a bounded heap space (which, though unsound
in general, is sound within the bounds given for a particular
Kiasan session).

4. Verification of this method’s contract requires proving
that the information used for the comparison is not be mod-
ified by merge (or methods called from it); this will en-
sure the comparisons done later in post are unaffected.’
If this fact cannot be established, there is no guarantee that
the receiver object is sorted afterward. For example, sup-
pose that we insert some code just before the end of merge.
We need to check that the inserted code does not invalidate
the elements’ ordering. In this case, in would be enough
to determine that the inserted code cannot does not modify
the element objects. Kiasan is able to check this property
by taking advantage of additional specifications that cap-
ture notions of heap region separation (e.g., specifications
in this case would state the heap elements modified by the
inserted code are disjoint from the list elements).

In summary, Kiasan is able to check the properties de-
scribed above because its path-sensitive analysis based on
resource-bounded (e.g., checking up to certain sizes of the
two lists) symbolic execution is precise including its alias
analysis. While it does not check for all possible sizes of
the lists, however, it provides a strong behavior correctness
guarantee up to the user-specified bounds. As faults are dis-
covered and fixed, the user can opt to spend more compu-
tational resources to check larger bounds. The reader is re-
ferred to [16] for more thorough discussion on Kiasan.

7. Bogor within the development process

Bogor can be used as a stand-alone tool (via a command-
line interface or an Eclipse-based graphical user interface)
or encapsulated within other tools.

7.1. Eclipse-based graphical user interface

Bogor is implemented as a plug-in for Eclipse — a freely
available open source and extensible tool platform from
IBM. Eclipse provides a rich set of infrastructure for creat-
ing integrated development environments (IDEs) and graph-
ical editors which makes it ideal for building a user interface
(UI) for a model checking tool. Eclipse provides a plugin

2This is a bit too strong; it is fine to modify any information that will
be accessed by compare if it does not change compare’s result.



facility by which one can add more functionality. The plu-
gin facility of Eclipse matches well with Bogor’s module
extension facility. Eclipse, like Bogor, is implemented in
Java. Thus, it allows a tight integration of Bogor and its
GUI context and extensions.

Figure 7.1 gives screen shots from its Eclipse-based
GUIL. The first shot illustrates Bogor’s counter-example nav-
igation screen; the second illustrates Bogor’s graphical dis-
play of the heap at a particular execution state.

7.2. Encapsulation in other tools

Our own experience of customizing Bogor with domain-
specific modeling primitives and optimizations as well as
encapsulating the resulting customized tool within larger
environments has been quite positive.

We are developing the next generation of the Bandera
[12] tools in Eclipse. This new version of Bandera ana-
lyzing models generated from Java source code using Bo-
gor’s rich built-in support for object-oriented language fea-
tures. For these primitives, we have extended Bogor’s de-
fault algorithms to support state-of-the-art model reduc-
tion/optimization techniques for object-oriented software
using existing techniques such as collapse compression,
heap symmetry, thread symmetry, and partial-order reduc-
tions. [18, 40].

For checking avionics system designs in Cadena, we cus-
tomized Bogor’s scheduling strategy to reflect the schedul-
ing strategy of the real-time CORBA event channel and cre-
ated a customized parallel state-space exploration algorithm
that takes advantage of properties of periodic processing in
avionics systems. These customizations for Bandera and
Cadena have resulted in space and time improvements of
over three orders of magnitude compared to our earlier ap-
proach [12, 26] which created models for SPIN and dSpin.

In other work, we have extended Bogor to support check-
ing of specifications written in the Java Modeling Language
(JML) [41, 45] and GUI frameworks [20].

7.3. Placement of model checking in a de-
velopment process

Due to the computational costs associated with model
checking, careful consideration must be given to the par-
ticular role it should play in a development methodology.
In addition, one must keep in mind that the strength of
model checking is reasoning about faults that arise due to
non-determinism (e.g., the scheduling non-determinism that
arises in concurrent software). There are many classes of
errors that can be effectively detected using cheaper static
analysis or testing techniques. Therefore, it seems reason-
able to apply model checking after these cheaper techniques
have been applied. An interesting open area for research is

the development of techniques that allow coverage to be ac-
cumulated across multiple forms of quality assurance meth-
ods so that the effort of model checking can be pruned by
considering coverage obtained by earlier testing or static
analysis techniques.

Model checking at design time As we have already ar-
gued, it is natural to use model checking to reason about
high-level behavioral designs (e.g., state-machine-like de-
scriptions). The benefit of model checking at this level
(as opposed to the implementation level) is that the system
state-space is smaller since the design being checked repre-
sents an abstraction of the expected implementation.

Model checking implementations Even though tech-
niques for model checking source code are maturing, in
most cases it is impractical to consider using model check-
ing for whole program analysis of large code bases. Many
researchers believe that model checking can be successfully
applied at the level of unit testing. In particular, unit testing
for highly concurrent units seems to be a “sweet spot” for
model checking.

One of the challenges in model checking software units
is building an environment to close the system. When
model checking is carried out in conjunction with unit test-
ing, the required closing environment can often be based on
the test harnesses used for unit testing.

Another challenge in model checking implementations
is that most modern applications make extensive use of li-
braries. For Java programs, inclusion of all libraries asso-
ciated with a program (based on the types used in the pro-
gram) can result in a factor of 5-10 increase in the size of
the code to be analyzed. This library code can either be ab-
stracted or included along with the application program to
form the model being analyzed. When the model checking
framework works off of source/byte code and the libraries
used include native methods, some abstract source/byte
code representation must be developed for those methods.
In recent work [17], we have shown that slicing techniques
can be effective in pruning away library code that is irrel-
evant with respect to the particular property being model-
checked.

Model checking mixed representations As software is
increasingly built using models, frameworks, and large-
scale infrastructure such as middleware, analysable sys-
tem models will be built from a mix of implementations,
higher level specifications and abstract models of infras-
tructure. For example, in [15] we presented a high-level
framework for specification and implementation synthesis
of synchronization aspects for system development. When
model checking systems built from that framework, models
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were constructed from joining the non-synchronization re-
lated implementation with high-level synchronization spec-
ifications (as opposed to the synthesized synchronization
implementations). In this case, the high level descriptions
were rich enough to completely determine the behavior of
the synchronization aspects thus avoiding polluting the an-
alyzed model with many irrelevant implementation details.
Checking models built from high level synchronization de-
scriptions resulted in multiple orders of magnitude reduc-
tion in checking costs compared to checking models built
from synchronization implementations. We believe that this
same strategy can be applied to other system aspects. In ad-
dition, when systems are built on reusable infrastructure,
it may be worthwhile to handcraft abstract models of the
infrastructure to reduce checking costs. This may be espe-
cially relevant in the context of software product-line devel-
opment.

8. Pedagogical support for Bogor

The success and the expediency of the customization ef-
forts described above were determined by several factors:
(1) accessibility to domain knowledge, (2) intimate under-
standing of existing model checking algorithms, and (3) a
model checking framework that allowed us to rapidly proto-
type ideas as concrete algorithms that we could experiment
with. We believe that these factors influenced not only our
specific experiences, but the experiences of others in apply-
ing Bogor as well. While issues in (1) should be addressed
by the practitioners themselves, it is crucial for us to provide
tutorial and reference material about Bogor’s architecture
and algorithms to enable others to successfully customize
Bogor. Moreover, we believe Bogor itself is an excellent
pedagogical vehicle for teaching foundations and applica-
tions of model checking because it allows students to see
clean implementations of basic model checking algorithms
and to easily enhance and extend these algorithms in course
projects to include a variety of enhancements and optimiza-
tions.

Bogor comes with a user manual that includes BIR doc-
umentation (e.g., grammar, language description, abstract
syntax tree implementation in Java, etc.) and Bogor exten-
sion tutorials that are directly accessible through the Eclipse
help system as well as in PDF and HTML format. These
materials refer to a well-documented repository of exam-
ples that illustrate how to construct various types of Bogor
extensions.

To use Bogor as a pedagogical vehicle for teaching foun-
dations and applications of model checking, we designed an
extensive collection of freely available course materials for
a one-semester course [44].

This course emphasizes a practical and project-oriented
approach to learning the technical foundations of model

checking and methodologies for applying model checking
tools to realistic systems. Foundational topics covered in-
clude basic explicit-state reachability algorithms, tempo-
ral specification formalisms including LTL and CTL, par-
tial order reductions, state-space representations (collapse
compression, etc.), and alternate search strategies. In an
approach similar to that used in compiler courses, these
foundational and theoretical concepts are reinforced by hav-
ing students implement key components of an explicit state
model checker.

Students learn to apply Bogor to model and analyze
simple concurrent systems that illustrate basic concepts
of state-space exploration. Programming projects involve
(re)implementing or modifying the core modules of Bo-
gor’s model checking engine, or implementing new mod-
eling language primitives using Bogor’s extensible model-
ing language. In addition to simply reinforcing the central
concepts of model checking, the overall goal of these imple-
mentation exercises is to move students to the point where
they can effectively develop model checking tools and asso-
ciated methodologies for verification of real world systems
by tailoring Bogor to different application domains.

Methodological aspects of model checking (and Bogor,
in particular) are also emphasized. This includes repeat-
able strategies for capturing concurrent/distributed systems
as effective verification models, applying abstraction and
other state-space reducing model transformations, and us-
ing a pattern-based approach to constructing temporal spec-
ifications.

The course distribution for instructors includes a vari-
ety of pedagogical materials such as typeset lecture notes
and guided exercises, PowerPoint lecture slides, streaming
video for our lectures, source code for lecture examples,
weekly quizzes and solutions, homeworks and solutions,
exams and solutions. A separate distribution for students
includes only the lecture slides and examples.

9. Summary of Experience Using Bogor

There is a growing user community for Bogor. In the
past twelve months, Bogor has been downloaded more than
1000 times by individuals in 32 countries. We know that
many of those individuals are using Bogor in interesting
ways. To date, we are aware of more than 35 substantive
extensions to Bogor that have been built by 28 people, only
one of whom was the primary Bogor developer.

It is difficult to quantify the effort required to build
a high-quality extension in Bogor. As with all software
framework there is a learning curve. In the case of Bogor,
which is a non-trivial system consisting more than 22 APIs,
we find that reasonably experienced Java developers get up
to speed in a couple of weeks. At that point extensions are
generally require only a few hundred lines of code and often



they can be modeled closely after already existing exten-
sions. To give a sense of the variety of extensions built with
Bogor we list a sampling of those extensions and indicate,
in parentheses, the number of non-comment source lines of
Java code used to implement the extension.

Partial-order Reduction (POR) Extensions Multiple
variations on POR techniques have been implemented in
Bogor including: sleep sets (298), conditional stubborn sets
(618), and ample sets (306) approaches. Multiple variations
of the notion of dependence have been incorporated into
these techniques that increase the size of the independence
relation by exploiting : read-only data (515), patterns of
locking (73), patterns of object ownership (69), and escape
information (216). These latter reductions, while modest
in size and complexity to implement, have resulted in more
than four orders of magnitude reduction in model checking
concurrent Java programs [18].

State-encoding and Search Extensions As explained
earlier, Bogor is factored into separate modules that can be
treated independently to help lower the cost of learning the
framework’s APIs. For example, extensions to the state-
encoding and management APIs have yielded implementa-
tions of : collapse compression (483), heap and thread sym-
metry (317), and symmetric collection data structures (589).
While extensions to Bogor’s searcher APIs have enabled the
POR extensions above in addition to one’s supporting state-
less search (14) and heuristic selective search (641) of the
state space.

Property Extensions Supporting different property lan-
guages is just as important as supporting flexibility in mod-
eling languages. Bogor’s property APIs have allowed mul-
tiple checker extensions to be implemented including : reg-
ular expression/finite-state automata (1083), an automata-
theoretic Linear Temporal Logic (1011) checker, and a
Computation-tree Logic (1418) checker based on alternat-
ing tree automata. We have also implemented a checker
extension for the Java Modeling Language [41] (3721).

Problem Domain Extensions A main objective of Bogor
was to bring sophisticated state-space analyses to a range of
systems and software engineering domains. Several exten-
sions have been built that target specific issues in reasoning
about multi-threaded Java programs, for example, treating
dynamic class loading (425), reasoning about event-handler
behavior in program written using the Swing framework
[20], and reasoning about properties of method atomicity
(359) [27]. In recent work, we have extended Bogor to sup-
port emerging approaches to reasoning about concurrency
errors in program’s written using the Message Passing In-
terface (358) [46].

In our work on the Cadena development environment
[26] for designing component-based avionics systems, we
have extended Bogor’s modeling language to include APIs
associated with the CORBA component model and an un-
derlying real-time CORBA event service (2593). [14,
19]. For checking avionics system designs in Cadena, we
have customized Bogor’s scheduling strategy to reflect the
scheduling strategy of the real-time CORBA event channel
(439), and created a customized parallel state-space explo-
ration algorithm that takes advantage of properties of pe-
riodic processing in avionics systems (516). These cus-
tomizations for Bandera and Cadena have resulted in space
and time improvements of over three orders of magnitude
compared to our earlier approaches.

Other extensions of Bogor include checking and evaluat-
ing highly dynamic multi-agent systems [42]. Researchers
outside of our group are extending Bogor to support check-
ing of programs constructed using Aspect], and UML de-
signs, systems built on top of the Siena internet-scale pub-
lish/subscribe framework, and BPEL models.

10. Conclusion

In summary, we believe that a number of trends in soft-
ware development suggest the need for flexible and adapt-
able infrastructure to enable practitioners to more effec-
tively develop model checking tools that are customized to
particular domains and development processes. While there
are many avenues that one might pursue, we believe that
the Bogor framework provides a robust and well-reasoned
foundation that researchers and practitioners can use to ad-
dress important facets of automated reasoning for modern
software systems.
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