AFID: AN AUTOMATED FAULT
IDENTIFICATION TOOL

Infroduction: Current Fault Detection

Traditional approach to evaluate tools
Hand-selected & seeded faults

Synthetically-injected faults ® ’
Must still provide proof tool
Does not miss important faults ’

Discovers both real and important faults

Community avoids large fault data sets
Few datasets available

Lack of test cases to reproduce results and reveal faults

Related Work

CVS Repository mining

Code Correcting commits v. General Application
Additions

Sets of Applications with Seeded Faults

Real v. Seeded software faults

iBUGS

Regression testing and software bug repository

Replay systems
Exact execution and deterministic replays

Importance of Fault Data Sets

Extract several real instances of practical faults
Lead to creation of sophisticated analyses

Use by researchers to evaluate their tools

Solution Ideology

Remember: most existing data sets lack test cases to
reveal faults

Manually create data set of real software faults

Record:
Test cases that reveal the fault
Copy of source code that contained fault

Source code that change /removed fault
—-'LF—'=:_

/

/

/

— .

|

/I

Introduction to the AFID System

Collect information for software faults
Wide range of developers
Real projects
records software faults

Monitoring the compilation and execution steps of the
software development process

Record as much as possible

Minimal runtime overheads

Automating Ideology with AFID
—

Execution Monitor :
, , Fault Revealing
Execution Monitor —>
Test Case

o1 Traces application
execution
"1 Records input

o create test case
emulating failure

1 Records

= Test case containing
input-revealing fault

=1 Source code version |D
where fault discovered

Automating Ideology with AFID
—

Compilation Monitor .
, , Fault Revealing
Execution Monitor —>
Test Case

o1 Traces compiler
execution Compilation |_d Revision
1 Records Monitor History

=1 Any new source files
discovered

=1 All source files edited
since last compilation

-1 Updates subversion
repository

Automating Ideology with AFID
—

Replay Componeni , _ Fault Revealing
Execution Monitor —>
Test Case

-1 Executes newly

Comp”ed qpplicqﬁon Compilation Revision
Monitor History
o |f no test cases crash

Replay
= Records version ID as Component

fault correcting code |
1 Marks test case as
Fault
resolved o
Characterization

Replaying Test Cases: Sandboxing
Replay

Intercepts open(file’) requests
Test case file request — redirect to file in test case
Excluded file — pass unmodified request to OS
Modified application/Corrected fault
Modify R.C. to copy test case/external file

Reproduce faults that depend on exact location of input
files

Replaying Test Cases: Termination

Developer makes source code change that causes
loop on unresolved case

AFID records running times for each execution

Computes

Assumes program is looping when execution extends
past

Worst case:

Time-out incorrectly identifies looping = only fault
correction unrecognized by AFID

public class Example {
public static void main(String[] arg)
throws IOException {
int array(]=new int[10];
FileReader fr=new FileReader(arg[0]);
while (true)
switch(fr.read()) {
/* Write to array element. */
case ‘W’ :
int woff=fr.read()-’0’;
int val=fr.read()-’0’;
array [woff]=val;
break;
/% Sum array. */
case 'S’:
int sum=0;
for(int i=0;i<10;i++)
sum+=array[i];
System.out.println(sum) ;
/* This line is missing a break. */
/* Print array element. #*/
case 'R’:
int roff=fr.read()-’0’;
System.out.println(array[roff
break;
case -1:
return;

AFID: Monitoring Compilation

> javac Example.java ////////\\\\\\\ipen(‘Example.java‘)
> ‘l!!!ﬁ!,l

NEW_SOURCE: Example.Java

At this point, AFID has collected:

(1) The buggy version of the example
program

(2) The test case that reveals a fault
in the buggy version of the
program

(3) A diff that gives the source code
change that corrects the fault

(a) Replacing line 20™ line in the
break

(4) Addition to a fine grained revision
history

After recording this fault information
AFID uploads the information
(optionally) to a centralized fault

The AFID Server

Web based server application

discovered faults by AFID client

Automatic/Manual upload after recovery

Fault Upload Contents

Test Case

Version ID for source code version whose execution
generated the fault-revealing test case

Version ID for fault-correcting code

Latest version of AFID’s internal subversion repository

Recording Test Cases

Execution Monitor

Forking off new child process
Child calls () with PTRACE_TRACEME

Child calls () to execute application

Causes previous () with PTRACE_TRACEME to stop before
executing new application

Monitoring process calls () with PTRACE_SYSCALL
and calls ()

OS wakes monitoring process when child makes system call
and suspends the child process

Recording Test Cases (cont.)

Monitor awaken =2 calls () with
PTRACE_GETREGS

If child calls open(file), monitor inspect file /access mode
by calling () with PTRACE _PEEKDATA
WRITE — make copy of file ()

READ — lazy copy

Monitored application exits
Monitor inspects return value for crash

On crash — monitor copies all files read by application

Stores mapping between application file pathnames and
files’ copies in text file in test case

(), (), ()

Cleaning Up Records

User Interaction — fuzzy matching approach
Generalization as application
Duplicate Test Cases
Storing copies of same test case
Filtering Inputs

Reading files not really classified as
“inputs”

Normal compile

Monitored compile with svn

Monitored compile without svn

Normal execution

Monitored execution

Jasmin Monitoring Overhead — 113%
Inyo Monitoring Overhead — 2 %

Results

Developer Population

Met

Fau

nodology

t Breakdown

Fau

t Detection Errors

Multiple Corrections

Developer Feedback

11 rm

I ren | 1 I

Participant Number of Number of
Recorded Faults Verified

Corrections

A 2 2

B 1 1

C 4 2

D 8 5

E 1 1

F 1

G 0 0

H 0 0

This Work’s Contributions

Automated fault collection strategy
Process monitoring technique

Automated recording of test cases
Monitoring overhead measurement

Experience

Limitations and Future Work

1 Allow a developer to note
when the developer
believes that a source
code change corrects
multiple fault instances

1 Address compilation delay
by performing both the
repository updating and
test case replaying in the
background.

