
AFID: AN AUTOMATED FAULT
IDENTIFICATION TOOL
Edwards, A; Tucker, S; Worms, S; Vaidya, R; Demsky,
B

Introduction: Current Fault Detection

  Traditional approach to evaluate tools
 Hand-selected & seeded faults
 Synthetically-injected faults

  Must still provide proof tool
 Does not miss important faults
 Discovers both real and important faults

  Community avoids large fault data sets
 Few datasets available
 Lack of test cases to reproduce results and reveal faults

Related Work

  CVS Repository mining [spacco05, nagappan06, williams04,
ying04 nehaus07]
 Code Correcting commits v. General Application

Additions
  Sets of Applications with Seeded Faults [do05]

 Real v. Seeded software faults
  iBUGS [dallmeier07]

 Regression testing and software bug repository
  Replay systems [choi98, steven00, leblanc87]

 Exact execution and deterministic replays

Importance of Fault Data Sets

  Extract several real instances of practical faults
  Lead to creation of sophisticated analyses
  Use by researchers to evaluate their tools

Solution Ideology

  Remember: most existing data sets lack test cases to
reveal faults
 Manually create data set of real software faults

  Record:
 Test cases that reveal the fault
 Copy of source code that contained fault
 Source code that change/removed fault

Introduction to the AFID System

  Collect complete information for software faults
 Wide range of developers
 Real projects

  Automatically records software faults
 Monitoring the compilation and execution steps of the

software development process
 Record as much as possible
 Minimal runtime overheads

Automating Ideology with AFID

  Traces application
execution

  Records input
   create test case

emulating failure
  Records

  Test case containing
input-revealing fault

  Source code version ID
where fault discovered

Execution Monitor
Execution Monitor

Fault Revealing
Test Case

Automating Ideology with AFID

  Traces compiler
execution

  Records
 Any new source files

discovered
 All source files edited

since last compilation
  Updates subversion

repository

Compilation Monitor
Execution Monitor

Fault Revealing
Test Case

Compilation
Monitor

Revision
History

Automating Ideology with AFID

  Executes newly
compiled application

  If no test cases crash
 Records version ID as

fault correcting code
 Marks test case as

resolved

Replay Component
Execution Monitor

Compilation
Monitor

Replay
Component

Fault Revealing
Test Case

Revision
History

Fault
Characterization

Replaying Test Cases: Sandboxing
Replay

  Intercepts open(`file`) requests
 Test case file request – redirect to file in test case
 Excluded file – pass unmodified request to OS

  Modified application/Corrected fault
 Modify R.C. to copy test case/external file

  Gives illusion that test case files in same location as
original execution
 Reproduce faults that depend on exact location of input

files

Replaying Test Cases: Termination

  Developer makes source code change that causes
loop on unresolved case

  AFID records running times for each execution
 Computes upper bound
 Assumes program is looping when execution extends

past upper bound

  Worst case:
 Time-out incorrectly identifies looping  only fault

correction unrecognized by AFID

AFID: Quick Example

  Sample Java Program
  Input: Command-line

parameter for name
of file

 Execution
 Open File
 Reads series of

commands
  Write digit to array

element
  Sum array elements
  Print array element

AFID: Monitoring Compilation

> javac Example.java
>

NEW_SOURCE: Example.Java

AFID

open(`Example.java`)

.java

AFID: Monitoring Program Execution

> javac Example.java
>

NEW_SOURCE: Example.Java

AFID

open(`Example.java`)
 java Example input.txt
>

CMD: java Example input.txt

open(`input.txt`)

write(&a , 2, 3)

sum(&a)
print(‘R’)

read(‘W’)
read(‘2’)
read(‘3’)

read(‘S’)

exit(‐1)

ERCMD: java Example input.txt

ERCODE = -1

CRASH!!

CPY: input.txt > avid_input.txt
STR: MAP(PATH(input.txt),
 PATH(afid_input.txt))

AFID: Detecting Fault Corrections

> javac Example.java
>

NEW_SOURCE: Example.Java

AFID

open(`Example.java`)
 java Example input.txt
>

CMD: java Example input.txt

open(`afid_input.txt`)

write(&a , 2, 3)

sum(&a)

print(&a, 2)

read(‘W’)
read(‘2’)
read(‘3’)

exit(0)

read(‘S’)

ERCMD: java Example input.txt

NEW CODE
CHNG: 20

REPLAY

CPY: input.txt > avid_input.txt
STR: MAP(PATH(input.txt),
 PATH(afid_input.txt))

 javac Example.java
> java Example input.txt

REPLAY

read(‘2’)

GOOD RUN

read(‘R’)

At this point, AFID has collected:
(1) The buggy version of the example

program
(2) The test case that reveals a fault

in the buggy version of the
program

(3) A diff that gives the source code
change that corrects the fault
(a) Replacing line 20th line in the

break
(4) Addition to a fine grained revision

history

After recording this fault information
AFID uploads the information
(optionally) to a centralized fault
repository.

The AFID Server

  Web based server application
  Aggregates discovered faults by AFID client

 Automatic/Manual upload after recovery

  Fault Upload Contents
 Test Case
 Version ID for source code version whose execution

generated the fault-revealing test case
 Version ID for fault-correcting code
 Latest version of AFID’s internal subversion repository

Recording Test Cases

  Execution Monitor
 Forking off new child process

 Child calls ptrace() with PTRACE_TRACEME
 Child calls exec() to execute application

  Causes previous ptrace() with PTRACE_TRACEME to stop before
executing new application

 Monitoring process calls ptrace() with PTRACE_SYSCALL
and calls wait()
 OS wakes monitoring process when child makes system call

and suspends the child process

Recording Test Cases (cont.)

  Monitor awaken  calls ptrace() with
PTRACE_GETREGS
  If child calls open(file), monitor inspect file/access mode

by calling ptrace() with PTRACE_PEEKDATA
 WRITE – make copy of file (immediately)
 READ – lazy copy

  Monitored application exits
 Monitor inspects return value for crash
 On crash – monitor copies all files read by application
 Stores mapping between application file pathnames and

files’ copies in text file in test case

  ptrace(), ptrace(), ptrace()

Cleaning Up Records

  User Interaction – fuzzy matching approach
 Generalization as application output changes

  Duplicate Test Cases
 Storing multiple copies of same test case

  Filtering Inputs
 Reading extraneous files not really classified as

“inputs”

AFID’s Overhead

  Workstation with 2.2 GHz Core 2 Duo, 1GB RAM
 Debian Linux 2.6.23
  Sun’s Hotspot JDK v. 1.5.0_13

  Benchmarks
 Jasmin bytecode assemebler
  Inyo ray tracer

Jasmin Monitoring Overhead – 113%
Inyo Monitoring Overhead – 2 %

Results

  Developer Population
  Methodology
  Fault Breakdown
  Fault Detection Errors
  Multiple Corrections
  Developer Feedback

This Work’s Contributions

  Automated fault collection strategy
  Process monitoring technique
  Automated recording of test cases
  Monitoring overhead measurement
  Experience

Limitations and Future Work

  Allow a developer to note
when the developer
believes that a source
code change corrects
multiple fault instances

  Address compilation delay
by performing both the
repository updating and
test case replaying in the
background.

Limitations Future Work

