
Automated Testing of PHP Application Functionality

Anonymous
Anonymous@cis.udel.edu

Computer and Information Sciences
University of Delaware

Newark, DE 19716

December 9, 2008

Abstract

Generally, testing any application should be both ef-
fective, in that the testing covers a wide range of func-
tionality, and efficient, in that the testing process is
as short as possible. As dynamic web applications
increase in size, the developer’s test input size also
increases; therefore, testing by hand is neither effec-
tive nor efficient. The developer must manually check
all inputs for all textboxes, radio buttons, etc. and
click all available links and buttons throughout the
application in order to fully test application. Previ-
ous work done by Artzi et. al. [1] explores avenues
by which the testing process can be automated and
the input size into a PHP application is reduced; how-
ever, only the HTML output of the application is ver-
ified, meaning that the structure and validity of the
application output is tested. Their tool does not de-
termine that the application is performing, function-
ally, as intended, and this is a critical testing avenue
when considering applications that are computation-
ally intensive and where precision is mandatory. We
propose to build upon Artzi et. al.’s work by first im-
plementing their work, then, extending it to test that
the functionality of the PHP application is correct. In
addition to this, we will ensure full functionality of
the PHP Web application is tested by developing a
process of ”exploding” the JavaScript to expose any
functionality hidden by previous work.

1 Introduction

Testing an application can fall into two categories:
testing for syntactic correctness and testing for se-
mantic correctness. (Here we extend sytnax errors
as statements that are not only malformed or pro-
duce malformed HTML, but also statements which
produce faults). That is an application can be tested
to ensure that the actual written code is both legal
and does not produce faults. There has been signif-
icant work in developing tools and methods to au-
tomatically perform this task with dynamic web ap-
plications. These are effective at finding bugs on a
syntactic level and generating inputs automatically,
and now the following question needs to be addressed:
”‘Is the application both correct syntactically AND is
the application producing the intended results?”’ A
dynamic web application the does not crash but does
not produce the intended results based on user in-
put will still pass tests performed by previous tools.
However, the application may not be correct, func-
tionally, because it is not behaving as the application
developer intended. For instance, a web application
that contains a PHP function which prints out stu-
dent grades and statistics in an HTML table may
produce valid HTML. Additionally, the application
may execute without faults and crashes. However,
if this validly-formed HTML table is not populated
with any relevant information, the application can be
labeled as being misbehaved, and there is something
wrong with the print() function in the PHP script.

1

A tool that solves this problem would be a solution
to the second of the two categories described above.

We would like to develop an effective and efficient
solution to this problem by building upon the exising
foundation of finding bugs of the syntactic nature.
Previous work done by Artzi et. al. [1] explores av-
enues by which the testing process can be automated
and the input size into a PHP application is reduced.
In this work, only the HTML output of the appli-
cation is verified, with the structure and validity of
the application output being the only testing focal
points. Their tool does not confirm that the applica-
tion is performing as intended in a functional manner,
and this is a critical testing avenue when considering
applications that are computationally intensive and
where precision is mandatory. We propose to imple-
ment previous work, then, extend it to test that the
functionality of the PHP application is correct. In
addition to this, we will ensure full functionality of
the PHP Web application is tested by developing a
process of ”exploding” the JavaScript to expose any
functionality hidden, which is a limitation of some
previous works.

2 PHP Web Applications

2.1 The PHP Language

PHP is a web application scripting language that is
used in developing many applications. PHP has large
library support for network interactions, database
interactions, and HTTP processing. This popular
scripting language is also instrumental in putting the
”dynamic” aspect into the dymanic functionality of
a web application. A web application being dynamic
allows it to respond to user interaction; thus, the ap-
plication can respond to each input from the user.

PHP is also considered an object oriented lan-
guage. It can provide functionality to define classes,
write interfaces, and dispatch methods dynamically.
Unique to PHP, apart from object-orientation, is its
scripting features. Variables are dynamically typeset
at runtime, which can make it easy for the devel-
oper by removing the need to declare the variables
as a certain, defined type. The side effect is that the

variable’s type is not immediately apparent. Another
scripting feature of PHP is ’eval’, which executes a
value that was computed at runtime as a code frag-
ment. For example,

$code = "$x = 3;";
$x = 7;
eval($code);
echo $x;

evaluates the expression in quotes and prints the
value 3. As a scripting language, PHP also can use
a predicate function to check whether a variable is
defined or set

if(!isset($_GET[page]))...

and declare functions and classes anywhere in the
program.

<?php
function validateLogin() {
// function objectives executed

}

class MyValidationClass {
// class definitions and methods

}
?>

2.2 State of the Art

Testing dynamic web applications comes with a va-
riety of challenges, and these challenges increase as
the application grows. If tested by hand, the appli-
cation must be checked on all execution paths. An
execution path starts at the very beginning of the ap-
plication, and branches (like a tree) down through all
possible ways in which a user can interact with the
application. These branches define the input size for
the application, which can be very large, and, as a
result, the input that creates any type of fault can be
difficult to find. Furthermore, generating the inputs
for an application is an equally difficult problem.

The latter of the two problems has been addressed
by previous work done by Benedikt et. al [2], who cre-
ated Veriweb. Veriweb is a tool that automatically

2

discovers and systematically explores web-site exe-
cution paths comparable to how a developer would
completely hand-test a dynamic application. How-
ever, this tool only checks for errors at the HTTP
level. DART [8], Cute [6] , and EXE [3] all find fail-
ures by starting tests on applications with concrete
values as input. To derive the subsequent inputs,
their tools solve a set of path constraints found from
exercising the control flow paths. However, their re-
sults were not practical in the web application do-
main, and they only used static input to into their
tool.

The problem of minimizing the size of input de-
rived from path constraints (such as the work afore-
mentioned) has been addressed by Arzi et. al. [1].
These authors took the work above, combined it with
checking the output of PHP applications for mal-
formed HTML and crashes due to exceptions, and
took the intersection of the solutions to path con-
straints in order to minimize the size of the input set
that could have generated a fault. They were able
to defend that their tool, Apollo, was both effective
and efficient at finding faults in dynmaic web appli-
cations. They based their fault finding heavily on
the HTML that was output from running applica-
tions in their tool, and used this as an indicator of a
faulty web application. Apollo was able to find 214
faults across 4 web applications. The Apollo tool also
contained construct, internal/external, and reliability
concerns.

WebKing2, proposed by Copee et. al. [4] takes
the debugging to the developer level by providing
options for white-box, black-box, and regression test-
ing across the entire site, including JavaScripts, CGI
scripts, and CSS errors. WebKing correctly identifies
numerous types of errors, including deliberate errors
made in several JavaScripts, testing the critical paths
an application takes through the site. However, this
work may not cover all paths, does not attempt to
minimize the input set that may have possible cre-
ated the fault, and the authors seeded errors into the
application for thier tool to find (makeing their tool
hard to generalize for real faults).

Wu et. al. [13] has presented a newly-developed
theoretical model of new couplings and the dynamic
flow of control of Web applications, which captures

dynamic aspects of Web applications and develops
and defines test criteria. Related to this concept is
work done on dynamic test case generation [12] and
analyzing the data flow of dynamic, JSP-based web
applications to compute intraprocedural, interproce-
dural, and sessional data flow test paths for uncover-
ing the data anomalies of JSP pages [7]. We would
like to explore these works in building our tool.

Although Artzi et. al.’s work did combine previ-
ous work and make it applicable to the PHP scripting
language, their work did not check the functionality
of the web application for correctness and intended
results. Our work would build upon the foundation
they have laid and add this notion of functionality
checking. In order to do that, we will need to create
an oracle to determine if the PHP web application
behaved as it should have during the execution. An-
other aspect that we are looking to incorporate will
solve a general problem in testing PHP applications
which is PHP code ”hidden” behind JavaScript. In
addition, we would like to consider using more than
just static inputs as initial concrete inputs for testing
applications with our tool. We would like to explore
session-awareness [10, 11, 5] to produce inputs to our
target applications (since we are testing functional
correctness of the applications).

2.3 Limitations

Since we plan to make significant contributions and
additions to existing work, we will be heavily mon-
itoring the runtime of our tool. We will implement
all of our features as optional, meaning we can turn
them on and off. Doing this will allow us to monitor
all combinanations of features for cost effectiveness.
Then we will perform cost-benefit analysis to deter-
mine whether the additional overhead of adding a
feature is outweighed by the benefit. If our features
prove to have a high-runtime and be inefficient, addi-
tional limitations in our tool may arise. If the feature
is effective, even in the light of its inefficiency, we will
re-work the feature to be more efficient.

3

3 Challenges and Goals

The following are some of the challenges we may face
and goals that we have for this work:

1. Is there a way besides HTML checking to val-
idate correct PHP output? HTML validation
checks for syntax more than intended output se-
mantics. Part of web appliction testing isn’t
only, ”‘Does the output ’look’ correct”’? It’s
also, ”‘Is the ouput correct?”’

2. Is there a way to perform testing on output re-
sulting from running the JavaScript produced
by the PHP script? JavaScript may be writ-
ten as a result of certain PHP code, but may
not be reflected in the testing. (e.g. JavaScript
my produce a button or action that is not
tested/executed but only ”‘written”’ to the out-
put). Not taking the execution of processes fur-
ther embedded into the execution path of the
real, running application is not truly testing the
entire application.

3. Is there a way to combine client session data,
data path analysis, and predetermined seeded in-
put into one input suite? An ideal situation for
input data into a web application is to mimic the
actions of a real user behind a real web browser
while he/she is pointing, clicking, and entering
data (correct or incorrect) into the web appli-
cation. The challenge here is integrating web
browser, on-line functionality, session-awareness,
and server integration into our tool. Addition-
ally, do we take Artzi et. al.’s [1] approach in
mimicking user interaction with switch state-
ments or take an approach where we deterim-
ine the appropriate interaction by doiong a ”we-
bcrawl” through the application’s interface.

4. Dynamic applications are verified via malformed
HMTL. This is great for syntax, but what about
semantics? The tool will incorporate HMTL
verification methods used in the other related
works, but can we also take existing tools for
unit testing PHP and incorporate them into our
tool? In this way PHPUnit would be used as an

initial oracle. The challenge is that we need to
decide whether the application developer would
write the PHPUnit tests (which would make the
developer the oracle) or find a way we can gen-
erate these PHPUnit tests automatically?

4 Proposed Research

4.1 Tool Building Goals

We propose to build our tool with a foundation that
implements previous work. More specifically, we will
implement the tool with input generation, input min-
imization, and static HTML result verification of cor-
rectness of dynamic PHP applications by basing the
foundation of our tool on work done by Artzi et. al.
[1]. This is straighforward, per se. This reproduces
the results of previous work in PHP web application
testing. Further, we will create an extension for au-
tomatic PHPunit test case generation and execution.
This will examine approaches to test the functional
correctness of the PHP/HTML output (asserts, PH-
Punit). This will also help with the semantic checking
of the output of some user’s session with an applica-
tion. The approach would examine the actual code
and determine what ”‘should”’ happen functionally.
This PHPunit generation may add overhead to the
tool, but will be a feature that is optional on each
execution of the tool. (We will include the overhead
vs. efficiency gain analysis as part of our evaluation.)
Finally, we will implement an extension of the tool to
run any JavaScript and expose any hidden PHP that
is not evaluated in other tools. Doing this will re-
veal any other faulty code and increase the coverage
of our tool. Optimally, we will get greater coverage
than previous PHP testing tools.

4.2 Testing Goals

Optimally, we would like to test our tools by develop-
ing input data with the goals of achieving the highest-
fidelity and minimizing the threats to validty during
our testing. We will aspire to eliminate internal and
external threats to validity by incorporating multiple
views. As mentioned before, we will use Artzi et. al.

4

as a foundation. However, our testing strategy will
attempt to completely eliminate the use of seeded-
input into the application during initial phases of
testing by implementing the work on generating test
suites derived by using user session data [5, 11, 10].
We will use a suite of user session data as our initial
inputs.

Our testing method will also incorporate UML-
level test-input generation for high level testing [9].
This can be a ”‘tier 1”’ form of early-and-often test-
ing. Next, we will seek to incorporate data flow test-
ing techniques of Liu et. al. [7] in a PHP setting.
This is a more fine grained strategy that can be com-
bined with the first input generation technique (using
user-session data as input) to produce high quality
input.

We will perform proof of concept testing by match-
ing the results of running our tool against the same
PHP applications as did Artzi et. al. [1] in their
work (faqforge, webchess, schoolmate, and phpsys-
info). This is to make certain that our tool can
perform just as good as these authors’ tool. Then
we turn on the new features - PHPunit generation,
JavaScript Explosion, UML-level testing, Data-flow
testing - with the goal of verifying that our results
are more finely-grained and more valid without too
much overhead. Lastly, to demonstrate practical-
ity, we will follow the proof of concept testing with
industry-testing of our tool against industry-level ap-
plications. We will accomplish this by gathering a
group of programmers from novice to experienced,
freshmen undergraduate to veteran web developers,
and have them use our tool when building and testing
their web applications.

As one could observe, our tool-building phase in-
novatively interleaves natively autonomous testing
strategies with solutions to overcome limitations ex-
perienced in previous work. Our goal is to use ex-
perience as a teaching strategy to help us imple-
ment a more effective soluion, not only in verifying
the syntactic correctness of code, but also in verify-
ing that the semantics of the program are correct in
that application functionally performs as intended.

Another observation is the interconnection of mul-
tiple test-input-generation strategies into our input
generation scheme. The goal is to achieve an opti-

mal suite of inputs that eliminates as many internal
threats to validity as possible. This will enable us to
more concretely verify the validity of our approach
and our tool.

5 Evaluation Approach

We will ask the following questions in evaluating the
performance, efficiency, and practicality of our tool:

• Does our tool reproduce the results of equiva-
lent Java technology based tools? We will eval-
uate this by comparing our results against tools
that perform automated testing of Java-based
web applications.

• How many faults does out tool find? We will use
straight-forward counting methods to determine
the amount of faults found.

• How effective is our tool at localizing the faults?
We will evaluate this by running our tool on the
same applications that Artzi. et. al. [1] ran their
tool on and prove our effectiveness by comparing
the sets of results. These applications include
faqforge, webchess, schoolmate, and phpsysinfo
(all openly available).

• How is the coverage of our test geneartion tool?
We will evaluate this by calculating the ratio
of the number of PHP statements experienced
and total number of PHP statements in the ap-
plication. We aim to prove that exploding the
JavaScript will enhance the coverage of our tool.

• Does adding PHPunit test case generation im-
prove our fault finding? We will implement this
feature as an optional feature that can be turned
on and off. We will run the application with this
feature on and repeat the run with the feature
off. Then, we will compare our results of these
two runs to determine the effectiveness in terms
the number of faults found in the application in
either run. We will also keep track of the over-
head of running the tool with the feature on and
off.

5

• Does running the JavaScripts improve the fault
finding and localization? This will also be imple-
mented as a feature that can be turned on and
off. We will evaluate this much like the PHPunit
feature. We will also measure for additional cov-
erage due to exploding the JavaScript.

• Does dataflow add overhead to the application?
Is it negligable or too much for practicality? We
will implement this as an optional feature and
run the similar evaluation as the previous two
features on JavaScript explosion and PHPunit
generation. The overhead will be increased, but
is it signficant enough to leave out of the tool
when considering its contribution to effectively
finding faults.

• Does this improve testing on industry-level ap-
plications? We will test our tool on industry ap-
plications after rigorous testing of our tool on the
different test suites as mentioned above. If we
are able to have industry professionals use this
tool successfully, we will have proven a practical
and efficient tool.

• Is our tool practical?

• Does our tool perform just as well or outperform
previous work with the additional features? By
implementing the features as optional, we are
able to turn them on and off and test all possible
combinations of features in order to completely
evaluate our tool. Our goal is not to introduce
significant overhead when comparing against the
effecitiveness of finding faults.

• What is the coverage of our tool across each in-
dividual application? With our features, namely
the JavaScript explosion, we want to see if our
coverage increases and if the increase leads to
more bug finding.

6 Summary of Forseen Contri-
butions

We plan to contribute the following to the state of
the art:

• A tool that checks that the application is not
only outputs syntactically correct HTML but
also functionally behaves in the intended man-
ner.

• A tool that uses automated PHPUnit generation
as an oracle to determine correct functionality of
the application.

• A tool that is both efficient and effective in find-
ing semantic and syntactic bugs in PHP web ap-
plications.

• A tool that is practical and usable in the indus-
try.

• A tool that expands JavaScript in the web ap-
plication to explore more PHP code and get a
higher code coverage.

References

[1] Shay Artzi, Adam Kiezun, Julian Dolby, Frank
Tip, Danny Dig, Amit Paradkar, and Michael D.
Ernst. Finding bugs in dynamic web applica-
tions. In ISSTA ’08: Proceedings of the 2008 in-
ternational symposium on Software testing and
analysis, pages 261–272, New York, NY, USA,
2008. ACM.

[2] Michael Benedikt, Juliana Freire, and Patrice
Godefroid. Veriweb: Automatically testing dy-
namic web sites. In 11th International WWW
Conference, 2002. Bell Laboratories, Lucent
Technologies.

[3] P M Pawlowski D L Dill D R Engler C Cadar,
V Ganesh. Exe: Automatically generating in-
puts of death. CCS, 2006.

[4] Todd Coopee. Put dynamic web pages to the
test. InfoWorld, 22, 2000.

[5] S. Elbaum, S. Karre, and G. Rothermel. Im-
proving web application testing with user ses-
sion data. In 25 International Conference on
Software Engineering, volume 2003, pages 49–
59, 2003.

6

[6] D Marinov G Agha K Sen. Cute: A concolic
unit testing engine for c. FSE, 2005.

[7] Chien-Hung Liu. Data flow analysis and testing
of jsp-based web applications. Information and
Software Tecnology, 48, 2006.

[8] K Sen P Godefroid, N Klarlund. Dart: Directed
automated random testing. PLDI, 2005.

[9] Filippo Ricca and Paolo Tonella. Analysis and
testing of web applications. In 23 Interna-
tional Conference on Software Engineering, vol-
ume 2001, page 25, 2001.

[10] Sreedevi Sampath, Sara Sprenkle, Emily Gib-
son, Lori Pollock, and Amie Souter Greenwald.
Applying concept analysis to user-session-based
testing of web appications. In IEEE Transac-
tions on Software Engineering, volume 33, 2007.

[11] Sebastian, Gregg Rothermel, Srikanth Karre,
and Marc Fisher II. Leveraging user-session data
to support web application testing. IEEE Trans-
actions on Software Engineering, 31(3):187–202,
2005.

[12] Gary Wassermann, Dachuan Yu, Ajay Chander,
Dinakar Dhurjati, Hiroshi Inamura, and Zhen-
dong Su. Dynamic test input generation for web
applications. In ISSTA ’08: Proceedings of the
2008 international symposium on Software test-
ing and analysis, pages 249–260, New York, NY,
USA, 2008. ACM.

[13] X Du Y Wu, J Offutt. Modeling and testing
of dynamic aspects of web applications. 2004.
Submitted For Publication. GM U.

7

