
Improved Natural Language Searching by Included Structural
Information

December 9, 2008

Abstract

As applications become more complex with mil-
lions of lines of code, maintaining this code be-
comes an increasing burden. One fundamental
set of tools involved in helping code maintenance
finds segments of code given a higher-level con-
cept. Although a number of techniques exist for
this task, they have a number of issues. This
paper discusses these limitations and proposes
a number of techniques and studies which help
define the problem, create bench marks and sig-
nificantly improve the results of state of the art
methods.

1 Introduction

A large portion of development time is spent
maintaining code. Maintaining code generally
involves fixing bugs, adding new features and
refactoring. Fixing bugs often involves read-
ing bug reports which are written using abstract
concepts of what is wrong with the code. These
abstract concepts then need to be used to find
the incorrect code. This is a difficult task and
any tools that help are a great benefit to develop-
ers. Adding new features typically involves two
things, finding where the code needs to be added

for the new feature and finding related code
which can be used. Both of these searches re-
quire the programmer to map concepts to code.
In some cases it is faster for a programmer to
rewrite code than to find it. This of course is
a huge waste of time. Refactoring generally in-
cludes finding duplicates and regrouping code by
concepts. Code can be refractored into what are
called aspects. These are sections of code related
to particular concepts. All of these tasks can be
greatly improved by tools which help program-
mers find concepts in code. This of course is the
concept assignment problem, the problem this
proposal aims to create and evaluate tools to as-
sist programmers in these tasks. The proposed
methods and studies attempt to fulfill a number
of goals. They attempt to set forth a stricter def-
inition of the problem, including a better sense
of the problem’s upper bound. They also hope
to achieve better results for solving this method
than the state of the art approaches. Finally
they hope to improve the output of find concept
tools to make the end result more useful.

2 Background

The concept assignment problem deals with
mapping sections of an applications source code

1



to a particular concept or feature. Concepts
represent functionality which exists in the ap-
plication. For instance, a library book tracking
application may have functionality which allows
books in the system to be marked as checked
out. In this case ”is a book checked out” is
considered a concept which maps to sections of
code which checks to see if a book is marked as
checked out. Due to object oriented and pro-
cedural practices, code sections which map to
a concept may be located throughout an appli-
cation’s source code. This makes the problem
of locating concerns difficult. There are sev-
eral major approaches to concern location – lex-
ical searches, information retrieval techniques,
static program analysis, dynamic program anal-
ysis, and combined approaches.

3 State of the Art

3.1 Lexical Searches and Information
Retrieval Techniques

Simple regular expression-based searches are of-
ten helpful in locating concerns. These searches
typically have high recall but low precision due
to over-generalization. It can be challenging
to write regular expressions which represent a
concern. Also these methods have difficulty
handling synonyms and different word forms.
Grep[8] is a popular lexical searching tool.

Latent semantic indexing (LSI) has been suc-
cessful in many information retrieval tasks. LSI
works by reducing the dimensions of the search
space. This is very useful since lower dimensions
result in quicker searches and automatically in-
cludes synonymies in searches. LSI was first ap-
plied to this problem by Andrian Marcus et al
and was shown in some cases to outperform Grep
[7]. Google, a popular search engine, now in-

cludes LSI[2]. Google also provides a search tool,
Google Desktop, which also implements LSI[1].
Dapeng Liu and Shaochun Xu explore challenges
of using LSI on this problem and compare Google
desktop search to grep[6].

3.2 Static Program Structure

Another approach uses the static structure of a
program to find concerns. Call graphs, depen-
dence graphs and other static analysis methods
can group code that is scattered across an ap-
plication. The intuition is that these natural
code groupings belong to single concerns. For
instance, a function which calls another function
is likely related to the same concept and an ob-
ject which inherits from another object is likely
related to that object. Robillard and Murphy
have done much work in providing the proof of
concept for this intuition[11, 10, 9]. Using histor-
ical information, such as when and where code
was added can help locate concerns[3].

3.3 Dynamic Program Structure

Some information about a program’s structure
can only be gathered by executing it. Execution
traces and other dynamic analysis methods can
provide insight into where a feature is located in
an application’s source code [4]. For this to be
effective, the feature being looked for has to be
executed. This causes some problems since not
all features can be manually enacted. Also the
feature may have bugs which affect its execution,
since concern location is often used to find bugs.

3.4 Combined Approach

One of the biggest disadvantages of using pro-
gram structure is that there is no clear sense of
where to start. Program structure is useful in

2



grouping code into potential concerns but which
group represents the sought concern? Generally
the user must seed the tools that use program
structure. Natural language based-searching can
be a great way to find a good starting seed
and can provide information which is lacking
in program structure. Information provided by
program structure is going to be different than
the information provided by natural language.
Thus combining both natural language and pro-
gram structure should show an increase in per-
formance. The work of Pollock, Shanker, Shep-
herd, Hill and Fry demonstrate this increase and
provide tools for using both kinds of information
to locate concerns[5, 12].

4 Challenges and Goals

The concept assignment problem is difficult be-
cause code semantics is difficult to extract.
There is no definite, objective meaning to code.
The same code can be mapped to different con-
cepts. For instance, a function that sorts a list
might be organizing music in playlists or rank-
ing search results. Thus the notion of a con-
cept is tied to an application. Approaches which
use only source code will have a difficult time
creating this mapping since the concept assign-
ment algorithm is blind to the purpose of the
application. More specifically precision and re-
call should be increasable with new techniques.
Current techniques generally map a concept to a
procedure but more then one concept can exist
in a function.

4.1 Lexical Searches

Pure lexical searches also have trouble with this
mapping since the search queries are very close
to the abstract idea of the concept. This is

to say that search queries know nothing about
the code they are searching. Identifiers pro-
vide some information however the same iden-
tifiers likely reappear throughout the code, re-
gardless of what the code is doing. Information
retrieval mitigates this a little by weighing iden-
tifiers which are very common in the code less.

4.2 Combined Approach

Combining both structural and identifier infor-
mation seems like the right idea however it is not
so straightforward. Structural information suf-
fers from lack of knowledge about the goals and
intents of the application. The code segments
have meaning in terms of their relation to other
code segments but they have no semantic bind-
ings to the world. Identifier and other natural
language information tends to be a bit too ab-
stract to describe what the code is doing. Some
attempts have been used to combine both types
of information but they generally are sequential
instead of parallel. Lexical search results can be
filtered with structural information or vice versa,
but this is using the information independently
rather than dependently.

5 Proposed Research

Given the aforementioned limitations there are
a number of things which could greatly improve
the state of the concept assignment problem.
The following ideas range from studies which at-
tempt to better define the problem to creating
new forms of output which try to increase the
utility of existing approaches. All of the pro-
posed ideas attempt to fix limitations in state
of the art methods and generally improve upon
existing tools.

3



1. Perform a study to compare the state of the
art techniques to humans performing the
concept assignment. On small manageable
projects, automatic concept assignment is
likely upwardly bounded by human ability.
A study which measured humans’ ability to
map concepts to code may give the field a
better sense of how they are doing in solving
this problem.

2. Use identifier information to try to come up
with more worldly semantic bindings. For
instance, if the code is sorting a list, iden-
tifiers may contain information about what
the list is holding and why it is being sorted.
A model of the code could be built. This
model or parts of it could be bound to con-
cepts based on the identifiers and comments
in the code. This model concept mapping
could then be searched.

3. Lexical searches could interpret queries in
a more source code-friendly way. For in-
stance, if add is in the query: We might
want to search for *.push(*). This could
be based on the application being searched.
With some notion of what adding an ele-
ment to a data structure requires, methods
which perform this task in the application
could be found. Then these method names
could be included in the lexical search. Just
adding language-specific functions and key-
words related to the query to the query
might greatly improve performance.

4. Another way to combine structural informa-
tion and lexical search is to search through
an expanded version of the code. A lot of
structural information comes from the call
and inheritance structure. If a method call
is replaced by its definition, and classes con-

tain copies of all of their inherited meth-
ods, this should help improve IR techniques
which use term frequency. Obviously, re-
cursion would have to be handled. For
recursion, only the top call should be re-
placed. Natural language information which
occurs in recursion and other loops, could
be weighted or considered plural. In ad-
dition to call and inheritance information,
type information carries a lot of informa-
tion. Every variable V could be replaced by
V:TypeOf(V). The general idea is to orga-
nize structural information into the occur-
rence natural language information so lexi-
cal searching can be improved.

5. Treat the concept assignment problem
like the document classification problem.
Source code across applications is not that
different. Given a large set of mapped code
and concepts. Perhaps statistical methods
could learn the relationship.

6. Create a commenting system that allows
programmers to bind their code to a con-
cept. Some sort of ontology could be used
to make sense of this concept.

7. Instead of returning a list of methods or a
graph perhaps a code coloring would be use-
ful. This way methods could be divided as
needed. Programmers would see their con-
cept highlighted so they could more quickly
address the code they are searching for.

6 Evaluation Plan

1. The study described under 1 in the previous
section would be evaluated using f-measure,
the harmonic mean between recall and pre-

4



cision. It would try to answer these ques-
tions: How does the state of the art com-
pare to human performance? And what is
the upper bound on how well a concept as-
signment method can perform?

2. The idea described under 2 in the previous
section should be evaluated using f-measure
against other state of the art methods. It
should be run on large open source projects.
The evaluation set should be created by an
unbiased party. This idea is trying to an-
swer: Can a model of the code be used to
create more worldly semantic bindings for
code snippets? This idea would implement a
model generator which would create a model
of the code. To simplify this idea a small
domain should be tried first.

3. The third idea should also be evaluated us-
ing f-measure as described in 2. Work with
java so all the standard java functions and
keywords could be known by a query inter-
preter. The query interpreter would map
this knowledge to the user query. Query
expansion would be done by adding func-
tions which call known functions, semantics
would be combined to generate meaning for
the new function. This idea would try to an-
swer the question: Does program language
knowledge improve the f-measure?

4. The fourth idea should also be evaluated us-
ing f-measure as described in 2. This would
implement a code expander. The code ex-
pander would expand java code as described
under this idea. This idea would try to an-
swer the question: Does expanding the code
to represent how it runs improve searching
across it?

5. The fifth idea should also be evaluated us-
ing f-measure as described in 2. This idea
requires a large set of mapped code and
concepts. This is not readily available and
would have to be constructed. It may be
possible to construct this using some sort
of boot strapping. This idea would try to
answer the question: Can the concept as-
signment problem be treated as a version of
the document classification problem?

6. The sixth idea would require a detailed
specification of the concept language to be
written. The system could be incorporated
into something akin to JavaDocs. To evalu-
ate this idea a study should be done to see
if this idea saves time. The time taken to
write in comments in this concept language
should be subtracted from the time gained
in searching for concepts.

7. Instead of returning a list of methods or a
graph perhaps a code coloring would be use-
ful. This way methods could be divided as
needed. Programmers would see their con-
cept highlighted so they could more quickly
address the code they are searching for.

7 Summary of Foreseen Contri-
butions

These ideas should help improve the concept as-
signment problem results. This will allow pro-
grammers to have a far easier time managing
code. At least one of these ideas should improve
the f-measure. Creating an easier way for pro-
grammers to specify what a portion of code is
doing will have many benefits. This includes fix-
ing bugs, adding features and refactoring.

5



References

[1] Google desktop,
http://www.desktop.google.com/.

[2] Google, http://www.google.com/.

[3] Silvia Breu, Thomas Zimmermann, and
Christian Lindig. Mining eclipse for cross-
cutting concerns. In MSR ’06: Proceedings
of the 2006 international workshop on Min-
ing software repositories, pages 94–97, New
York, NY, USA, 2006. ACM.

[4] Thomas Eisenbarth, Rainer Koschke, and
Daniel Simon. Derivation of feature compo-
nent maps by means of concept analysis. In
CSMR ’01: Proceedings of the Fifth Euro-
pean Conference on Software Maintenance
and Reengineering, page 176, Washington,
DC, USA, 2001. IEEE Computer Society.

[5] Emily Hill, Lori Pollock, and K. Vijay-
Shanker. Exploring the neighborhood with
dora to expedite software maintenance.
In ASE ’07: Proceedings of the twenty-
second IEEE/ACM international confer-
ence on Automated software engineering,
pages 14–23, New York, NY, USA, 2007.
ACM.

[6] Dapeng Liu and Shaochun Xu. Challenges
of using lsi for concept location. In ACM-SE
45: Proceedings of the 45th annual southeast
regional conference, pages 449–454, New
York, NY, USA, 2007. ACM.

[7] Andrian Marcus, Andrey Sergeyev, Vaclav
Rajlich, and Jonathan I. Maletic. An infor-
mation retrieval approach to concept loca-
tion in source code. In WCRE ’04: Proceed-
ings of the 11th Working Conference on Re-

verse Engineering, pages 214–223, Washing-
ton, DC, USA, 2004. IEEE Computer Soci-
ety.

[8] G. Project. grep. online, September 2006.

[9] Martin P. Robillard. A representation for
describing and analyzing concerns in source
code. In ICSE ’02: Proceedings of the 24th
International Conference on Software En-
gineering, pages 721–722, New York, NY,
USA, 2002. ACM.

[10] Martin P. Robillard and Gail C. Murphy.
Concern graphs: finding and describing
concerns using structural program depen-
dencies. In ICSE ’02: Proceedings of the
24th International Conference on Software
Engineering, pages 406–416, New York, NY,
USA, 2002. ACM.

[11] Martin P. Robillard and Gail C. Murphy.
Representing concerns in source code. ACM
Trans. Softw. Eng. Methodol., 16(1):3, 2007.

[12] David Shepherd, Zachary P. Fry, Emily Hill,
Lori Pollock, and K. Vijay-Shanker. Us-
ing natural language program analysis to
locate and understand action-oriented con-
cerns. In AOSD ’07: Proceedings of the 6th
international conference on Aspect-oriented
software development, pages 212–224, New
York, NY, USA, 2007. ACM.

6


