
Merging Duplicate Bug Reports by Sentence Clustering

Abstract

Duplicate bug reports are often unfavorable because
they tend to take many man hours for being identified
as duplicates, marked so and eventually discarded. In
this time, no progress occurs on the program in ques-
tion, and is justifiably an overhead which should be
minimized. Considerable research has been carried
out to alleviate this problem. Many methods have
been proposed for bug report categorization and du-
plicate bug report detection. However, it is often the
case that a duplicate bug report can provide some
additional information about a problem which could
help in faster resolution of the bug. We propose that
duplicate bug reports be merged when possible in-
stead of being discarded, so that maximum informa-
tion is captured. We propose a clustering-based algo-
rithm to group together similar sentences and create
a union of bug reports considered duplicates of each
other.

1 Introduction

Open-source projects make the source programs that
constitute the project available to the general pub-
lic with the freedom to modify, recompile and redis-
tribute them. Like any other project, open-source
projects will have defects in them, which require re-
pair. These defects are called bugs, and reports of
them are called bug reports. Bug reports also very of-
ten have requests for new features, instead of report-
ing any defect. In such projects, discovering these
defects and reporting them is not limited to any spe-
cific testing team. Anybody interested in using the
project, when they discover bugs, can report them.

Anyone who reports bugs from an open-source
project can be considered as belonging to the testing

team of the project. This implies that bug reports
will be large in number. To manage such large num-
bers of bug reports, open-source projects typically set
up open bug repositories and bug tracking systems.
Bugzilla1 is an example of an open bug tracking sys-
tem. People who use open-source projects and wish
to report bugs in them may do so using such a repos-
itory and a tracking system.

While the advantages of such a model for reporting
bugs are obvious, it also has problems, which brings
us to what is called bug triaging. This is the process
of deciding what to do with an incoming bug report
[12]. Part of this process is assigning the bug re-
port to an appropriate developer. While this process
is quite tedious in itself, it is exacerbated by dupli-
cate bug reports—the elimination of which is another
part of triaging. The project does not undergo any
improvement in the process of eliminating duplicate
reports and it is therefore an overhead which should
be minimized to the extent possible.

Duplication of bug reports happens because there
are several people from different parts of the world
using the same open-source project and often, many
of these people discover the same bug and, conse-
quently, report them. For example, from the Mozilla
Firefox bug repository [13]:

1. Bug-239223: (Ghostproc) [Meta]
firefox.exe doesn’t always exit after
closing all windows; session-specific
data retained

2. Bug-260331: After closing Firefox, the
process is still running. Cannot
reopen Firefox after that, unless the
previous process is killed manually

1http://www.bugzilla.org/

1

The defect spoken of is the same, but two bug re-
ports have been created for it. One of these bug re-
ports should be discarded as it is redundant to have
both of them in the repository. Next, consider these
two bug reports, again from the Mozilla Firefox bug
repository [13]:

1. Bug-244372: ‘‘Document contains no
data’’ message on continuation page of
NY Times article

2. Bug-219232: random ‘‘The Document
contains no data.’’ Alerts

These bug reports, although they speak of the
document-containing-no-data problem, are not ex-
actly duplicates of each other. One bug report speaks
of a specific case (NY Times) while the other report
speaks about the problem occuring randomly. In such
situations, the triager would probably prefer to merge
(take a union of) these two reports into a single one,
which the concerned developer can then repair.

We want to attempt to address this problem of
merging or unifying duplicate or similar bug reports
so that no information from any of the reports is lost
and at the same time no information is duplicated.

2 Background

2.1 About a Bug Report

The general anatomy of a bug report is as shown in
Table 1 [10].

The Summary field provides a very brief descrip-
tion of the problem being reported. It can be thought
of as the title of a bug report. The Project Name field
is usually the name of the product in which the bug
being reported was found. The Severity field is in-
dicative of the priority of the bug: a higher-severity
bug must be worked on and resolved before a lower-
severity bug is resolved. Often deadlines are defined
for bugs of high severity. The Status field indicates
what the present status of the bug is. This is de-
scribed in the next few lines. The Description field
is where the bug reporter supplies information about
when the problem occurred, what was being done at

Table 1: Fields in a Bug Report
Field Description

Summary Concise description of the prob-
lem

Project Name Which project the report concerns

Number A unique identification number for
this report

Tester The name of the tester

Date The date of submission

Severity How important it is that this is
fixed

Status Indicates the general health of a
bug

Type Whether it is a bug report or a
change request

Test Object What software the test was per-
formed on

Version What version of the software was
used

OS Which operating system the soft-
ware was run on

Test Specifica-
tion

Reference to the test case used

Description A description as to what went
wrong

Appendices Attachments such as test logs etc.

Remarks Comments

the time the bug occurred and how to reproduce the
problem. This field is manually typed by the reporter
in natural language and is a key field in resolving the
bug. Very often, software projects have guidelines as
to what information should be provided in this field.
The Appendices field consists of any necessary attach-
ments such as any input files necessary in reproducing
the bug, any malformed/anomalous output files etc.

The Status field takes one of several values in the
“life cycle” of a bug report. They are as follows [1].
When a new bug report is filed, the status is set to
NEW or UNCONFIRMED. After triaging, i.e. when
the bug report has been assigned to a developer or if
a developer accepts responsibility for it, the status is
changed to ASSIGNED by the triager. When a bug
report is closed, its status is set to RESOLVED. It

2

may be further marked as VERIFIED if it is being
verified by a quality assurance group or CLOSED if
the bug report is closed for good.

A bug report may be resolved in many ways.
Bugzilla provides the following resolution statuses for
a bug. If a source-program-level change was made to
address the bug, the status is set to FIXED. If the
bug report is found to be a duplicate of an exist-
ing report, the status is set to DUPLICATE. In this
case, the bug report is makrked with the number of
the duplicating bug. If the developer is unable to
reproduce the problem, the status is set to WORKS-
FORME. The resolution status is set to WONTFIX
if the bug report describes a problem that will never
be fixed, INVALID if the problem described is not
a bug and MOVED if the problem described should
belong in another bug database.

2.2 Related Work

Researchers have not defined exactly what ‘duplicate’
means, in that there is no single governing rule that
classifies two bug reports as duplicates or otherwise.
Different methods have been proposed and two re-
ports being duplicates or not depends on the method.

Considerable research has been carried out on cat-
egorization of bug reports for bug assignment. Anvik
et al. [2] have proposed a semiautomatic bug as-
signment method which uses a supervised machine-
learning algorithm. They report having obtained
64% and 57% precision in the Mozilla Firefox and
Eclipse repositories, respectively, of to who to assign
a bug. Čubranić and Murphy [12] have proposed a
näıve Bayesian classifier for semiautomatic bug triag-
ing, and they report that it can predict 30% of cor-
rect assignments of bug reports to developers. This
is also a machine-learning-based technique. Di Lucca
et al. [8] have also proposed a semiautomatic bug
assignment approach which is based on information
retrieval and machine-learning. They have reported
that, depending on the classification model used, 71%
to 84% of the assignments made were correct. All of
these approaches use only natural language informa-
tion. Podgurski et al. [9] have suggested a method
of classifying bug reports based on supervised and
unsupervised pattern classification and multivariate

visualization. They report that their experiments on
three programs—gcc, javac and Jikes—showed that
their approach is effective. However, their approach
is targeted at prioritizing bug reports by severity and
frequency, and not for bug assignment. Francis et al.
[4] have proposed two tree-based methods to refine
initial classification of failure reports. Their approach
is based on clustering. This work is built upon [9].
These approaches [9, 4] rely on execution information
alone.

In addition to bug report categorization, a lot of
research has also been carried out on duplicate bug
report detection. Runeson et al. [10] have proposed
a method to detect duplicate bug reports based on
natural language information; their approach is based
on information retrieval. They carried out their ex-
periments on the bug repository at Sony Ericsson
Mobile Communications and they report that 2/3
of duplicates can possibly be found using natural
language processing techniques. Hiew [5] has pro-
posed a method for detection of duplicate bug reports
based on natural language information and clustering
which is similar to information retrieval. Jalbert and
Weimer [6] have proposed a classifier to detect dupli-
cate bug reports as they are created. Their approach
is based on surface features, textual similarity met-
rics and graph clustering algorithms. Their classifier
filters out 8% of duplicates and allows at least one
report per real defect to reach developers.

Wang et al. [13] have described an approach to
detect duplicate bug reports by combining both nat-
ural language information and execution information
(execution traces from bug-revealing runs). From
their experiments, they were able to report that
their method detects 67%-93% of duplicates from the
Mozilla Firefox bug repository, as compared to 43%-
72% using NLP techniques alone.

Also, there have been statistical studies of existing
bug repositories. Anvik et al. [1] provide an initial
characterization of the Mozilla Firefox and Eclipse
bug repositories to understand better the interactions
between developers and bug repositories, describe the
duplicate bug and bug triage problems and also dis-
cuss how they apply machine-learning to help in the
automation of these processes. Sandusky et al. [11]
performed an analysis to identify bug report networks

3

(groups of bug reports because of duplication, de-
pendency or reference relationships) to help manage
problems better. Ko et al. [7] performed an analy-
sis on how people describe software problems. They
studied several bug report titles and found that they
were sufficiently regular to be parsed correctly 89% of
the time, paving way for many automated analyses.

2.3 An Open Problem

As noted above, there has been considerable amount
of research targeted at detecting duplicate bug re-
ports and categorizing bug reports for bug assign-
ment and prioritization. However, to the best of our
knowledge, there is little work done in the direction
of merging duplicate bug reports. Bettenburg et al.
[3] have mentioned that it is a good idea to merge
duplicate bug reports, but have not presented any
strategy for it.

Many times, additional information about a bug
can be obtained from duplicate bug reports that aid
developers in fixing problems faster [3]. Alan Page,
Director of Test Excellence at Microsoft, mentions
on his blog the following points about why worrying
about duplicate bugs is bad2:

1. If there is any sort of negative consequence for
a tester entering a duplicate bug, that tester
will err on the side of not entering a bug at all
if they are worried about entering a duplicate
bug.

2. Bug triagers know the system well and can
quickly identify if a bug is a duplicate or not, in
much lesser time than a tester or a user would
take to look through the many existing bug
reports before they file one.

3. Often, the information in one bug report
doesn’t provide enough information to diagnose
the problem. Another report on the same issue
may lead the developer to the root cause. Most
bug database systems have way to mark bugs
“related” (or “duplicate”) and retain a link
between the bugs.

2http://blogs.msdn.com/alanpa/archive/2007/08/01
/duplicate-bugs.aspx

Oftentimes, detailed bug reports filed by advanced
users are discarded as they are found to be dupli-
cates of already-filed detail-lacking bug reports filed
by novice users. Not only does this cause frustration
to the persons filing the detailed bug reports, but also
useful information which could help resolve the bugs
is lost [3]. Therefore, we believe merging bug reports
will be of considerable help to developers in resolving
bugs.

3 Challenges

We consider the merging of only the Description field.
The other fields consist mostly of fixed information
not amenable to merging. The Summary fields from
the bug reports can be simply concatenated with an
indication from which bug report they come from and
separated by a special character, because they are
just a few words in length.

The objective of merging duplicate bug reports is
to obtain a “union” of the bug reports with similar
sentences grouped together. By “similar”, we mean
sentences that speak of the same thing. For example,
sentences from duplicate bug reports that speak of
how to reproduce the problem are considered similar,
sentences that describe what was being done when
the problem occurred are considered similar. The
principal challenge we face is finding out how we can
compare sentences for similarity.

Consider the following Description fields from bug
reports filed on Bugzilla for the Bugzilla product it-
self:

1. Bug-125888: It would be nice if ***
This bug has been marked as a duplicate
of xxx *** included the summary of and
a link to bug xxx, and similarily if
*** Bug yyy has been marked as a
duplicate of this bug. *** included
the summary of and a link to bug yyy.

2. Bug-96787: When a bug is marked a
duplicate, you get the following in the
email: >>> *** This bug has been
marked as a duplicate of XXXXX *** It
would be nice if this also provided a

4

link to the bug, so you could go and
look at it.

The first bug report requests a feature in one par-
ticular scenario, whereas the second bug report re-
quests for the same feature in two different scenar-
ios. These two bug reports are worthy candidates for
merging in, perhaps, the following way:

1. Bug-nnnnnn: It would be nice if ***
This bug has been marked as a duplicate
of xxx *** included the summary of and
a link to bug xxx ; When a bug is
marked a duplicate, you get the
following in the email: >>> *** This
bug has been marked as a duplicate of
XXXXX *** It would be nice if this also
provided a link to the bug, so you
could go and look at it ; and
similarily if *** Bug yyy has been
marked as a duplicate of this bug. ***
included the summary of and a link to
bug yyy.

The first portion of the bug report and the sec-
ond bug report are together because they are similar
sentences, followed by the second portion of the first
bug report. Such intelligent and intuitive grouping of
sentences may be very hard to achieve, but it would
certainly be of help if it can be done. Having similar
information grouped together in merged bug reports
will lend a degree of coherence to them.

4 Proposed Research

4.1 Proposed Approach

In our approach, we make the assumption that we are
presented with a set of bug reports that have been
classified as duplicates. We propose to do the merg-
ing using a clustering-based algorithm. Specifically,
given a set of duplicate bug reports, we want to clus-
ter the similar sentences from the Description fields
in them together in the output merged bug report.

We can develop constraints or rules that can guess
the context of a word correctly. For example, we can

have rules that can tell if the word tree is used in the
computer-science-context, perhaps depending on the
words surrounding it.

The first stage involves breaking of the sentences in
the paragraph present in a bug report’s Description
field. This will give us a set of sentences. Thus, we
would be creating several sets of sentences for the
set of bug reports provided as input. We extract the
textual information of the Description field of the bug
report. This set will be used in the second stage for
standard preprocessing.

The second stage of the approach is used in per-
forming the preprocessing of information available
in the description of the bug report. This includes
stemming and removal of the stop words from the
set of sentences obtained in the first stage. We get
a set of words which we would classify as keywords
in this paper. The keywords generated from all the
reports are grouped together by meaning, i.e., we cre-
ate synonym lists. The synonym lists are augmented
by more words (from a thesaurus). While doing so,
we address polysemy, in that we create separate syn-
onym lists for different connotations of a word. For
instance, tree or chip will have separate synonym lists
for each of their meanings. We make use of the afore-
mentioned constraints for the language under consid-
eration while creating the word lists.

The next stage involves correlating the sentences
that appear to reason the same information in their
descriptions. We create a matrix that has the sen-
tences along its rows and synonym lists along its
columns. sentences and words created in the previous
stages. If in a sentence, a word from a synonym list
appears, then, an entry is made in the intersection
of the corresponding row (sentence) and the column
(synonym list). In this manner, we construct the en-
tire matrix and mark the values based on comparison
of keyword lists in the sentences. This stage provides
us with a form of clustering where we are able to
group the relevant descriptions based on the number
of columns they relate to in the matrix.

The final stage includes outputting the clusters ob-
tained. This final output will be the merged Descrip-
tion field of all the duplicate bug reports. The other
fields are simply concatenated with a indicator that
tells which bug report each of those fields are from.

5

4.2 Evaluation Plans

We plan to evaluate our approach in a two-step pro-
cess. First, we plan to add manually duplicate re-
ports to an existing repository and test our approach
against it to check the correctness of our approach.
Next, we plan to conduct user-based studies to ascer-
tain the effectiveness of our approach.

We seed “fake” duplicate bug reports into an exist-
ing bug repository repository to ensure and provide
sufficient test data for the evaluation of this approach.
We can provide the tool with several pairs of bug re-
ports. Some pairs will consist of duplicate reports.
We can then run the pairs against the tool. Then, we
will manually verify the results from the evaluation
against the predicted results. This will not only give
us a clear idea about the correctness of the tool, but
we would also be able to verify the extent to which
the tool helps in merging of redundant bug reports.

Secondly, we would want to consider user-based
studies for evaluating our approach on “real” dupli-
cate bug reports reported in real-word bug reposito-
ries. This would involve taking multiple sets of bug
reports (assuming that some contain duplicate bug
reports), run the tool against the real world data and
compare the results. A triager would be able to com-
ment on the effectiveness of our approach. The in-
volvement of the triager in this approach enables us to
generalize the level to which the tool works correctly.
Once we have generalized and validated on the result
sets from the evaluation, we can exclude the triager
from verification. This would mean that the tool has
been validated to work efficiently in merging redun-
dant reports without margin for error.

5 Summary and Foreseen Con-
tributions

An approach for merging duplicate bug reports has
been presented. Previous related work is directed at
identification of duplicate bug reports and categoriz-
ing bug reports. Our approach is novel in that it ad-
dresses the problem of merging many duplicate bug
reports into a single, coherent bug report. Being able
to merge bug reports enables us to capture more in-

formation about a given bug than is available in any
one bug report. This, we believe, is a key contribu-
tion to the resolution of bugs. A detailed bug report
will not be discarded if found to be a duplicate of
an already-filed not-so-detailed bug report; instead,
it will contribute more information that could clearly
point out the direction in which to proceed in debug-
ging. In addition to this, merging reports can also
reduce the work load of developers—all the informa-
tion from all the duplicate reports is grouped and
available in one place and there will be no need to
look in several reports.

References

[1] J. Anvik, L. Hiew, and G. Murphy. Coping
with Open Bug Repositories. In Proc. of OOP-
SLA Workshop on Eclipse Technology eXchange
(ETX), pages 35–39, 2005.

[2] J. Anvik, L. Hiew, and G. Murphy. Who Should
Fix This Bug? In Proc. ICSE, pages 317–380,
2006.

[3] N.P. Bettenburg, R. Zimmermann, and T.S.
Kim. Duplicate Bug Reports Considered Harm-
ful . . . Really? In Software Maintenance, 2008.
ICSM 2008. IEEE International Conference on,
pages 337–345, 2008.

[4] Patrick Francis, David Leon, Melinda Minch,
and Andy Podgurski. Tree-Based Methods for
Classifying Software Failures. In ISSRE ’04:
Proceedings of the 15th International Symposium
on Software Reliability Engineering, pages 451–
462, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[5] L. Hiew. Assisted Detection of Duplicate Bug
Reports. Master’s thesis, University of British
Columbia, Canada, 2006.

[6] N. Jalbert and W. Weimer. Automated Dupli-
cate Detection for Bug Tracking Systems. In
Dependable Systems and Networks With FTCS
and DCC, 2008. DSN 2008. IEEE International
Conference on, pages 52–61, 2008.

6

[7] Andrew J. Ko, Brad A. Myers, and Duen Horng
Chau. A Linguistic Analysis of How People De-
scribe Software Problems. In VLHCC ’06: Pro-
ceedings of the Visual Languages and Human-
Centric Computing, pages 127–134, Washington,
DC, USA, 2006. IEEE Computer Society.

[8] G. A. Di Lucca, M. Di Penta, and S. Gradara.
An Approach to Classify Software Maintenance
Requests. In ICSM ’02: Proceedings of the Inter-
national Conference on Software Maintenance
(ICSM’02), page 93, Washington, DC, USA,
2002. IEEE Computer Society.

[9] Andy Podgurski, David Leon, Patrick Francis,
Wes Masri, Melinda Minch, Jiayang Sun, and
Bin Wang. Automated Support for Classifying
Software Failure Reports. In ICSE ’03: Pro-
ceedings of the 25th International Conference on
Software Engineering, pages 465–475, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

[10] Per Runeson, Magnus Alexandersson, and Oskar
Nyholm. Detection of Duplicate Defect Reports
Using Natural Language Processing. In ICSE
’07: Proceedings of the 29th International Con-
ference on Software Engineering, pages 499–510,
Washington, DC, USA, 2007. IEEE Computer
Society.

[11] R. J. Sandusky, L. Gasser, and G. Ripoche. Bug
Report Networks: Varieties, Strategies, and Im-
pacts in a F/OSS Development Community. In
Proceedings of the 1st International Workshop
on Mining Software Repositories (MSR 2004),
pages 80–84, 2004.

[12] D. Čubranić and G. Murphy. Automatic Bug
Triage Using Text Classification. In Proc. SEKE,
pages 92–97, 2004.

[13] Xiaoyin Wang, Lu Zhang, Tao Xie, John An-
vik, and Jiasu Sun. An Approach to Detecting
Duplicate Bug Reports using Natural Language
and Execution Information. In Proc. of ICSE
’08, pages 461–470, 2008.

7

