
Regression Test Case Prioritization –
A Contribution-Based Approach

CISC 879 - Software Testing and Maintenance

12/9/2008

Abstract

Regression test case prioritization techniques have
traditionally been studied as a function of objective
metrics such as code coverage and fault proneness,
which require much data analysis and computation
from software release to release. Moreover, such tech-
niques have traditionally been evaluated as a function
of fault detection effectiveness. Consequently, not
only applying the techniques is an expensive exercise,
the results focus on fault detection rates rather than
release-readiness, a more practical interpretation of
software quality. We therefore propose to approach
regression test case prioritization with a completely
different tack: We propose a novel approach to prior-
itize based on subjective but inexpensive, one-off hu-
man assessment of test cases’ contribution to predict-
ing release-readiness, thereby eliminating the inten-
sive data analysis and computation required to begin
the prioritization process. Further, to align closer to
industry software processes, we define the effective-
ness of a prioritization as the time required to pro-
nounce a software application release-ready. We be-
lieve these novel prioritization and evaluation meth-
ods will bring a new perspective to the state-of-the-
art.

1 Introduction

Due to the finite amount of time and resources avail-
able to any tester, the goal of prioritizing test cases is
to execute the test cases that best assess the quality
of a software application earliest. Test case prioriti-
zation is particularly relevant to regression testing for
a number of reasons. A tester’s primary focus for a
given software release is that release’s new features,
pushing regression testing to a secondary focus. At
the same time, regression test cases are often reused
or modified from previous releases. As the software

migrates from one release to another, the number of
regression test cases piles up, requiring a dispropor-
tionately large amount of the tester’s attention. With
prioritization, the tester can determine which regres-
sion test cases out of a large pool of candidates will
best predict the software’s quality, and mitigate risks
by executing those test cases first.

Although the incentives for regression test case pri-
oritization are high, the prioritization process is an
equally expensive and complex task due to the myr-
iad of factors that impact test case priority. Fault
proneness, code coverage at different levels of granu-
larity, data flow, perceived user importance – to name
only a few – all affect how test cases can be prioritized
within a test suite.

Much prior work has proposed various techniques
to prioritize test cases [13, 6, 14, 3, 12]. Currently
there is no single, most superior technique; each tech-
nique juggles between cost and effectiveness. There
are three common threads amongst the state-of-the-
art, however.

Firstly, before the prioritization task can begin,
data relating to the test cases’ power to predict soft-
ware quality must be set up. To the authors’ knowl-
edge, apart from one technique [17], all such data
setup requires significant code analysis, the track-
ing of fault detection and input data set histories,
and model building. The cost of preparation alone is
steep.

Secondly, recall that regression testing depends on
materials (test cases and historical data) built in pre-
vious release cycles. Some prioritization techniques
specific to regression testing [10, 12] require that the
aforementioned data setup be re-calculated for every
new release, incorporating the latest historical data
from the last release. As the software program and
the number of regression test cases become larger and
larger, the cost of this repeated data setup also be-
comes larger.

1



Thirdly, to evaluate the effectiveness of test case
prioritization techniques, researchers adopt the rate
of fault detection as the weapon of choice. From a
research point of view, this metric provides a mea-
surable and deterministic medium for defining and
comparing performance. From the point of view of
a software project manager in the industry, however,
the rate of fault detection is but one factor determin-
ing the quality of the software product. Most fre-
quently, a software release is bound by both quality
and time, in that the software must be released by a
certain deadline as long as it meets minimum qual-
ity standards. In practice, the project manager must
decide when the software is ready for release, thus
negotiating between quality and time constraint. In
fact, it is common practice to release a software with
unresolved defects as long as those defects are not
critical. Therefore we argue that to evaluate a prior-
itization technique more closely to industry practice,
a metric based on time to release-readiness is more
applicable than one based on fault detection alone.

The three observations above summarize three of
the limitations in the state-of-the-art. In this pro-
posal, we present a novel prioritization technique as
well as a novel evaluation technique that address
these three limitations. We hypothesize that a test
case’s power to predict software quality can be cap-
tured by contributing factors such as the amount of
features covered by the test case and the perceived
importance of those features. We propose to leverage
human domain experts to provide quick, minimal-
effort estimates of contribution scores, which can be
combined into an overall prioritization score. Such
human assessments need only take place once for
each test case, eliminating the need to re-calculate
the preparation data set for each release. We also
hypothesize that time elapsed is a viable metric for
evaluating a prioritization technique’s effectiveness.
The best prioritization is simply one that can verify
earliest that a software has reached acceptable qual-
ity standards and is cleared for release.

1.1 Overview of research goals

To the authors’ knowledge, our proposed prioritiza-
tion technique is the first attempt that prioritizes
purely based on subjective, human assessments. It
is also the first attempt that completely foregos fault
detection effectiveness and evaluate the technique
purely based on time budget. The goals of our pro-
posed research are therefore the following:
• Establish a prototype technique for prioritizing

regression test cases not based on data or code
analysis, but on one-off human assessments.

• Establish a list of test case contributing factors
for which human domain experts can provide as-
sessments with minimal effort. And from this list
of contributing factors, develop a method to de-
rive a prioritization score.

• Investigate that evaluating regression test case
prioritization based on time budget alone pro-
duces valid results that accurately predict soft-
ware quality.

2 Background

As a software application evolves from one version to
the next, testing is performed to verify that existing
as well as new features all function correctly. Regres-
sion testing is the portion of testing targeting exist-
ing features. Typically, regression test cases are recy-
cled from old test cases targeting then-new features in
the previous software version. As the software moves
through multiple release cycles, the number of regres-
sion test cases compounds quickly. While testers’ pri-
mary focus is the verification of new features, the cost
of completing secondary regression testing is often
disproportionately high. Moreover, testers have only
a finite amount of time and resources to complete re-
gression testing before the software must be released.
There is thus a critical need to execute regression
testing as effectively and efficiently as possible.

Most studies in the literature measure regression
testing effectiveness in terms of fault detection, while
others measure the amount of resources consumed.
Regardless of the metric used, testers seek to orga-
nize regression test cases so as to optimize that met-
ric. One technique is to select a subset of test cases to
execute, intentionally opting out on those test cases
that contribute least to the effectiveness metric. A
second technique is to prioritize test cases in some
order, intending to execute all the test cases thus pri-
oritized. These two techniques may be deployed sep-
arately or in conjunction. The focus of this proposal,
however, is on test case prioritization specifically for
regression testing.

A well prioritized regression test suite strikes an
optimal balance between prioritization cost, test ex-
ecution cost, and test effectiveness. It identifies test
cases that should be executed earlier so that faults
are detected as early as possible and code is covered
as early as possible.

2



2.1 State of the Art

Regression testing and test case prioritization are two
areas that have been heavily studied, often as sepa-
rate research problems and less commonly as a sin-
gle, combined problem. To our knowledge, Srikanth
and Williams’ work [17] is the closest to our proposed
research in that both techniques are based on sub-
jective, estimated factors. More importantly, both
techniques reflect industry software project prac-
tices more closely than other research-focused works.
Their prioritization technique is based on priority of
requirements, perceived code complexity, and cus-
tomer satisfaction. Not surprisingly, the most influ-
ential ingredient in their technique is customer satis-
faction. Their evaluation approach differs from our
proposed one as they use the traditional fault detec-
tion effectiveness as the success metric. Our proposed
evaluation method steps away from this mainstream
metric to consider release readiness as the primary
success metric. Although their work addresses both
regular and regression test cases, we draw inspiration
from their use of user-perceived contributing factors.

A number of other test case selection techniques
specific to regression testing fall on the mainstream
that is based on objective performance-oriented con-
straints and evaluate success by fault detection effec-
tiveness. While these techniques and their evalua-
tions may not align as well to industry software re-
lease processes, concrete, quantifiable metrics allow
more objective and more measurable results. Wal-
cott et. al [18] constrain the prioritization algorithm
by time available, while Kim and Porter [7] further
constrain by both time and resources. Park et. al [10]
evaluate the performance of a prioritization by Aver-
age Percentage of Fault Detected per Cost (APFDc).
Where one performance aspect of a prioritization is
maximized, trade-offs often result in other aspects.
For instance, achieving low time and resource con-
sumption incurs a loss in fault detection effectiveness.
Of all performance-oriented constraints targeted by
these techniques, no single constraint is a clear leader
that dominates a prioritization. To our knowledge,
there is no single prioritization technique that can
optimize both resource consumption and fault detec-
tion effectiveness.

Algorithms and models have also been applied
to prioritize regression test cases. Since test case
prioritization can be an arbitrarily complex prob-
lem spanning both human perception and objective
metrics, some researchers opt to simplify the prob-
lem by abstracting it as a theoretical model. Data-

flow model [15], Combinatorial Interaction Testing
(CIT) [11, 12], Single Value Decomposition (SVD)
[16], genetic algorithms [18, 8], greedy algorithms
and metaheuristic algorithms [8] have all been shown
to improve fault detection effectiveness. Mirarab
and Tahvildari [9] propose to prioritize non-regression
test cases via a Bayesian network. However, as
with performance-oriented prioritization techniques,
trade-offs are inevitable; achieving higher fault de-
tection effectiveness comes at a significant cost of
building the model. More importantly, abstracting
the prioritization problem to algorithm- and model-
levels thus far does not yield significantly more effec-
tive fault detection rates than constraint-based tech-
niques.

Cross-cutting most test case prioritization tech-
niques – for regression and other types of test cases
– is the basis on which the techniques operate upon.
The most popular approach prioritizes based on code
coverage. Different levels of granularity have been
studied by many researchers, from statement [6],
branch [13, 5], block [1, 18], to function [4, 6, 1, 10].
Fault proneness of the code exercised in a test case
can also predict the fault detection effectiveness of
that test case [13, 4, 5, 9, 10]. Code modification his-
tory [7, 3, 10] and code distribution [2] can be tracked
and fed to a prioritization technique. Other works
prioritize test cases based on data-flow [15] and in-
put grouping [14].

Overall, virtually all techniques in the state-of-
the-art prioritize test cases based on statistics such
as code coverage and fault proneness, and evaluate
based on fault detection effectiveness. The preva-
lent, mainstream approach that relies heavily on pre-
prioritization data analysis and post-prioritization
evaluation via fault detection spurs us to investigate
an alternative approach.

3 Challenges and research goals

Upon reviewing the state-of-the-art in the previous
section, we identify a few challenges that are un-
addressed or as yet inadequately addressed by the
testing research community. In this section, we de-
scribe these challenges and respond by introducing
the goals in our proposed research that counter these
challenges.

3



3.1 Heavy overhead

Test case prioritization, by definition, favors a test
case over another based on some factor or factors.
In our proposed technique, we refer to these factors
as contributing factors. A contributing factor may
be concrete, such as test case length, code coverage,
data flow, and historical fault proneness, or abstract,
such as perceived code complexity and fault severity.
In general, concrete contributing factors are easily
quantifiable but can only be quantified via significant
analysis and bookkeeping. Abstract contributing fac-
tors, on the other hand, may be objective and less
quantifiable but are usually relatively inexpensive to
obtain.

The vast majority of the prioritization techniques
in the state-of-the-art operate exclusively on concrete
contributing factors. The corollary is that before pri-
oritization can even begin, much pre-processing anal-
ysis must be done. During the prioritization process,
this data-centric approach must also take all the data
into account. Oftentimes, this significant time and re-
source overhead before and during the prioritization
process has not been adequately emphasized. We ar-
gue that a large overhead eclipses the benefits of the
resulting prioritization.

To counter this potentially benefit-diminishing
overhead, we propose to take a direction opposite
to the mainstream: prioritize exclusively by abstract
contributing factors. Our proposed research lever-
ages human domain knowledge to assess the objec-
tive, perceived impact of a test case, and prioritize
the test case with the most impact first. With knowl-
edgeable domain experts, such human assessment is
relatively inexpensive to obtain as the test cases do
not need to be correlated with any concrete data. If
such assessment produces a similarly effective priori-
tization, our proposed research will significantly lower
the overall cost of performing the prioritization pro-
cess.

3.2 Repetitive data setup

Some previous works (for example [8]) that focus on
regression test case prioritization perform the prior-
itization on only one version of the software. Other
previous works apply a prioritization to multiple
software versions (for example [10, 12]). However,
for every new release, these techniques require that
the setup of contributing factors be completely re-
computed based on new data provided by the previ-
ous release. A new round of prioritization can then

proceed with the renewed preparation data. As a re-
sult, every round of prioritization incurs the cost of
repeating the entire data setup exercise.

We therefore propose to minimize data setup costs
by investigating the alternative – a one-off data
setup. In a one-off data setup, initial data needs only
be established once and can be re-used in later soft-
ware releases. To that end, we propose to gather
rankings, or contribution scores, of abstract con-
tributing factors such as feature coverage and test
case complexity that are relatively independent from
software changes from release to release. These con-
tribution scores may need to be updated upon a ma-
jor re-make of the software. In general, however, once
initially assessed, contribution scores remain applica-
ble in newer releases as the same test cases are used
as regression test cases, thus achieving a one-off data
setup.

3.3 Incomplete evaluation metrics

The de facto standard of evaluating a test case
prioritization is fault detection effectiveness. Ever
since Rothermel et. al introduced the rate of fault
detection or Average Percentage of Fault Detected
(APFD) in [13], most papers use this metric in their
evaluations. Park et. al enhances this metric to take
into account related cost and severity of the defects,
and introduced Average Percentage of Fault Detected
per Cost (APFDc) [10]. However, the success of a
prioritization is still pinned on the very focus of fault
detection.

Consider a real-life software project. In a typical
release cycle, test cases are executed and re-executed
as defects are discovered and fixed. Towards the end
of the cycle, the number defects yet to be resolved
diminishes. Moreover, the defects that remain un-
resolved at that point are generally minor defects.
Industry best practice recommends that no software
product be released until all critical defects or “show
stoppers” are fixed. In other words, in a real-life
project, test cases may be run for the express pur-
pose of not finding defects. When the defect queue
contains no critical defects and a small number of
minor defects, the software is deemed ready for re-
lease. In our proposed research we say the software
is release-ready. At different times in the software re-
lease cycle, fault detection effectiveness may or may
not be the primary factor in predicting the success of
a test case prioritization.

How should one evaluate the success of a prioritiza-
tion then? Since evaluation by fault detection alone

4



does not completely reflect industry software release
practice, we consider the amount of time that elapses
until the software is release-ready. Specifically, this
time span constitutes not only the time required to
perform the prioritization, but also the time required
to execute the prioritized test cases until the soft-
ware becomes release-ready. Our research proposes
to evaluate the success of a prioritization by tracking
this amount of time required to produce a release-
ready software.

4 Proposed research

4.1 Contributing factors

The central component of our proposed research is
the use and selection of contributing factors. Loosely
defined, a contributing factor predicts how well a test
case will contribute to making the software release-
ready as soon as possible. As mentioned above, it is
critical that we select contributing factors that are:
• abstract so as to minimize data setup overhead,

and
• independent of software changes from release to

release so as to facilitate one-off data setup.

To that end, we propose to investigate the following
contributing factors:
• Feature coverage: Does the test case involve one,

few, or many features?
• Importance of feature: Is the feature being

tested important? Do users actually use that
feature?

• Criticality of feature: How critical is it that the
feature being tested passes the test case? If the
feature fails the test case, is the software still
release-ready?

• Fault proneness: How likely, possibly based on
experience from a previous regression test cy-
cle, will this test case reveal faults? Notice
that this question asks for a domain expert’s
“gut feel,” unlike other existing techniques where
fault proneness is a concrete contributing factor
that requires detailed defect analysis.

• Test case variation: How many different input
data sets are applicable to this test case? Intu-
itively, the more data sets applicable, the more
likely the test case will cover corner cases and
thus reveal faults and subtract from release-
readiness.

• Test case dependence: How early in the software

usage process will a user require this feature? In-
tuitively, if a test case tests a feature early in the
usage process but fails, other test cases depen-
dent on the failed feature cannot begin testing.

• Test case complexity: How complex is the test
case? Intuitively, the more complex the test case,
the more likely it is to reveal faults.

• Test case length: How long is a test case? In
other words, how many steps does it take a tester
to execute this test case? Intuitively, longer test
cases will touch upon more features.

• Execution time: How much time does it take
to execute a test case? Notice this question
is related to but not the same as test case length.

In practice, every software project has some do-
main experts who are well versed in the architecture,
functionality and limitations of the software. When
such an expert is presented with a test case, the ex-
pert can quickly nominate a 1-to-5 contribution score
to most contributing factors.

To demonstrate the feasibility of requesting
minimal-effort human input, consider the following
example. Given a test case that generates a monthly
sales report, the expert can quickly estimate that the
test case only covers one feature (monthly sales re-
port), has limited user impact (only the sales report-
ing team needs monthly sales reports), has little de-
pendence on other test cases (the monthly report is
a background batch job that depends solely on cor-
rect data), but is very complex (due to all the data
aggregation and tax calculations).

4.2 Contribution mix and prioritiza-
tion score

After collecting contribution scores of various con-
tributing factors, the data needs to be condensed into
a single, normalized number, or prioritization score.
When each test case is assigned a prioritization score,
the prioritization process simply sorts the test cases
according to their prioritization scores.

To derive the prioritization score, we propose to
use a statistical regression model to fit the collection
of contributing factors, or contribution mix, to known
results of a test suite as follows. Regression testing,
by definition, takes place in the second, third, and
further releases of a software. Regression testing is
not performed in the original release of the software.
However, regression test cases are, in general, taken
from or modified from the test cases used in the orig-

5



inal release. As long as we know the defects found in
the first release, their severity, and which test case
found them, we can experiment with contribution
mixes until we find that one mix that minimizes the
time to release-readiness.

We expect that our research may reveal that not
every contributing factor proposed delivers sufficient
impact to be included in the contribution mix.

Notice also that our proposed technique implies
that every software project needs to generate its own
contribution mix. We hypothesize that, given the
proposed contributing factors are generic across do-
mains and software projects, a contribution mix from
one project may well apply to other projects. How-
ever, we leave the investigation of this follow-up prob-
lem to future research.

4.3 Time tracking

As mentioned before, the overall goal of our research
is to produce a prioritization technique capable of
minimizing the time required to bring a software to
release-readiness. In practice, this overarching time
span includes:

1. Time to set up preparation data prior to priori-
tization

2. Time to perform the actual prioritization
3. Time to execute the prioritized test cases
4. Time to fix defects found
5. Time to re-execute any failed test cases

To isolate the time spent relevant to our proposed
research while keeping as close as possible to indus-
try software release practice, we plan to include only
items 1, 2, and 3. In effect, we assume that each
test case needs to be executed only once. This as-
sumption is far from realistic. However, we believe
as a first step in this novel evaluation approach, the
time span thus tracked will still provide an indicative
result of how effective our prioritization technique is.

5 Evaluation plan

We plan to conduct a multi-staged experiment
to evaluate the efficiency and effectiveness of the
proposed technique. The materials of the experiment
will be derived from an open source project with
at least two released versions. Known test cases,
times required to execute the test cases, defects
and their associated severities, and correlations
between defects and test cases related to the first

release will become the training materials for
developing the best-performing contribution mix
and thus prioritization score calculation. This
prioritization score calculation will then be applied
to the second release to simulate a regression test
scenario. The stages of the experiment are as follows:

Stage 1: Gather contribution scores. We in-
tend to recruit software testers who tested the se-
lected software application to become domain experts
for the experiment. Since the proposed prioritization
technique relies heavily on the accuracy of human
domain knowledge, it is crucial that the experiment
harvest such knowledge from actual members of the
selected software application. These experts will be
supplied with the set of known test cases, and asked
to estimate contribution scores for all aforementioned
contributing factors for every test case according to
their subjective judgment. We expect that most of
these test cases had been executed by one or more
of the recruited experts, further bolstering the accu-
racy of their nominated contribution scores. Using
human subjects close to the test cases should not in-
validate the contribution scores, since in industry test
case prioritization are almost exclusively carried out
by testers themselves.

Stage 2: Train for best-fit method to calcu-
late best-performing prioritization scores. In
this stage, we plan to derive a method to calculate pri-
oritization scores from a contribution mix that pro-
duces a test case prioritization capable of bringing
the software to release-readiness earliest. To arrive
at the best-fit method, we intend to apply statisti-
cal regression model to the contribution mix so as to
extract the subset of contributing factors and their
weights. Using these prioritization scores, test cases
from the first release are sorted.

This stage of the experiment will not involve ac-
tual execution of the test cases. Since the defects,
their severities, and their association with test cases
are known, we can simulate the execution of the pri-
oritized test cases one by one until all critical defects
are revealed.

Stage 3: Test prioritization scores against
unseen test suite. Apply the prioritization scores
calculated in stage 2 to the second version of the soft-
ware application. Since the execution times for the
test cases are known, similar to the previous stage,
we can simulate the testing process and record the
virtual times required to execute the test cases, ef-
fectively simulating a regression test cycle. After the

6



virtual execution of each test case, we will examine
the defects and their severities associated with that
test case, as well as the overall list of defects associ-
ated with the software application. By tracking the
test cases and their associated defects, we will be able
to conclude whether all critical defects have been re-
vealed so that the software is release-ready, or if fur-
ther (simulated) testing is required.

Stage 4: Compare test results with baseline
results. This stage of the experiment will address
two research questions.

Firstly, does prioritization help at all in verifying
sooner that the software is release-ready? To answer
this question, we plan to simulate the virtual testing
process using random prioritization.

Secondly, do all the contribution scores and contri-
bution mix provide a better test case prioritization?
Are all the human input and domain knowledge nec-
essary? To answer this question, we plan to simulate
the virtual testing process using a naive prioritiza-
tion based on test case length. Intuitively, the longer
a test case, the more code and functionality the test
case touches. Therefore obtain a prioritization where
the longest test case is prioritized earliest.

By comparing the time required for all three tech-
niques to verify the release-readiness of the software
application, we will be able to evaluate the merits of
the proposed contribution-based technique.

6 Summary of foreseen contri-
butions

We anticipate that our proposed research will con-
tribute to the state-of-the-art in the following areas:
• Deliver a practical, contribution-based prototype

that prioritizes regression test cases.
• Confirm the hypothesis that domain knowledge

based on human judgment alone can provide cru-
cial directions on how to best prioritize regres-
sion test cases.

• Develop a one-off data setup alternative to cur-
rent prioritization techniques that require re-
peated data setup for each software release.

• Develop a list of domain knowledge-based con-
tribution factors that, in combination, can ac-
curately predict a test case’s power to bring a
software to release-readiness.

• Present a novel evaluation metric based on
the time spent to bring a software to release-
readiness.

References

[1] H. Do, G. Rothermel, and A. Kinneer, “Empir-
ical studies of test case prioritization in a JUnit
testing environment,” Software Reliability Engi-
neering, 2004. ISSRE 2004. 15th International
Symposium on, pp. 113–124, Nov. 2004.

[2] H. Do, G. Rothermel, and A. Kinneer, “Priori-
tizing JUnit test cases: An empirical assessment
and cost-benefits analysis,” Empirical Software
Engineering, vol. 11, pp. 33–70, March 2006.

[3] H. Do and G. Rothermel, “On the use of mu-
tation faults in empirical assessments of test
case prioritization techniques,” Software Engi-
neering, IEEE Transactions on, vol. 32, pp. 733–
752, Sept. 2006.

[4] S. Elbaum, A. G. Malishevsky, and G. Rother-
mel, “Prioritizing test cases for regression test-
ing,” in ISSTA ’00: Proceedings of the 2000
ACM SIGSOFT international symposium on
Software testing and analysis, (New York, NY,
USA), pp. 102–112, ACM, 2000.

[5] S. Elbaum, D. Gable, and G. Rothermel, “Un-
derstanding and measuring the sources of vari-
ation in the prioritization of regression test
suites,” Software Metrics Symposium, 2001.
METRICS 2001. Proceedings. Seventh Interna-
tional, pp. 169–179, 2001.

[6] S. Elbaum, A. Malishevsky, and G. Rothermel,
“Test case prioritization: a family of empirical
studies,” Software Engineering, IEEE Transac-
tions on, vol. 28, pp. 159–182, Feb 2002.

[7] J.-M. Kim and A. Porter, “A history-based test
prioritization technique for regression testing in
resource constrained environments,” in ICSE
’02: Proceedings of the 24th International Con-
ference on Software Engineering, (New York,
NY, USA), pp. 119–129, ACM, 2002.

[8] Z. Li, M. Harman, and R. Hierons, “Search al-
gorithms for regression test case prioritization,”
Software Engineering, IEEE Transactions on,
vol. 33, pp. 225–237, April 2007.

[9] S. Mirarab and L. Tahvildari, “An empirical
study on bayesian network-based approach for
test case prioritization,” Software Testing, Ver-
ification, and Validation, 2008 1st International
Conference on, pp. 278–287, April 2008.

7



[10] H. Park, H. Ryu, and J. Baik, “Historical value-
based approach for cost-cognizant test case pri-
oritization to improve the effectiveness of regres-
sion testing,” Secure System Integration and Re-
liability Improvement, 2008. SSIRI ’08. Second
International Conference on, pp. 39–46, July
2008.

[11] X. Qu, M. Cohen, and K. Woolf, “Combinato-
rial interaction regression testing: A study of
test case generation and prioritization,” Software
Maintenance, 2007. ICSM 2007. IEEE Interna-
tional Conference on, pp. 255–264, Oct. 2007.

[12] X. Qu, M. B. Cohen, and G. Rothermel,
“Configuration-aware regression testing: an em-
pirical study of sampling and prioritization,” in
ISSTA ’08: Proceedings of the 2008 interna-
tional symposium on Software testing and anal-
ysis, (New York, NY, USA), pp. 75–86, ACM,
2008.

[13] G. Rothermel, R. Untch, C. Chu, and M. Har-
rold, “Test case prioritization: an empirical
study,” Software Maintenance, 1999. (ICSM
’99) Proceedings. IEEE International Confer-
ence on, pp. 179–188, 1999.

[14] G. Rothermel, S. Elbaum, A. G. Malishevsky,
P. Kallakuri, and X. Qiu, “On test suite com-
position and cost-effective regression testing,”
ACM Trans. Softw. Eng. Methodol., vol. 13,
no. 3, pp. 277–331, 2004.

[15] M. J. Rummel, G. M. Kapfhammer, and
A. Thall, “Towards the prioritization of regres-
sion test suites with data flow information,” in
SAC ’05: Proceedings of the 2005 ACM sym-
posium on Applied computing, (New York, NY,
USA), pp. 1499–1504, ACM, 2005.

[16] M. Sherriff, M. Lake, and L. Williams, “Priori-
tization of regression tests using singular value
decomposition with empirical change records,”
Software Reliability, 2007. ISSRE ’07. The 18th
IEEE International Symposium on, pp. 81–90,
Nov. 2007.

[17] H. Srikanth and L. Williams, “On the economics
of requirements-based test case prioritization,”
SIGSOFT Softw. Eng. Notes, vol. 30, no. 4,
pp. 1–3, 2005.

[18] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer,
and R. S. Roos, “Timeaware test suite prioriti-
zation,” in ISSTA ’06: Proceedings of the 2006
international symposium on Software testing and
analysis, (New York, NY, USA), pp. 1–12, ACM,
2006.

8


