
STATEMENT OF TEACHING PHILOSOPHY

EMILY HILL

Engaged students learn. Regardless of subject, engaged students are more likely to gain a deeper
understanding of the material and retain the information after the semester is over. As a teacher and mentor, I
try to engage students by involving them in the classroom, using frequent and varied evaluation techniques,
working with students individually through research, and by encouraging diversity.

INVOLVING STUDENTS IN THE CLASSROOM

In general, I attempt to involve students in the classroom by increasing class participation, imparting my
enthusiasm for computer science , and motivating the material.

Increasing Class Participation

My approach to engaging students in the classroom is inspired by a mathematics professor at my liberal arts
college. When deriving a proof or solving a problem, he would ask the class to participate. But rather than
wait for the classroom to answer, he would randomly selected an index card containing a student’s name.
The professor would then work with the student to solve the problem or derive the proof for the rest of the
class. When necessary, the professor would prod the student, ask leading questions, or review earlier
concepts. Although rather mortifying for students in the beginning, this method of engaging students has a
number of benefits:

• Motivates the students to pay attention in class because they never know who will be called upon next

• If the selected student has not been paying attention, by focusing on the student individually, the
professor can quickly get the student up to speed and provide a review for the rest of the class

• Students learn from other students’ struggles, even if they are uncomfortable asking questions themselves

• Creates an open environment for questions as the students become more comfortable with their peers in
the classroom, while ensuring no one student dominates the class

• Ensures the professor does not move faster than the entire class can grasp the concepts

As a student, I will admit that I found this method of learning to be extremely painful, since I was
embarrassed to reveal my lack of knowledge in front of my classmates. However, I gradually realized that no
student in the class understood everything, and was able to relax and focus on learning the material---
something I rarely accomplished during undergraduate lectures.

I can adapt this technique for computer science courses by carefully preparing my lecture material to
include focused questions. For example, in a software engineering class I might select students to name
challenges in software engineering based on their own programming experience. In an introductory
programming or algorithms class, I could select a student to help derive a specific algorithm. Although it
requires extra preparation in the beginning, I hope this technique will become a natural part of my teaching
style over time.

Imparting Enthusiasm

If the professor is bored, why should the students be excited? When engaging students to learn, it helps to be
enthusiastic about your subject. In computer science, I’m particularly passionate about automation.
Computers are the quintessential automation tool, capable of infinite variation through software. All the
problem solving skills computer science teaches are driven by automation, whether the problem is finding a
software bug or developing a more efficient algorithm. As a teacher, I try to infuse my lectures with as much

passion as possible, using my presence as a performer to help me communicate my enthusiasm and gauge
my audience’s response.

Not only am I enthusiastic about the subject, I’m also energized by helping the students understand the
material. For example, in lab I noticed students struggling to understand shell scripting and makefiles. To
help the students realize the benefits of more advanced command-line software development, I created a
shell-scripting and makefile tutorial based on the instructor’s example from lecture [see attached tutorial]. In
the tutorial I not only explained each line’s action, but also how the techniques would reduce their
development time.

Motivating the Material

Students are naturally more motivated to learn material that they are interested in or that they see value in
beyond graduation. Thus, I also attempt to engage students by motivating the course material, showing how
the material is relevant to their future success, and relating the material to their existing knowledge.

For instance, one of the course objectives in an introductory computing class for non-majors is to learn
about computer architecture and components. Because I felt the students would most likely use this
information in the future to help them purchase a computer, I designed a build-a-computer project [see
attached assignment]. Given a budget and a list of components, the students were asked to build a computer
that would suit their needs and explain their design decisions based on their own computer use. The students
seemed to enjoy both the personalized nature of the assignment as well as its relevance to their future
computing needs [see attached feedback].

Furthermore, introductory programming and software engineering courses can be motivated by actual
programming and software engineering failures. For example, Verizon’s 3G network in Philadelphia was
brought down by a missed semicolon, and Washington DC lost cell data service due to an uninitialized
variable. More severe examples include the Mars Climate Orbiter crash in 1999 due to ill-defined interfaces
(one component used metric units, whereas another used English), or the deaths of cancer patients due to a
race condition in the Therac-25 software, which could have been prevented using verification techniques.

ENGAGING STUDENTS THROUGH EVALUATION

Although engaging students in the classroom is the first step in teaching, frequent and varied evaluation can
provide further motivation. Even absent students will generally attempt to learn material on their own in
order to maintain their GPA. To keep students motivated to learn each week, I evaluate class participation
and give out short weekly quizzes. Weekly quizzes serve two purposes: quizzes encourage students to learn
the material as the course progresses, rather than waiting until an exam; and quizzes give a progress report
to both the student and professor, suggesting what topics may need to be studied further. For example, when
my introductory computing class had trouble with number systems and struggled to convert decimal
numbers into binary, I spent extra time going over the material in class and investigated alternate ways to
present the lesson.

Exams and projects help motivate students to learn throughout the semester. When possible, I like to assign
both individual and group projects that help develop students’ analytical problem solving skills and grow
their collaborative abilities. Especially for programming and software engineering courses, I try to give
programming assignments that start from scratch as well as start from an existing implementation. When
starting from scratch, students can exercise their full creativity and see the entire design process from
requirements to development and testing. In contrast, starting from an existing code base or requiring the use
of a specific library exercises different development skills and more closely mimics current software
engineering practices.

Lastly, in my desire to see my students succeed after graduation, I endeavor to include at least one oral or
written assignment. For example, in my introductory computing class I assigned a paper about the ethical
implications of a computing technology of the student’s choice. Not only did the assignment exercise the
student’s writing skills, it also encouraged them to explore computer science from a different perspective

Emily Hill R Teaching Philosophy

2

(human rather than technical). In a programming or software engineering course, I could ask students to give
an oral presentation about their approach to solving the latest project. Such a presentation would not only
encourage critical thinking about design and implementation decisions, but also motivate students to
discover innovative solutions to existing problems.

RESEARCH MENTORING: PROVIDING INDIVIDUAL ATTENTION

I believe research mentoring is one of the best ways to motivate students to pursue computer science. With
the individualized attention from research and independent studies, students are completely engaged in the
research problem. Plus, one-on-one and small group meetings often lead to mentoring opportunities that can
provide guidance and motivation to pursuing careers or graduate studies in computer science.

During my dissertation research I had the opportunity to mentor seven undergraduate students. Because a
large portion of my work focuses on analyzing code (i.e., reading, not writing code), the nature of my thesis
research lends itself to working with students at all levels, from freshmen to graduate students. In fact, I have
mentored and successfully collaborated with sophomore, junior, and senior undergraduate researchers. In
addition to my thesis research easing student collaboration, my diverse software engineering research
background enables me to work with students in a variety of research areas.

Because each student is unique, my mentoring style may vary from person to person. Although I always
broadly outline projects for the time allotted, there are some variables with a new student that cannot be
anticipated. For example, a student’s actual knowledge may be more or less than what it looks like on paper,
requiring varying amounts of lead time before the actual research begins. Thus, I try to start off with a short,
week-long research assignment to get a feel for the student’s skill set and interests before nailing down a
specific schedule with deliverables. From my own experience, I know undergraduate researchers sometimes
need a push to keep going and maintain a steady level of progress, and I try to set reasonable short term
(daily or weekly) and long term (monthly) deadlines, based on the student’s skill level and work habits. One
of the rewards I look forward to in leading an active research program is observing how others become
competent researchers under my leadership and mentoring as we work together on research projects.

ENCOURAGING DIVERSITY

Lastly, I attempt to engage students in computer science by encouraging diversity. I have a history of
commitment in attracting people to pursue computer science, especially woman and minorities. As an
undergraduate student I initiated and developed two high school outreach programs: one to teach high
school students about computer architecture, the other to teach high school girls Flash and HTML basics as
well as discuss career opportunities in computing. As a graduate student, I helped co-found CISters, a group
that organizes activities to recruit and retain women in technology-driven fields at the University of
Delaware. As part of CISters, I co-organized a case study of the status of women in computing at UD, which
resulted in travel funding for 10 graduate and undergraduate women to attend Grace Hopper. Finally, I have
participated as a co-mentor in the CRA-W/CDC Distributed Research Experiences for Undergraduates
program for women and minority students. Of the four undergraduate women and minority students I’ve
mentored, three are either attending or plan to pursue graduate studies in computer science. With both
teaching and research activities I hope to continue increasing the number of women and minority students
pursuing careers in computer science.

Emily Hill R Teaching Philosophy

3

SUPPLEMENTAL TEACHING MATERIALS

EMILY HILL

Teaching Feedback: Quantitative and Qualitative 5

Sample Syllabus for CISC 101 7

Sample Assignment for CISC 101 (HW2: Building a Computer System) 9

Sample Tutorial for CISC 181 (Shell Scripting and Makefiles) 10

4

TEACHING FEEDBACK

EMILY HILL

QUANTITATIVE FEEDBACK

101 Instructor

Scale: 1 = Excellent, 2 = Good, 3 = Fair, 4 = Poor

Survey Question Hill
All 100-level

courses

“How would you rate this course?” 1.444 2.545

“How would you rate this Instructor?” 1.111 2.727

QUALITATIVE FEEDBACK

101 Instructor

“She was very energetic. She spoke and explained everything very simply.”

“I really liked the building a computer assignment” [which Emily designed and added to the course]

“The mid-term and final were a little hard”

“I enjoyed the class a lot, especially the teaching styles. I liked how everything was organized.”

“I like the way she taught and lectured the class as a group instead of individually.”

181 Lab Instructor & Teaching Assistant

“I just want to say Emily is doing great. She returns work at a good pace and won’t rill you for making a
mistake on a back to back lab (because you didn’t receive the other back). She’s very willing to help
students and never makes you feel stupid. She’s willing to try to help you via e-mail and also she is
available by appointment. She’s doing a great job!”

“Emily is always looking to help however possible; she puts helpful things on her web site for nearly
every lab. Now even other TAs are having their students look at Emily’s page since it’s so helpful.”

“Extremely helpful and resourceful, goes out of the way to produce helpful tutorials and teaching
elements. Although with grading a little choosy but very understandable why that is.”

“Grades a little harsh.”

“Emily has helped me greatly during office hours and is a fantastic mentor and resource.”

672 Teaching Assistant (graduate level)

From Students:

“The TA’s grading and help on the projects was very thorough. She seems very committed and
enthusiastic.”

“Emily is a good TA. She’s easy to talk to when you have questions.”

From Professor Pollock:

“Emily was very thorough in her work with lots of comments and extensive testing of labs in 672 this
semester. Answered questions in e-mail promptly. She also taught a lecture class for me and did a very
good job. Very easy for me to work with!! Made my job easy!!”

CISC 101

Computers & Information Systems

Winter 2004

Labs Homework Handouts Links

Announcements

If you would like 100 points Extra Credit, you may submit by e-mail

a 500 word (or more) paper on the History of Computing by 5 pm on

Wed Feb 4th. Please site all reference material.

On Monday we covered Unit 6: Operating Systems. A Study

Guide of concepts covered (to be tested on Quiz 3 & the Final) is

available.

Meeting Times:

Lecture MW 9:45 am - 12 pm Gore 104

Lab TR 9:45 am - 1 pm Smith 040

Instructor

Emily Gibson

Office: 102 Smith Hall

Hours: Mondays 1 pm - 3 pm

E-mail: gibson@cis.udel.edu

TA

Ryan Bickhart

Office: 28 W Delaware Ave

Hours: Tuesdays 8 - 9:30 am

E-mail: bickhart@cis.udel.edu

Schedule

*Updated 1/25/04

Lecture Lab Lecture Lab

Week M T W R

1/5 1-2 Assign Paper 3

1/12
Quiz 1

Assign HW1
4

Quiz 2

(Number Systems, 4)
12

1/19

Martin Luther

King Day

No Class

9

HW1 Due

Assign HW2

Mid Term

Paper Topic Due

10

1/26 Unit 6 11
Quiz 3

HW2 Due
5

2/2
Quiz 4

Paper Due
6 Final 8

Syllabus (HTML) (WORD)

Labs

Lab 1 WWW1.

Lab 2 Intro User Interfaces & E-Mail2.

Lab 3 Word Processing Software: WORD3.

Lab 4 Word Processing Software: WORD4.

Lab 12 Presentation Software: PowerPoint5.

Lab 9 Spreadsheet Software: Excel6.

Lab 10 Spreadsheet Software: Excel7.

CISC 101-011 http://www.cis.udel.edu/~gibson/classes/101/

1 of 2 10/1/09 10:38 AM

Lab 11 Spreadsheet Software: Excel8.

Lab 5 Database Management : Access9.

Lab 6 Querying a Database: Access10.

Lab 8 HTML11.

Lab download and print instructions

Homework

HW1: Number Systems (HTML) (WORD)

HW2: Computer Systems (HTML) (WORD) (EXCEL)

Ethics Topic Paper (HTML) (WORD)

Handouts

Unit 6: Operating Systems Study Guide (HTML)

Dye Sublimation Printers (HTML) (WORD)

Links

Binary/Hex Text Converter

Next Generation DVDs (2005)

HD DVDs (tech by Toshiba) can hold 15 GB of data with a single layer,

or 30 GB with dual layers! However, as with the DVD recording

technologies, the higher capacity DVD technology debate is still raging.

Dye Sub Printers Explained

Number Systems

Explanation of number systems and how to convert between them.

More on converting between decimal, binary, and hex.

CIS Homepage

Courses for Non-Majors

CISC 101 Course Description

UD Homepage

CISC 101-011 http://www.cis.udel.edu/~gibson/classes/101/

2 of 2 10/1/09 10:38 AM

10/1/09 10:54 AMCISC 101-011

Page 1 of 4http://www.cis.udel.edu/~gibson/classes/101/HW2.html

HW2: Building a Computer System

Description

Imagine you have an $800 budget to build a new computer for yourself,

to replace the one you are currently using. List the components you

would use, based on the list from the class web page. Make sure to

explain why you are selecting each part. In addition, specify why you are

not including items. (For example, if your Motherboard has an onboard

LAN adapter, state that you don't need to buy an Ethernet card for this

reason).

Feel free to use other web sites if the product links provided do not give

you enough information. This is a challenging assignment, if you don't

understand something, please ask.

Things to consider when building your machine:

Price

Maybe you would prefer to save the extra $300 and only spend

$500 on your machine.

Performance

How much computing power do you need?

Peripherals

Would you rather have more gadgets than a bleeding edge PC?

Expandability & ability to upgrade

Can you upgrade this machine later?

Loudness

If the PC is going to be in your bedroom, you may want to

consider quieter parts.

Grading

The components you choose and reasons for (or not) selecting them are

worth 75 points. In addition, you must write an explanation detailing

your design considerations (the overall design you had in mind when

building the PC). This explanation is worth 25 points.

Product Price

Case

Mercury Primo ATX PC Case with 300Watt Power Supply $30.00

Soyo - Black and Silver Mid-Tower Case with 350 Watt Power

Supply, Keyboard, Mouse, and Speakers
$40.00

Lian-Li PC 6070A Aluminum Ultra Quiet $169.00

Shuttle SB51G Intel 845GE 400/533 FSB (Barebones - Case

w/Mainboard)
$225.00

Power Supply

Data Pro ATX 300 Watt P4/AMD Power Supply with Fan $22.00

400 WATT PS (Dual FANS) AMD-INTEL READY $39.00

NX-3500 Nexus 350 Watt Special Edition Quiet Power Supply $80.00

http://www.monarchcomputer.com/Merchant2/merchant.mv?Screen=PROD&Store_Code=M&Product_Code=100634&Category_Code=C1-LL
http://www.monarchcomputer.com/Merchant2/merchant.mv?Screen=PROD&Store_Code=M&Product_Code=100812&Category_Code=Mini-ITX
http://www.tigerdirect.com/applications/SearchTools/item-details.asp?EdpNo=506079&Sku=D13-2002
http://www.monarchcomputer.com/Merchant2/merchant.mv?Screen=PROD&Store_Code=M&Product_Code=100736&Category_Code=ps-400
http://www.endpcnoise.com/cgi-bin/e/nx-3500.html
http://www.cis.udel.edu/~gibson/101/HW2.html
http://www.tigerdirect.com/applications/SearchTools/item-details.asp?EdpNo=596262&Sku=K13-4000%20GREY&CatId=709
http://www.tigerdirect.com/applications/SearchTools/item-details.asp?EdpNo=506067&Sku=S450-4010&CatId=341

Shell Scripting

What is a shell script?

A shell script is a (text) file with shell commands in it. What's a shell command? It's any command you can type at

the command prompt, for example, when you are logged in to strauss or copland.

What do I use a shell script for?

Do you find yourself typing the same few commands over and over and over again? (For example, for lab05b you

typed the same commands over and over: CC, a.out, gnuplot, cp, chmod.) If you created a script mydrawing.csh,

then instead of typing 5 commands, you could type one:

mydrawing.csh

And have all 5 commands execute automatically!

How do shell scripts work?

The following is an example shell script file from lecture. Click on each line for an explanation of the command.

#!/bin/csh

clear
date
g++ -c main.cpp
g++ -c drawings.cpp
g++ -o main main.o drawings.o
main
gnuplot mydrawing.gnuplot
cp mydrawing.png ~/public_html/cisc181/lab06
chmod -R a+rx ~/public_html/cisc181/lab06

Makefiles

What is a Makefile? Why would I use one?

A Makefile is a (text) file with make commands in it. What's a make command? A make command is a make rule that

looks like this:

lab05b: lab05b.cc
CC -o lab05b lab05b.cc

If I type make lab05b at the command line (assuming I have a file called Makefile in my directory with the above

lab05b rule in it), then the line

CC -o lab05b lab05b.cc

will be executed. So why not just type in the CC command yourself? The beauty of make is that it will execute the CC

command only if your lab05b.cc file has changed! So unlike the script file above (which compiles main.cpp and

drawing.cpp regardless of whether or not the files have been modified), make is "smart": it only compiles what it

needs to.

Let's break down the make rule:

target: prerequisites/dependencies
command

The target is what you type at the command line (make target) to execute a rule. Following the colon on the first line

you list all the files or other targets that the current rule is dependent on. Basically, if any of the files listed on the

first line have been modified, we want make to execute our command. Commands for a rule are listed below the first

line, and begin with a tab (one and only one). You may have multiple commands for a single rule.

Makefiles may not seem important now, but if you continue to develop programs, I promise you will learn to love

them. I used to use graphical IDEs (Integrated Development Environments) such as Microsoft Visual Studio. But once

I learned how to effectively use shell scripts and make, I switched how I develop programs and never looked back.

Remember, programmers used shell scripts and make 20 years before Microsoft Windows was even invented!

Shell Scripts and Makefiles http://www.cis.udel.edu/~gibson/classes/181/makefiles.html

1 of 2 10/1/09 10:31 AM

How does make work?

The following is an example Makefile inspired by the above script. A more complex example with comments was

discussed in lecture. Click on each target for an explanation of the rule.

Example Makefile

main.o: main.cpp
g++ -c main.cpp

drawings.o: drawings.cpp
g++ -c drawings.cpp

main: main.o drawings.o
g++ -o main main.o drawings.o

execute: main
clear
date
main
gnuplot mydrawing.gnuplot
cp mydrawing.png ~/public_html/cisc181/lab06
chmod -R a+rx ~/public_html/cisc181/lab06

clean:
rm *.o

Next step: add a variable for the compiler

CCC=g++

main.o: main.cpp
${CCC} -c main.cpp

drawings.o: drawings.cpp
${CCC} -c drawings.cpp

main: main.o drawings.o
${CCC} -o main main.o drawings.o

Shell Scripts and Makefiles http://www.cis.udel.edu/~gibson/classes/181/makefiles.html

2 of 2 10/1/09 10:31 AM

mydrawing.csh

#!/bin/csh

There are a number of different shells available, such as csh (c shell), bash, sh, tcsh, etc. When you execute a script

file, the first line (prefaced by #!) dictates what shell language will be used. The languages are very close, but may

differ in syntax.

clear

The clear command clears the terminal window, so you start from a "cleared" terminal screen.

date

Date displays the day and time.

g++ -c main.cpp

Previously, when we compiled using CC or g++, we typed g++ lab.cc and an a.out file, or an executable file, was

created. The compiler was hiding a step from us: linking. When you use more than one C++ file, you must compile

each file seperately and then link them all together to form the executable.

Why use seperate files? First, it might be convenient to seperate different functions into different files. This way, you

can reuse your drawing functions with a different main program, like main2.cpp, for example. Also, if you change

your main.cpp file you don't need to recompile your drawing.cpp file, or vice versa.

The command above compiles the main program, main.cpp, which calls functions from drawing.cpp (see below). The

-c option tells g++ to create main.o (the object file) and to skip the linking step (the step that usually creates a.out).

g++ -c drawings.cpp

The command compiles the drawing functions, drawings.cpp, which are called from main (see above). The -c option

tells g++ to create drawings.o (the object file) and to skip the linking step (the step that usually creates a.out).

g++ -o main main.o drawings.o

The linking step. Now that we've compiled drawings.cpp and main.cpp, we need to create the executable file. The -o

option tells the compiler to name the executable main instead of a.out. We list the object files main.o and drawings.o

because we need the code from both of them in our executable (main.cpp calls functions from drawings.cpp).

main

Execute our program.

gnuplot mydrawing.gnuplot

Execute gnuplot, using the mydrawing.gnuplot file.

cp mydrawing.png ~/public_html/cisc181/lab06

Copy the png image created by gnuplot into our web directory.

chmod -R a+rx ~/public_html/cisc181/lab06

Make sure our png file has the correct permissions (so we can actually see our graphic!).

Sample Shell Script http://www.cis.udel.edu/~gibson/classes/181/script.html

1 of 1 10/1/09 10:32 AM

Makefile

Example Makefile

As with shell scripts, a # sign begins a comment.

main.o: main.cpp
g++ -c main.cpp

The main.o target is dependent on the main.cpp file. If main.cpp has not been modified since the last time main.o

was created, don't execute the command. If main.cpp has been modified or main.o doesn't exist yet, run g++ -c

main.cpp to create main.o.

drawings.o: drawings.cpp
g++ -c drawings.cpp

Similar to the above rule, only this rule is applied to drawings.o and drawings.cpp.

main: main.o drawings.o
g++ -o main main.o drawings.o

The linking step. (Be sure you have read and understood the compiling and linking explanations from the shell script.)

Creation of the executable file depends on the object files of main.o and drawings.o. (Notice how the command g++

-o main main.o drawings.o uses both these files to create the main executable.)

Here comes the cool part:

By typing make main, the rules for main.o and drawing.o will automatically be executed! So by typing one command,

make checks to see if main.o needs to be re-compiled, checks to see if drawings.o needs to be recompiled, and then

links these two object files together to create our executable, main! If compilation fails (i.e. there's an error) for

either main.cpp or drawings.cpp, make will halt and will not execute the g++ -o main main.o drawings.o

command.

execute: main
clear
date
main
gnuplot mydrawing.gnuplot
cp mydrawing.png ~/public_html/cisc181/lab06
chmod -R a+rx ~/public_html/cisc181/lab06

Make rules are not just for compiling programs, you can create rules with any type of shell command. In lab05b, for

example, we needed to execute 5 or more commands just to see if our C++ program produced correct results (in the

form of a png image file that could only be viewed on the web). Typing make lab05b doesn't save any typing, it only

keeps us from recompiling unnecessarily.

Instead, we could create a make rule that is dependent on our executable, and executes all the commands we need

only if creation of the main executable is succesful. By typing make execute, make will first execute the main target.

Remember, the main target compiles main.cpp and drawings.cpp if necessary and then links the object files together

to form the main executable. If the main rule successfuly creates the main executable, then the execute rule will run

the following commands in order:

clear1.

date2.

main3.

gnuplot mydrawing.gnuplot4.

cp mydrawing.png ~/public_html/cisc181/lab065.

chmod -R a+rx ~/public_html/cisc181/lab066.

Which will automatically take our .dat file (output by running main), run gnuplot, copy the png image to our web site,

and then make sure our image is readable, all with one command! Are you hooked yet?

clean:
rm *.o

Once we've successfully created an executable, we don't need the temporary object files that were created before the

linking step. This rule just cleans up our directory and gets rid of clutter.

Sample Makefile http://www.cis.udel.edu/~gibson/classes/181/make.html

1 of 2 10/1/09 10:43 AM

Next step: add a variable for the compiler

Moving on to a new Makefile...

CCC=g++

Like programming, variables can save you typing. In make variables can be used for which compiler you're currently

using. For example, by creating a compiler variable CCC, if I ever want to change the compiler my make rules use

from g++ to CC, all I have to change is the CCC variable!

main.o: main.cpp

${CCC} -c main.cpp

Same main.o rule as above, only now we use the compiler variable CCC instead of g++. Notice that to use our

variable we put the variable name inside ${}.

drawings.o: drawings.cpp

${CCC} -c drawings.cpp

Similar to the above rule, only this rule is applied to drawings.o and drawings.cpp.

main: main.o drawings.o

${CCC} -o main main.o drawings.o

Similar to the above rule, only this rule for the linking step.

Sample Makefile http://www.cis.udel.edu/~gibson/classes/181/make.html

2 of 2 10/1/09 10:43 AM

