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Abstract

Most current software systems contain undocumented Ieigg-|
ideas implemented across multiple files and modules. Whegl-de
opers perform program maintenance tasks, they often wimsee t
and effort locating and understanding these scatterececas.cWe
have developed a semi-automated concern location and eempr
hension tool, Find-Concept, designed to reduce the timeldpers
spend on maintenance tasks and to increase their confidetioe i
results of these tasks. Find-Concept is effective becassaiches

a unique natural language-based representation of sowde, c
uses novel techniques to expand initial queries into moiecef
tive queries, and displays search results in an easy-tg@erand
format. We describe the Find-Concept tool, the underlying- p
gram analysis, and an experimental study comparing Find-Co
cept’s search effectiveness with two state-of-the-ait&hand in-
formation retrieval-based search tools. Across nine aatitented
concern location tasks derived from open source bug repauts
Eclipse-based tool produced more effective queries monsiso
tently than either competing search tool with similar udtore

Categories and Subject Descriptors: D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques

General Terms: Design, Experimentation, Languages

Keywords: Reverse engineering, Program analysis, Feature Loca-
tion, Remodularization

1. Introduction

Throughout the life cycle of an application, between 60-96P%6
resources are devoted to modifying the application to meet n
requirements and to fix discovered faults [12]. To modify @n a
plication, developers must identify the high-level ideacancept,

to be changed and then locate (or find), comprehend, and mod-
ify the concept’sconcern, or implementation, in the code [19].
Because no complete methodologies address the concetioioca
and comprehension problem, more development time is spadt r
ing, locating, and comprehending source code than actwaitiyng

code [25]. Therefore, a software development organizatmud
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reduce maintenance costs by reducing the difficulty of ingeand
comprehending concerns.

One of the most common approaches to easing concern loca-
tion is to group related concerns into modulesdacomposing
system with respect to a particular type of concept, namigjgats.
An object-oriented decomposition facilitates locatingd aaom-
prehending object-oriented concerns because the releoaet is
grouped into an object class file instead of disjointed cege®nts
scattered throughout many program files. For example, inpea
source juke box application Jajuk [13], program code relabea
music player resides in the abstrattyer object (this includes the
core player functionality of playing, pausing, stoppingitmg, and
seeking). This object-oriented decomposition makes cehegd-
ing and maintainin®Player easier but can causetion-oriented
concepts, such as “play track”, to become scattered adresotle
base. The research community agrees that object-oriertgogm-
ming causes certain concerns to become scattered [17,ri2bjye
argue that many of these scattered concerns are actiantextibe-
cause of the natural tension between objects and actiohdii3#l-
dition to thePlayer object, in the Jajuk example, the “play track”
concern is scattered in classes representing a track, & maysis-
itory view, the concrete player, and a FIFO playlist quenethis
case, the action-oriented concepts are scattered toygasbbject-
oriented decomposition [32].

Aspect-oriented programming (AOP) can help modularizé-ig
level, action-oriented concerns by implementing actioresipects.
However, implementing too many actions as aspects coulgecau
objectsto become scattered. Imagine refactoring the above “play
track” concern into an aspect by removing theay () method
from thePlayer class—creating Blayer that has no independent
ability to play. Thus, refactoring the scattered concefayprack”
into an aspect may not be appropriate. Yet there are maneownc
where AOP offers a pleasing alternative to the scatteriragptibn-
oriented concerns. To perform (some) refactoring from abje
to actions (in aspects) as well as locate and comprehenadnacti
that are not refactored, developers need techniques tteleceal
comprehend action-oriented concerns.

Locating a concern is commonly called tkkencept assign-
ment problemIn addition to theconcept assignment problemve
also target concern comprehension. Our strategy for asidges
the challenges of the concept assignment problem and goncer
comprehension is based on a novel approach to processingesou
code—namely, a hybrid of structural program analysis aridrab
language processing (NLP) applied to source code. Our appro
is search-based with queries performed over a program ntioalel
captures thaction-oriented relations between identifiénsa pro-
gram. We perform NLP analysis on source code by leveragiag th
information about occurrences of verbs and their direceatsj



in the program, which are explicitly represented in the paogs
action-oriented identifier graph model (AOIG) [32] and byrpe
forming additional NLP analysis.

its strongest competitor on seven out of nine tasks, it peréol
less effectively on two out of nine tasks. After a thoroughlgsis
of these two tasks, we concluded that Find-Concept's éffsmess

The AOIG represents the actions in a program, supplemented could be improved by enhancing its underlying technology (the

with the direct object of each action. Often verbs, such as “r
move,” act on many different objects in a single programhsas
“remove attribute”, “remove screen”, “remove entry”, amdrhove
template”. Therefore, to identify specific actions, the &kpre-
sents the direct objects of each verb (e.g., the direct bbfethe
phrase “remove the attribute” is “attribute”). We discuss tatio-
nale for extracting this information from programs as wallthe
general structure of the AOIG in Section 4.1.

In our previous work, we motivated the use of NLP on pro-
gram source code and presented the action-oriented i@eigti&iph
(AOIG), focusing on its definition, an example use, and a con-
struction algorithm. We also suggested applications ofABG
to demonstrate its usefulness, including a simple filtewirig tool
over the AOIG to be used for feature location [32]. This pdper
cuses on NLP-based source code analysis and structurabprog
analysis using the AOIG to address the challenges of theepdnc
assignment problem. Specifically, this paper providesdhesfing
set ofnovel contributionsto the state of the art beyond our previous
work [32]:

¢ The application of the AOIG program representation to camce
location, including

= A query expansion algorithmwith a novel word recommen-
dation algorithm which combines NLP analysis and struc-

tural program analysis to assist in expanding user search

queries into more effective queries

= A result graph construction algorithitiat connects search
results via structural links to create an easily compre-
hendible, graphical concern representation

= An implementation of our approachs an Eclipse plug-in
enabling interactive concern location and comprehension
with tedious NLP and structural analysis performed auto-
matically

¢ An evaluation of our approach to locating action-oriented-c
cerns versus a state-of-the-art lexical search tool andnanes-
cial information retrieval tool, including

= A comparison of each tool’s search effectiveness

= An analysis of the tasks on which our approach performed
well, average, and poor

= A comparison of user effort required to operate each tool

Although we believe the result graph is more understandable

than other tools’ result sets (i.e., ranked or un-ranked)lisve
leave such an evaluation to future work.

For the software engineer, these contributions transtéte(i)
decreased time spent locating and comprehending codedéetaa
concept and (2) increased confidence in a code modificatienalu
increased confidence in locating the relevant code with cbea

Our experimental evaluation investigated which of the state-
of-the-art code search tools (Find-Concept and two othermspre
effective at locating concerns by forming and executing argu

AOIG-Building software). For instance, the AOIG-Buildirspft-
ware failed on a few key cases, decreasing Find-Conceffés-ef
tiveness. We are currently extending and revising the ABl@eer
to handle these cases.

In Section 2, we present the state of the art for concernitmtat
We give an overview of our natural language-based seara®epso
with an example in Section 3 and provide details of how we com-
bine program structure and natural language analysis iticBet.
We present our evaluation procedure in Section 5 and préisent
results and analysis in Section 6. Finally, we conclude witum-
mary in Section 7 and future research directions in Section 8

2. Stateof the Art

Locating and understanding a concern, or tbacept assignment
problem is a fundamental activity that developers, especially-sof
ware maintainers, must perform often [21, 29]. When softwear-
gineers try to locate source code related to a concept, tpy t
cally use a variety of ad hoc techniques such as scrollingutiir
files, following call graph links, analyzing dynamic infoation,
or searching files using mechanisms similar to UNép. These
approaches can be categorized as one of three fundamental ap
proaches: search-based (scrolling anp), program structure
navigation (call graph and type hierarchy links), and dyitaap-
proaches.

2.1 Search-based Approaches

Inthe current literature, there are two types of searchatsite used
to locate concerns: lexical-based and information retlibased.
Most searching techniques are evaluated in termmexision the
number of desirable items found divided by the number ofactu
items found; andecall, the number of desirable items found di-
vided by the number of possible desirable items. Here, wauds
both types of search-based approaches, with the goal ophégli-
sion and high recall in mind.

2.1.1 Lexical Searches

Programmers commonly use lexical searches to locate cticep
code using regular expression queries. The problem witicdex
search tools likegrep [28] is that regular expression queries are
extremely fragile, causing low recall. Expert developdtsrocom-
pensate by searching for overly general terms, leadingrére lee-
sult sets with low precision and no ranking of relevance inithe
large result sets.

Many natural language features cause regular expressariegu
to exhibit low recall. Features such as morphology chang@s,
onyms, line breaks, and reordered terms will cause regufaes-
sion queries to fail. For example, a user’s search for theeon
“find” will fail if he uses a regular expression search for tffrand
the concern is implemented using a different morpholodarah of
the word, such as “found”. Similarly, a user’s search fordbecept
“remove” will fail if the concept is implemented using thenenym
“delete”. Also, searches for two interacting words thatuwagear
each other (such as the phrase “find node”) will often faitehese

We asked 18 human subjects to each complete nine concern localine breaks and word ordering changes break most simpldaregu

tion tasks using the tools, and we measured the searchieffeess
and the required effort for each task. Find-Concept fountems
more effectively and more consistently than either of itsipeti-
tors across all tasks while requiring similar effort. Howgvthe
performance of each tool varied for each concern locatisk. ta
While Find-Concept performed more effectively or equinigto

expression searches. Searches for “find*nddedight return false
positives, such as “find the term in the node”.

The low recall of regular expression queries causes expeel-d
opers to broaden their query if an initial query fails to ratresults.

1w stands for 0-many characters of any type



However, commonly occurring sub-strings in the code causa e
mildly broad search terms to return large result sets, teptdi low
precision searches. If a user initially searches for thea t@rints”
and no results are returned, he is likely to broaden his qaedy
search for “print”. However, in Java code, the result wiltlude

a large number of false positives caused by the commonly used

methodSystem.out.printIn(). It is too cumbersome for a devel-
oper to read through a low precision result set caused bylyover
broad lexical searches.

212
Information retrieval (IR) technology uses the frequentwords

Information Retrieval

2.4 Other Related Work

Researchers have used natural language processing tiyidesat
pects in requirements, whereas we identify concerns ircearode.
Baniassad et. al. created one of the first techniques thdtNisE
to mine for aspects in requirements, the Theme approaclkghwhi
is semi-automated [2]. Sampaio et. al. later created a tgorior
automaticallyidentifying aspects in requirements [31]. Both works
have served as inspiration for our approach, but the nafumea
lyzing requirements as opposed to source code has led tbiyota
different approaches.

Thorsten [10] and De Volder [38] have both proposed ways of
visualizing the history of an exploration through a prog@swsers
search for a feature. We believe that visualizing the imtvas be-

in documents to determine similarity between documents and tween modules is important for program understanding efbee,

queries. Because IR calculates a similarity score, it cak the

results of a query according to relevance. IR also gragehdh-

dles multiple word queries [27]. IR does not, thereforefesufom

all the difficulties of regular expression queries. IR'srsbajueries
are notas fragileand it does not return un-ranked result sets.

IR technology by itself does not avoid all of the problems
that trouble lexical searches. For instance, IR tools yanahdle
natural language issues such as morphology, resultingduncesl
recall searches. IR technology also returns false positiezause
it does not account for sentence structure. A search foradheept
“play music” using the terms “play” and “music” could retuttme
irrelevant comment “The video should play while the music is
silent”. Furthermore, IR generally does not account forosyms,
resulting in reduced recall searches (although some agipesa
attempt to learn related words from word frequency and ctnte
information [22]).

In spite of its apparent shortcomings, researchers hawessic
fully applied IR to locate concepts [22, 39] and reconstmt-
umentation traceability links in source code [1, 20]. Weuarthat
this success is a testament to the wealth of informatioedtiorthe
identifiers and comments of a code base and that NLP-baded tec
nigues can be effective. Using light weight NLP, we can aotou
for morphology, synonyms, and sentence structure, progidp-
portunities for improved search.

2.2 Program Structure Navigation

Program navigation is one of the more promising approacbes t
identifying concerns in code. Researchers have propodled/fiog
program structure links (e.g., call graph edges, classritamnee
links, and class membership links) to discover code reladea
concern [8, 30], and also for recommending which link todall
next to identify related code [29].

While program navigation is an excellent technique for iafin
a set of modules in a mostly discovered concern, it is diffitul
discover an entirely new concern. This is due to the largebarm
of links in a program, and the potential for structural dizoect
between parts of the same concern [33]. For this reason, ieyde
that program structure navigation is an excellent compieroeour
approach and should be used to refine our result sets.

2.3 Dynamic Approaches

Software reconnaissance is a technique for deducing m®&dule
that implement a certain feature by analyzing dynamic mfor
tion [18]. Other approaches to the concept assignment gmobl
have been inspired by this work [7, 11]. Dynamic analysiselol
approaches like software reconnaissance usually remsteases
that exercise the target concern and those that do not. Tesse
cases are often difficult to construct, especially when aeonis

not user-triggerable.

the ideas presented in Thorsten and De Volder's works havede
as inspiration for parts of our tool’'s design.

25 Summary

We hypothesize that search-based approaches to the camept
signment problem are the most appropriate fundamentaladeth
ogy because they have the potential to locate many poiratecel
to a concept with little effort from the software enginee][2It
should be noted that currently both program structure g
and dynamic approaches require significantly more effornfthe
user.

3. Our NLP-Based Search Approach

When using a search-based methodology to solve the consept a
signment problem, there are three major challengEsthe dif-
ficulty of mapping from a high-level concept to an approgiat
query on the source codg) an inability to search with high pre-
cision and recall, ang3) the tedious task of understanding large
result sets. Our approach leverages natural languagariafam
provided by the AOIG along with program structure inforroati
to address these challenges(tiyaiding the user in mapping their
concept to a concrete que(g) searching over an NLP-based repre-
sentation of the concerns, a(®) presenting the search result set of
methods as a graph that shows the relationships betweeretiie m
ods. After describing our search-based process, we diboussie
met the above challenges in Section 3.2.4.

3.1 Overview of Approach

To locate a concern in source code using our approach, asieabo
in the Find-Concept tool, the user must take three majorsstep
initial query formulation, query expansion, and search eesililt
graph inspection.

First the use(1) formulates a query from their initial concept.
OORP style requires programmers to organize their code ditwpr
to objects (or nouns, using natural language as a metagiaoi9ing
a program’s actions (verbs) to become scattered duringeimh-
tation. Therefore, we primarily search for verbs. Ofterbggisuch
as “remove”, act on many different objects in a single progr
the user is interested in a subset of this scattered verlgkemen-
tation, he can also specify a direct object, such as “cir@egating
the query “remove circle”). Thus, an initial query in our ®m®
consists of a verb and a direct object.

Next, the use(2) expands the query by examining the recom-
mendations given by the system. The system recommends words
related to those already in the query, using its knowledgeatfral
language as well as how the words are used within the program.

Finally, the user3) searches the AOIG and inspects the re-
sult graph (a visualization of the query results). Find-Concept con-
structs the result graph from the search result set by paitfior



List of Methods

7h Verb-Query and ]

Direct-Object-Query Initialized

!
Expanded Verb-Query and
Direct-Object-Query

Concern Comprehension

Set Updates

1 Abstract Initial-Query = “automatically fin-
ish the word”
2 Concrete Initial-Query = finish word

3 Verb-Query = finish

Direct-Object-Query = word

4 Verb-Query = finish, finished
Direct-Object-Query = the word, all words,
complete word, first word

5 Verb-Recommendations = complete, end,
stop, close, get, ...

6 ...user chooses “complete”
Verb-Query = finish, finished, complete,
completed

5 Direct-Object-Recommendations = comple-
tions, text, line, paragraph, ...

6 ...user chooses “completions”

Direct-Object-Query = the word, all words,
... first word, completions

5 Verb-Recommendations = end, stop, close,
get, ...
6 ...user decides not to add any words

Figure 1. The Find-Concept Process

program analysis to discover the structural relationshigisveen
methods. The user can browse the result graph and direcgssac
related source code by clicking on a node, which helps the use
understand the concern.

Larger Context of ApproachBecause any code search tool is
unlikely to achieve 100% accuracy, developers should useke
tools in conjunction with program navigation tools. Codarsh
tools provide the “seeds”, or starting methods, for progreawi-
gation tools, which are more accurate, but much more time con
suming. When developers use code search tools (a seed}inder
conjunction with program navigation tools (a seed-expan@een
a small improvement in the code search tool’s accuracy speed
the overall process significantly, because the developetcheom-
plete less of the task using the time consuming program atuiy
tool.

3.2 TheFind-Concept Process

Find-Concept takes as input a target concept, and aftaaitien
with the user, outputs a search result graph for the conEapire 1
provides an overview of the Find-Concept process. In Fidyre

each node is a state in the Find-Concept process and each edg

is labeled with the corresponding step in our running exampl

presented below. In this example, we consider the problem of

locating the concern ‘automatically finish the word’ in attediting
program. This feature allows users to press a combinatideys
to automatically finish a partially completed word.

3.2.1 Formingthelnitial Query

Step 1 - Formulate Abstract Queryhe user formulates an abstract
Initial-Query for the target concept. In our example, thigidhQu-
ery is based on the idea ‘automatically finish the word'.

Step 2 - Formulate Concrete Querfhe user decomposes this
idea into a concrete Initial-Query consisting of a verb V dirdct
object DO, finish andword. We chose the terrfinish instead of
complete in this example to highlight how Find-Concept handles
even naive user input well.

Step 3 - Input QueryFind-Concept maintains both a Verb-Qu-
ery and Direct-Object-Query (see Figure 2), which arealiited
by the user inputting the Initial-Query consisting of V an@®Dn
this case, the Verb-Query is initialized {6inish} and the Direct-
Object-Query is initialized tgword}.

Step 4 - Initial Query ExpansioWhen the user enters the In-
itial-Query, Find-Concept recommends addidifferent formsof

Figure 2. Evolution of query and lists in example

V and DO to Verb-Query and Direct-Object-Query, respetjive
The user chooses to accept or omit these added words for Verb-
Query and Direct-Object-Query. In this example, Find-Ggoic
suggests that the user add the wéirdshed to Verb-Query and
direct objects, such ate word andall words, to Direct-Object-
Query. After the user enters the Initial-Query and accejnsl-F
-Concept’'s recommendations, the initial Verb-Query cstssf
{finish, finished} and the initial Direct-Object-Query ighe word,
all words, complete word, first word}, as in Figure 2.

3.22 Query Expansion

The Initial-Query consisting of Verb-Query and Direct-&tt-Qu-
ery is expanded to a complete query by incrementally crgatin
complete Verb-Query and a complete Direct-Object-Quenyubh
the user’s selections afutomatic word suggestior{Steps 5-7).

Step 5 - Generate Recommendation Lidise user begins to
expand the Verb-Query by having Find-Concept make a ranked,
related Verb-Recommendations list for the Verb-Query. tNihe
user examines the Verb-Recommendations. Find-Concept onl
Presents the top 10 ranked recommendations. Words that Find
-Concept estimates are most relevant to the current quergaap
near the beginning of Verb-Recommendations, and lessamiev
words appear towards the end of Verb-Recommendations. Sére u
begins to expand the Direct-Object-Query in the same maifher
recommendations for this example are presented in Figure 2.

Step 6 - Examine Recommendation Lists and Choose Rec-
ommendationsThe user examines the \Verb-Recommendations
{complete, end, stop, close, get, ...} as in Figure 2. Notice that
since the Verb-Query i¢finish, finished}, Find-Concept recom-
mendssynonymf finish that appear in the program. Since the
Direct-Object-Query is{word, all words,...} and complete ap-
pears withword in the AOIG, complete is recommended first.
The user examines the recommendations and quickly detesmin
that the wordcomplete is related to the concept becausem-
plete is ranked first, and addsomplete to Verb-Query. Then,
the user examines the ranked Direct-Object-Recommemdatio
{completions, text, line, paragraph, ...}. From the Direct-Object-
Recommendations, the user decides to fdanpletion, comple-
tions} to Direct-Object-Query. As the user adds words to the Verb-
Query or the Direct-Object-Query, Find-Concept suggedting
all forms of an added word (e.g., if “complete” is added thamdF
Concept will recommend adding “completing” and “compl&tes



‘ calls

* ;Over—ridden by

‘ CompleteWord.completeWord() ‘
|

‘ CompleteWord.getCompletions(A) ‘

\ A/
‘ CompleteWord.new() ‘ ‘CompleteWord.getWordToComplete()‘

I |

r{CompleteWord‘getCompletions(B) ‘

—P‘ Buffer.getKeywordMapAtOffset() ‘

\ A

‘ Completion.new() ‘ ‘ CompleteWord.completeWord() ‘

Figure 3. “complete word™s result graph. This figure is virtually
identical to the result graph Find-Concept presents to ezt
the only difference is that we reduced the horizontal sgaém
conform to this document’s two-column format.

represent methods and edges that represent structutadmelaps.
For this example, the result graph for the quéinish word is
shown in Figure 3.

Step 9a - Examine Result Graphhe user would most likely
inspect the result graph by viewing the largest connectbdrsiph,
top-down. The user can then determine whether a node repsese
part of the concern by browsing the linked source code or by
simply examining the node’s name and neighbors in the progra
structural graph. In this example, the graph’s root node éthad
CompleteWord.completeWord(), as shown by the result graph
in Figure 3. By viewing the source code fosmpleteWord. com-
pleteWord() (triggered by clicking on the associated node in the
displayed result graph) as well as its child nodes, the esizes
this method constitutes the core fafish word. Given the result
graph for the initial query, whose nodes are tightly linkeihw
source code, it is easy to understand this concern.

Step 9b - Optionally Explore Result Graph for Additional
Terms:For very challenging instances of the concept assignment
problem, the user may opt to follow an extra step. If a coretbct
subgraph appears incomplete, users can explore the sadeas-
sociated with the subgraph, using structural navigatioidéntify
additional terms to expand their query. The user then repstaps
4-9.

3.2.4 Discussion

~ Repeat Steps 5-6 - Continue Expansion Process Until Satis- |n oyr example, the user was faced with many of the typical-cha
fied: The user repeats steps 5-6 until satisfied with the expanded |enges that occur during search-based concern locatiks. isid-

query consisting of Verb-Query and Direct-Object-QueryteA
adding a word to Verb-Query or Direct-Object-Query, thebver
Recommendations and the Direct-Object-Recommendations a
likely to change since they are calculated using infornmafrom
both Verb-Query and Direct-Object-Query. Therefore is thiam-
ple, after updating Direct-Object-Query, the user agaickh the
Verb-Recommendation§ end, stop, close, get,...}, but decides

Concept is well-suited to deal with these difficulties, asrsehen
we look more closely at the following details.

Find-Concept addresses the challenge of creating eféectiv
queries by expanding users’ initial queries. The usertginjuery
of “finish word” is ineffective, returning no results. Hownay the
user interacted with Find-Concept to expand the query vig sy
onyms to add “complete”, and then via morphological relaltps

not to add any more words because none of the recommendationsg 54q “completing” and “words”, which leads to a more effeet

appear to be relevant. The user then checks the Direct-ORgc

commendations and also decides not to add more words, teavin

the Verb-Query and Direct-Object-Query as they stand infei@.

Step 7a - Optional Feedbacl&t any point during the query
formulation or expansion process, the user can inspecighefl
methods that match the current query. The size of this ligistthe
user decide when to stop expanding his query. For instahtie i
list of methods after Step 4 in Figure 2 contains no membahes, t
user will likely continue expanding his query.

Step 7b - Optional Manual Addition®ccasionally, for diffi-
cult instances of the concern location problem, the usehtiigve
few relevant search results even after expanding the quesra
times. To look for possible additions to the query, the useuil
inspect the source code of the list of methods generateceim &t
There, he will often discover a term to add to the originalrgubat
was not included on a recommendation list. This usually bapp
when a term is extremely misspelled (e.g., spelling “cotajlas

uery.

Find-Concept addresses the goal of searching with high-prec
sion and recall by assisting the user in expanding queriagets
as searching over the AOIG instead of the program text. Tleeyqu
expansion (i.e., “finish word™ “finish, finished, complete, com-
pleting, word, words”) increases the recall of the searclexical
or IR-based search fdinish word is difficult because the string
complet (the beginning ofcomplete, completing, etc.) appears
182 times in this code, mainly in other contexts unrelateth&
concernfinish word.

Find-Concept searches with high precision by returning onl
procedures where both the verb “complete” and the direcabbj
“word” appear. When the wordomplete is used with another
direct object, such asomplete choices, thencomplete appears
in the code but is unrelated finish word. Similarly, when the
string complete appears, but it is not used as a verb (e.g., search
complete graph), therromplete appears in code but is unrelated to

“‘cmpleet”) or when a developer uses a word as a synonym that is finish word. Find-Concept assures that this search has high recall

not actually a synonym (e.g., using “complete” and “appeas!”
synonyms) because these cases cause Find-Concept’'s recomm
dation algorithm to perform sub-optimally. However, everihiese
extreme cases, the Find-Concept recommendation algogtmm
perform well because it uses complementary clues.

3.2.3 Search and Display Result Graph

Step 8 - Generate Result Grapfihe end of a user’'s possibly
iterative, interactive session of query expansion triggeisearch
over the AOIG using the developed query. Find-Concept aesly
the results and generates the results set in an easily tooérs
form, called theesult graph The result graph consists of nodes that

by including all morphological forms of “complete” and “wafrin
its search.

Lastly, Find-Concept presents our search results in a mgauni
and understandable way to the developer by displaying tkeyqu
results as a graph. Once found, fivdsh word concern is difficult
to understand because the concern is implemented in tHferedi
classesCompleteWord, Buffer, andCompletion (see Figure 3). It
is difficult to view all of the concern’s code segments anektint
relationships at once in a textual view. Find-Concept Jigaa the
identified concern by showing all code segments as well @s the
inter-relationships in graph form, thus making the con@asier to
understand.



4. Underlying Program Analysis

To enable the natural language-based search processCbimd-
cept first builds a natural language representation of socode
(described in Section 4.1). Throughout the process of imgjldn
effective query, Find-Concept uses the algorithm in Secli@ to
recommend possible query expansions. Finally, once Fim-C
cept searches the AOIG using the developed query, Find-Con-
cept analyzes the results and computes the result graph tnen
algorithm described in Section 4.3.

4.1 Extracting Verb-DO Information

Both the word recommendation for query expansion and thelsea
process utilize NLP in conjunction with an underlying Actio
Oriented Identifier Graph (AOIG) [32] to reconnect the sewtl
actions of an OOP system. The AOIG is well-suited for use ndFi
Concept because it focuses on the actions of the progranfinded
-Concept’s intended use is to locate action-oriented amiscén a
programming language, verbs correspond to actions (oatipas)
and nouns correspond to objects [4]. Similarly, the Javagliage
Specification recommends that “method names should be werbs
verb phrases...” and “names of class types should be désgerip
nouns or noun phrases” [14].

It is important to consider théhemeto precisely identify a
specific action. Athemeis the object that the action (implied by
the verb) acts upon, and usually appears as a direct obj€zy. (D
There is an especially strong relationship between verlstleeir
themes in English [6]. An example is (parked, car) in the esecs
“The person parked thear.”

An algorithm to construct the AOIG for a program is the fo-
cus of a previous paper [32]. We highlight the intuitive ditiam
and example here. The AOIG model explicitly represents tioeie
rences of verbs and direct objects (DOs) in a program, asechpl
by the usage of user-defined identifiers. We currently onbjyae

occurrences of verbs and DOs in method declarations and com-

ments, string literals, and local variable names withineeming

to method declarations, because method declarations ereotlk

of concerns. We map each verb-DO pair to all its occurrenges i
the source code.

An AOIG representation of a program contains four kinds of
nodes: averb nodefor each distinct verb in the program direct
object (DO) noddor each unique direct object in the program, a
verb-DO noddor each verb-DO pair identified in the program, and
a use noddor each occurrence of a verb-DO pair in a program’s
comments or code. A verb-DO pair is defined to be two co-latate
identifiers in which the first identifier is an action or verlmda
the second identifier is being used as a direct object for tke fi
identifier’s action.

An AOIG has two kinds of edges: pairing edges and use edges.

There exists @airing edgefrom a verbv or DO do node to a verb-

DO node wherv anddo are used together, i.e., appear in the same
sentence or phrase and interact, as (jump, hurdle) do intrase
“jump the hurdle”. For each use of a verb-DO pair in the pragra
there exists aise edgen the AOIG mapping the verb-DO node to
the corresponding use node. Although a verb (or DO) node may

|
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Figure4. Example of an AOIG

nents to extract the verb-DO information from both comments
method signatures [32].

4.2 Word Recommendation

An important contribution of our Find-Concept search pesces
word recommendation. The following relationships are used
construct a ranking of recommended woudf®r addition to Verb-
Query, which are stored and presented to the user as Verb-Rec
mmendations. Note that words related to the current VerbrQu
and Direct-Object-Query are both considered when cortitigic
Verb-Recommendations. To construct Direct-Object-Renend-
ations, a similar set of relationships is considered, bth ali Verb-
Query and Verb-Recommendations references replaced with D
rect-Object-Query and Direct-Object-Recommendatioespec-
tively, and all Direct-Object-Query references replacethWerb-
Query.

e Similar Semantics - If the word w is semantically related to a
word in Verb-Query or Direct-Object-Query, is added to Verb-
Recommendations:

e Stemmed/Rooted Matching - If the word w has the same
stem/root as a word in Verb-Query or Direct-Object-Query
(e.g.,finished and finishing have the same stemy,is added
to Verb-Recommendations.

e Synonym Matching - If the wordw is a synonym of a word in
Verb-Query or Direct-Object-Query (e.dinish andcomplete
are synonyms)y is added to Verb-Recommendations.

e Similar Use- If the wordw is co-located in the AOIG with a word
which appears in Direct-Object-Query (i.e., appear in &\R0O
node together)y is added to Verb-Recommendations. For example,
if Direct-Object-Query containgord, andword is co-located with
complete in the AOIG, thencomplete is potentially relevant and
added to Verb-Recommendations.

If the word w is co-located with several words in Direct-Ob-
ject-Query, therw will be added to Verb-Recommendations sev-

have edges to multiple verb-DO nodes, a verb-DO node has only €ral times, which effectively increase$ ranking in Verb-Reco-
two incoming edges: one from the verb and one from the DO node Mmendations. The rationale is that a word that interacts se-

involved in the relation.

Figure 4 shows the form of an AOIG. In this figure, we can
see thatrerbl has twopairing edgesone to<verbl, D01> and
one to<verbil, D02>, which are botlverb-DO nodes<verbi,
D01> has twouse edgeswhich represent locations in the source
code where this pair occurs. In previous work, we descrilmsdto
build the AOIG with reasonable time and space costs using-ope

eral confirmed words of interest is often related.

421 Word Recommendation Algorithm

Figure 5 presents the algorithm for creating Verb-Recominen
ations—the ranked recommendations of highly-related wdcd
Verb-Query based on these relationships. Given a word set, o
new word recommendation algorithm builds a ranked list ghlyi-

source NLP components and open-source Java analysis comporelated words, using the AOIG model of the program and addi-



Input Verb-Query , Direct-Object-Query, AOIG
Output a ranked list of recommendations, Verb-Recommendations
: For all wordsw in (Verb-Queryu Direct-Object-Query)
Synonyms = getSynonyms()
AllForms = getAllIFormsOfWord{v)
AllSimilar = Synonyms U AllForms
For all wordsw in AllSimilar
if( AOIG containsw )

weighttws) = syn

addw to Verb-Recommendations
: For all wordsw in Verb-Query
10: Uses = getColLocatedWords(, AOIG)
11: For all wordsw,, in Uses

eoNouRrONE

12: if( Verb-Recommendations contains, )
13: weightw,,) = weight@w.,) + use

14: else weight,,) = use

15: addw,, to Verb-Recommendations

16:Sort Verb-Recommendations by decreasing weight

Figure5. Word Recommendation Algorithm

tional NLP analysis on the source program. The algorithnesak
as input a Verb-Query, a Direct-Object-Query, and the ACE@-r
resentation of the source program. The tesma anduse desig-
nate configurable weights that change the relative impoetanthe
synonym gyn) and similar usese) relationships just described.
From our initial studies and hand tuning of parameters, wsicler
syn more important thamse by a factor of two.

Consider a situation where Verb-Query consists of the term
complete and Direct-Object-Query consists of the teward, as in
the word editing program in Section 3.2. Looking for recormihe-
tions for Direct-Object-Query, we would expect Direct-6tt}Re-
commendations to be similar #gompletions, finisher, lexeme,
choice}. The termcompletions is ranked highest because it is a
synonym of a word in Verb-Query¢mplete) and appears in the
AOIG paired with a word in the Verb-Quergdmplete again). This
causescompletions to be added to Direct-Object-Recommenda-
tions on line 8 in the algorithm in Figure 5 and its weight to be
increased further on line 13. The tefiisher is ranked highly be-
cause it is a synonym of a word in Verb-Query, namadynplete,
causing it to be added to Direct-Object-Recommendationignen
8. lexeme is also ranked highly because it is a synonym of a word
in the Direct-Object-Query, hamelyord. Finally, choice is added
to Direct-Object-Recommendations on line 15, even thougdh i
ranked lowestchoice is ranked lowest because, although it appears
often in code with the verbomplete, it does not have a synonym
relationship with any word in either Verb-Query or Direcbject-

Query.

4.2.2 RuntimeAnalysis

The word recommendation algorithm’s runtime is

O(w * max(s, ¢)), wherew is the number of words in Verb-Query,
is the size of the largest set of co-located words, aistthe size of
the largest set of synonyms for a word contained in Verb-Quer
Direct-Object-Query. However, in practice, bethnds are usually
small (less than 10). In the context of Find-Concept, we liened
the word recommendation algorithm to perform quickly, preing
little to no noticeable delay for the user.

4.3 Computing the Result Graph

Figure 6 presents the algorithm for the actual search andahe
struction of the search result graph. When the user is satigfith
the query expansion, i.e., the current Verb-Query and Ditds
ject-Query, Find-Concept identifies all verb-DO nodes ;mADIG
model of the program that involve both a verb from Verb-Query

Input Verb-Query, Direct-Object-Query, AOI@Gatabase(P)
Note:database(P) is a database of program structure facts.
Output Result Graph RG
1: Verb-Query = Verb-Query {get, set, execute, constrjct
2: methods[| = identify_verbDOpairs(Verb-Query, Direct-
Object-Query, AOIG)
. HashSetO f Methods = new HashSettethods)
: RG =empty graph
: For each methodd methods|]
edges|] = getEdgesfqethods|i], database(P))
For each edge &k edges|]
if(HashSetO f Methods contains target(dges|k])
addEdgeRG, edges[k])

eXNITAR®

Figure6. Result Graph Construction Algorithm

and a direct object from Direct-Object-Query. From expere
we have found that the search algorithm works better if \@tb-
ery is first augmented with connecting verbs, sucheasset, exe-

cute, andconstruct (line 1). If the Verb-Query starts ggomplete,

completes, completed}, it becomes complete, completes, com-

pleted, get, set, execute, construct}.

If the Direct-Object-Query igword, completions, keyword },
the algorithm finds all verb-DO pairs (and correspondinghods)
that are composed of a word from each set, sucloasplete
keyword or get completions (line 2). Find-Concept follows the
use edges of the AOIG to map these verb-DO pairs to the methods
where they exist in the program. By performing the search ove
the AOIG’s use edges, Find-Concept returns search reswts t
are critical to the understanding of the original verb-DQr’pa
implementation and, furthermore, enable return of a snwdllo$
methods very relevant to the concern.

Given the set of method® with the verb-DO pairs involv-
ing both Verb-Query and Direct-Object-Query, Find-Cortagges
structural program analysis to determine all edges in thgph,
class hierarchy graph, or precondition graph that connegtcd
these methods i to each other. In Figure 6, we refer to these
structural facts as the database of program structure. faitd-
-Concept presents a visualization of the result graph stingi of
all the methods iM and any structural links connecting the meth-
ods inM, as the search result. The user can then examine the result
graph and click a node to view the associated code.

In Figure 6, the function identifwerbDOpairs(), which is a
search function over the AOIG, runs in @fgestSet), where
largestSet is the size of the largest of Verb-Query and Direct-Ob-
ject-Query sets. The result graph construction time in€)(where
m is the size of the set of methodsNrande is the largest number
of program structure edges attached to one method. In peaeti
is usually small (less than 5). The size }is dependent on the
verb-DO pair uses in the source program, which is dependent o
the target concept and its implementation in the sourcerpmg
Typically, the size oM is considerably smaller than the number
of methods in the application. In the context of Find-Concep
computing the result graph takes the most time, but we attrib
this to our prototype implementation and not to fundaméntagh
runtime costs.

5. Evaluation Methodology

To validate our ideas, we implemented our technique as dpdecl
plugin, named Find-Concept, and compared Find-Concept to
Eclipse’s built-in lexical search (ELex) [16] and a modifiédogle
Eclipse search (GES) [27]. We focused our evaluation ondhe f
lowing research questions:



Application No. % Code No. Bugs
Name NCLOC Methods Commented (Open/Total)
jBidWatcher 23,179 1,571 37.34 213/1,024
javaHMO 23,797 1,532 28.24 75/185
Jajuk 30,847 1,586 54.24 1/193
iReport 74,392 4,364 27.76 59/65

Table 1. Subject Applications’ Characteristics

RQ1 Which search tool (Find-Concept, GES, or ELex) is most
effective at locating concerns by forming and executing ergi

RQ2 Which search tool requires the least human subject effort to
form an effective query?

While we believe that the result graph provides a resultaenét
that is easier to understand than other tools’ formats, &eel@n
evaluation of the result graph’s understandability foufatwork.

5.1 Independent Variables

Because Find-Concept’'s purpose is to help developers etenpl
maintenance and evolution tasks, evaluating Find-Cofscgpery
expansion mechanism and search over the AOIG requiresisgudy
actual human subjects. Therefore, we designed our expetritoe
manipulate three independent variables: search tools;tstasks,
and human subjects.

5.1.1 Search Tools

Because we believe that search-based approaches to céorarn
tion are faster than navigation-based approaches (se®iSdgt
we focused our evaluation on search-based approaches. d&e ch
one search tool from each of the following state-of-thegad-
gram search technology categories: lexical-based (ELRx)ased
(GES), and NLP-based (Find-Concept).

Lexical Search. ELex allows users to search using a regular ex-
pression query over source code files of a given projectrmiety

an unranked list of files that match the query. The resultare
dered alphabetically by package name and then file name.'€Lex
functionality is similar togrep’s functionality, and ELex is a good
representative of the state of the art in lexical searches.

Google Eclipse Search. GES integrates Google Desktop Search
into the Eclipse workbench, allowing users to search Jaes fiith
IR-style queries (i.e., a set of words) and returning a seaoked
files. We altered GES slightly to return individual proceshiin-
stead of entire files, which is more appropriate for the giaeks.
Although Google’s exact IR algorithm is proprietary, theters
of GES claim that Google Desktop provides an accurate, B&da
search and does not suffer from inefficient queries or iriefiic
re-indexing of files during evolution, which provides an adtage
over their previous prototypes which used latent semamtitya
sis [27].

Find-Concept. To implement Find-Concept, we used many com-
ponents, related to both NLP and structural program arsli/ir
NLP, we used the Porter Stemmer [26] to perform stemmingdo re
ognize different forms of the same word, Maxent in OpenNL# [2
for part-of-speech tagging to determine the root of digect
phrases, and a stand-alone, optimized version of WordN¢aB8a
synonym finder. We used Eclipse’s JDT [9] to perform quickspar
ing of the source code, and a database of program analysisiaf
tion constructed by Eclipse’s JDT to quickly access the gi@ph
and the type hierarchy graph [29]. We used Grappa [3] to enabl
visualization of the result graph and modified Grappa to etpp
one-click access from the result graph to the corresporsiigce
code.

Comparing Heterogeneous Results. evaluate precision and re-
call fairly for tools with different forms of output, we coexted
each tool's output into a list of methods. For ELex, we redarn
the entire result set because each result was an occurrétioe o
search expression, and there is no metric for ranking aesonggur-
rence higher than another. For GES, we returned the top seiitse
ranking results by the number of search terms they contaRed
turning more than ten results would unfairly skew GES'’s jgiea
lower than the other tools. For Find-Concept, we returnedttip
ten results. Although Find-Concept does not naturally raskilts,
we ranked methods by the prominence of their placement in the
result graph using theonnectedness-factoFor a given noder,
the connectedness-factés the number of nodes in's connected
sub-graph added to the sum@§ outgoing and incoming edges.
This heuristic approximates the visual prominence of the result
graph.

5.1.2 Search Tasks

To compare the search results of different tools, we firsttifled

a set of search tasks. gearch task consists of anapplication
and aconcept We identified four active, sizable, open-source Java
applications with available bug report repositories. In edfort

to identify realistic concepts, we extracted commonly ocog
concepts from bug reports. We then identified the conceradoh
concept in the source.

Subject Applications. We identified open-source Java applications
that met the following constraints: at least 25 KLOC, at €26
available bug reports, and at least 1000 methdd&lWatcheris

an online auction monitoring and sniping applicatidajuk is a
multi-platform music jukebox designed for users with largesic
collections.IReportis a report generation and editing application.
JavaHMOis an expansion of the TiVo Home Media Option soft-
ware that allows users to access and display different typese-
dia.

We also identified a text messenger application for use in-tra
ing, PlanetaMessengdb]. Because this application was only used
for training the human subjects, it was not subjected to tmees
constraints as the subject applicatioP$anetaMessengemeets
our size and procedure count constraints, but has less thang
reports.

Relevant characteristics of our four subject applicatemaspre-
sented in Table 1. We calculated these characteristicg ubim
Refactorlt plug-in [34] and by consulting Sourceforge'sjpct
statistics [15]. The ‘% Code Commented’ was calculated biddi
ing the number of commented lines of code by the non-comrdente
lines of code (NCLOC).

Concepts. From these four subject applications and the train-
ing application, we identified eleven action-oriented @pts —
nine as search targets and two as training tasks. Becauseewe p
sented the concepts to our human subjects in a visual form (as
explained in Section 5.3 und&ubjects’ Tasks we only selected
user-observable concepts [23] for the experiment. To enthe
concepts in our experiment were realistic, we searchedigjfro
bug reports for each application. For each application, taeex
with the most recent bugs in the database, identified thesgi(s)

for each bug report, and stopped when we identified two taethre
concepts that were associated with several bug reportsniare
the tools were used evenly by all human subjects, we selected
additional concern from jBidWatcher because it had the rbogt
reports—for a total of nine concerns. Thus, we focused theyst
on concerns that actual developers need to search for todix Bu
summary of the concepts we selected is in Table 2.



Task Name Application Description Gold Textual
Set Size Clues

Add Textfield iReport Insert a textfield into a report 5 Part
Compile Report iReport Compile the source of a report ineofiial report 8 Full

Add Auction jBidWatcher  Add an auction to the local list ofcéions to monitor 10 Full

Set Snipe jBidWatcher  Set the price for the program to autically bid on the user’s behalf at a specified time 12 Part
Save Auctions jBidWatcher  Save the list of auctions thatiber is currently monitoring 9 Full
Gather Music Files javaHMO Inspect the local hard-driverfarsic files to automatically add to the music library 4 None
Load Movie Listings  javaHMO Download movie listings fromemote movie listings service 5 none
Search for Songs Jajuk Search the user’'s music library fiarck using regular expressions 5 none
Play Track Jajuk Play an audio file 12 Part

Table 2. Search Tasks

5.1.3 Human Subjects alone. To enable replication of this experiment and to aftercern
benchmarks to the community, we provide a list of the mettiods
each concept’s gold sefTable 2 displays the size of each gold set.
The “Textual Clues” column documents the level of searcmter
clues contained in the application’s GUI, as explained inti8a

To make our study’s findings relevant to the practice of safew
engineering, we sought out human subjects who program on a
regular basis. We used 13 full-time professional Java deegt as
well as five graduate students (all in systems researchy fotal
of 18 subjects. Although the subjects were a mix of advanced a
intermediate programmers, the developers are typicaljyired to 522 Effort
use search tools for maintenance tasks on a daily basis. o

To evaluate human subject effort, we measured the amoumef t
5.2 Dependent Variables and M easures each subject required to form a satisfactory query for eask We

began timing when the subject claimed to understand theepbnc

To answer RQ1 and RQ2, we measured the effectiveness of each . S
tool's query formulation and execution (RQ1) and human ettbj R/hlizu(;illjgrsresented and stopped when the subject was sdeilie

effort (RQ2).

521 Effectiveness 5.3 Experimental Procedure
To measure the effectiveness of a seapetycision and recall

are often usedPrecisionis the ratio of the number aofelevant
procedures retrieved to the total number of proceduregevett.
Recall is the ratio of relevant procedures retrieved to the total
number of relevant procedures existing in the source agjmic.
High precision means the result set contains few irrelexeslts,
whereas high recall implies most of the relevant resultsataded

in the result set.

Each of the 18 human subjects completed 9 tasks. Subjects wer
assigned one search tool for each task such that every subpt
each tool three times. We randomized the task and tool ooder t
avoid biasing our results. With one exception, each tool wsesi
three times consecutively to avoid human subject confusimm
switching between tools. An example schedule for three muma
subjects is presented below.

A good search result set requires both precision and rezall t Execution Slots
be high, and the quality of the result is bounded by the lower Subject 1 Tas'r 1136121815191 7/|4
measure. To combine these measures, we udertieasure, which - Iggk i g g 2 g g ; % ‘11
is commonly used to evaluate query effectiveness in IR [Biig Subject2| ool 33|31l 1l1]2]2]2
f-measure is defined to be the harmonic mean of precision and Subject 3 Task || 1 | 3| 6| 2| 8|59 ]| 7] 4
recall, calculated a@xprecision*recall) / (precision+recall). Tool 1] 1j1]2]2[2]3]3]3

The f-measure is better suited than more simplistic contioina
techniques like averaging because it weighs the lower measu
more heavily. For instance, a query with 90% precision buy on
10% recall returns few results, but most results are retevidre
f-measure for this case is 18%, whereas the average of jmecis
and recall is 50%. The f-measure (18%) better reflects theygue
effectiveness, since the query only locates 10% of the tvtarget
concern.

To calculate precision and recall, we need to identify theldg
set” of methods that represent each concern. However, vanane
of no benchmark concerns in the community or a rigorous defini
tion of concerns. Thus, we used our intuitive definition obacern
(the implementation of a high-level concept) and a humabistya
to interpret and apply this definition to locate the gold Jetpro-
vide low bias, we recruited a new group member, unfamilighwi
our previous and current work, to identify concerns. Foheamn-
cept, we asked him to locate the code that implements it. He wa

Note that each row only covers nine out of the possible 27
Task-Tool combinations (Task 1 with Tool 2 is a single TasioiT
combination). Our experimental setup requires three stdbj®
cover every possible Task-Tool combination, representedhb
three rows in the above table.

In the schedule above, each human subject performs the tasks
in the same order. While we randomize the task order for each
group of three subjects, within that group each subjectksdave
the same order. Since a group of three human subjects refese
every Task-Tool combination, we felt it reasonable to kéepstame
ordering of tasks within a group to ensure that, for instafask 1
is completed with each tool in the first execution slot.

In the overall experiment, we had 18 subjects, meaning that
6 schedules similar to the above schedule were run. Sinde eac
schedule covers each Task-Tool combination, we observerq ev
Task-Tool combination 6 times.

given access to the application’s code base (which he wasnilrf Training. To ensure subjects understood how to use each tool, we
iar with) and all of Eclipse’s typical functionality [16].féer he had trained every human subject on each tool prior to the evialiat
identified a set of methods, the first author, who was alsamitifer tasks. We presented the subject with a written script thategh

with the applications, verified this set. The two then disegsand him through the use of each tool on two training tasks, locati
reconciled the few methods they disagreed upon. More théf 90
of each identified gold set was located by the new project neemb  2www.cis.udel.edu/"shepherd/Research.htm




the “send message” and “add profile” concepts in Planetadtess
ger, our training application. We observed each subjediasper-
formed the training tasks and corrected any misuse of this.too
However, during experimental evaluation, we did not cdresty
usage. During the training session, we included advancertise
features, such as the wildcard “*” for lexical search, besgagxpert
developers use advanced features to cope with the shoittqgem
of current search tools.

Task Setup. For each task, we asked the subjects to form a query
using the assigned tool that yielded the highest precisizhre-
call values using as little time as possible. To avoid biggime
human subject’'s query terms by providing a natural langubege
scription of the task, we presented each task to the sulipeily.
We displayed a series of screen shots that showed the conasp
ing concept occurring during the execution of the subjepliap-
tion. Some screen shots of the action occurring in the aquidic
contained natural language clues (e.g., a menu item labedea-
pile”). We have noted whether a screen shot gave the subjexs ¢
in the last column of Table 2. Since this text was visible adgithe
normal execution of the application we consider these ale@son-
able. After the subjects viewed the screen shots, we aslesdl tib
verbalize the concept, and we confirmed with a “yes” if thgectb
correctly understood the concept. In a few cases, the sudifenot

within each box denotes the median,represents the mean, and
outliers are represented by

As illustrated by Figure 7 (a), Find-Concept tends to havtebe
precision and recall, as combined in the f-measure. The bbaght
of Find-Concept's box compared to GES'’s box indicates tlvad+
Concept more consistently produced higher results than. GES

6.1.1 Find-Concept vs. ELex

Find-Concept is consistently more effective than ELex aating
concerns (see Figure 7 (a)). We believe this is due to the-prob
lems described in Section 2.1.1 that plague ELex, causimgér-
formance. For instance, it is difficult to use ELex to locdte t
concept “play track” because ELex does not handle concieéna
search terms well. This caused subjects to broaden initietigs
like “play*music” (0 matches) to“play” (1995 matches); tiar

of which is an effective query due to the number of results re-
turned. ELex also does not recommend synonyms nor does it ac-
count for morphological forms. Users searching for the epbc
“add textfield” often searched for only “add*textfield” or ré
ate*textfield”, thus missing relevant results.

understand the concept and we showed them the screen shots arf-1.2  Find-Concept vs. GES

other time before they understood the concept. We then ahked
subject to search for that concern with the tool they wer@aed
for that task. Once the queries were formed by the human &ubje
we executed the queries with the assigned tool for that tagk a
examined the result sets to compare with the gold set, edingl
precision, recall, and f-measure.

5.4 Threatsto Validity

The set of concerns and corresponding gold sets of methaals is
threat to validity because it is possible that the selecists fa-
vored a certain tool. To minimize this threat, we selectenteons
through an objective process involving bug reports, andntite
urally subjective selection of the gold sets was conducted ke-
searcher with no prior understanding of Find-Concept ostligect
applications.

Because we used only four subject applications in our experi
ment, it is possible that our results cannot be generalizetl Java
applications. To maximize the generality of our results, wged
reasonably-sized, popular open-source applications.|¥geiden-
tified concerns from bug reports, ensuring that the concerrs
of interest in real-world situations. Because we only useba-
oriented, user-observable concepts, we cannot genexalizee-
sults to all types of concepts.

6. Results

In this section, we describe the overall effectiveness chedaol,
compare Find-Concept's performance to ELex and GES, and sum
marize user effort measured across all tools.

6.1 Effectiveness

Figure 7 (a) presents a box plot of the f-measure for each tool
across every subject user and search task. For completemess
have included the precision and recall results for each bask
Figure 9. However, we believe that f-measure is a more apiaitep
performance measure for concern location tasks. Figurg—<jlb
illustrates the f-measure for each tool separated by taskath
figure, the box represents 50% of the data and spans the Vfitith o
inner quartile range (IQR), with each whisker extending«IQR
beyond the top and bottom of the box. The center horizomal i

While Figure 7 (a) shows that Find-Concept is more effective
than GES overall, we found that the tasks had a large impact on
tool performance. Out of 9 tasks, we found that Find-Concept
outperformed (i.e., achieved a higher mean F-measure (BE®)

on 4 tasks, GES outperformed Find-Concept on 2 tasks, amd Fin
-Concept and GES performed similarly for 3 tasks. Find-@pbc
performed as well or better than GES on 7 out of 9 tasks. Heze, w
analyze the results closely.

Find-Concept > GES

Find-Concept performed better than GES on tasks “add ti&Ktfie
“add auction”, “save auctions”, and “play track” (see Figut(b),
7(d), 7(f), and 7(j), respectively); we believe for many bétrea-
sons we anticipated in Section 3.

When searching for the concept “add textfield”, subjectsroft
began with the initial query “add textfield”. Because of itdlity to
identify synonyms, Find-Concept recommended that thesiesa
“construct” and “create” to this query. These additionsréased
the query’s effectiveness because the relevant concempke{
mented using the verbs “add”, “create”, and “construct”.

Find-Concept also expanded queries to include morphabgic
variations of words, expanding from “auction” to includeuta
tions” (for the “save auctions” task). This expansion ledatoin-
crease in query effectiveness because a search for “atiotieses
an important method where “auctions” is used instead ofttant

Find-Concept created recommendations based on the sguctu
of the AOIG, sometimes leading to surprising but effectiseam-
mendations. For instance, in the “save auctions” task, -Blad-
cept recommended adding the direct object “file” when thgaihi
query was “save auctions”. Find-Concept recommended ‘“fiee”
cause “file” appears to be similar to “auctions” in the AOI@. |
our study, the user often accepted this recommendatiodinig&o
increased query effectiveness.

Searching over the AOIG created a higher precision search fo
Find-Concept. During the “play track” task, a subject uskigd-
-Concept can search for theerb “play” and locate the relatively
small occurrences of the term “play” where “play” is used as a
verb (approximately 41 occurrences in approximately 3fedint
methods). However, using GES or ELex, users’ queries return
over 500 methods where “play” occurs, with many relevanthmet
ods ranked low.
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Figure 7. Overall results by tool shown by task. Find-Concept is atibted with FC. See Section 6.1 for a thorough explanatiothef

graph’s notation.

Find-Concept < GES

GES performed better than Find-Concept on tasks “compile re
port” and “load movie listings” (see Figure 7(c) and 7(h}spec-
tively); we believe this is due to limitations of the currek®IG-
Builder and a lack of natural language interpretable cluethée
corresponding source code (see Table 1 for the percent eftbadl
is commented).

Users searching for the concept “compile report” often used
the terms “compile report” as their initial query. Becaue t
AOIGBUuilder has difficulty interpreting natural languagees for
certain program elements, the AOIG misses a few key nodes. Fo
instance, the AOIGBuilder has trouble interpreting thesslaame
IReportCompiler. The AOIGBuilder is able to identify the verb
“compile” but is unable to identify the direct object “reibbe-
cause of its limited rule set. Thus, a search for “compileorep
will fail because no “report” node exists for the class nalRe-
portCompiler. We intend to augment the AOIGBuilder to interpret
class names likéReportCompiler in the future.

GES performed better on the “load movie listings” task beeau
terms relevant to the search were located in text our NLPyaisal
does not consider—meaning these clues were not in the AOIG.
For instance, the term “movie” only appeared in the strimerdil
“www.movies.go.com/cgi/movielistings/request.dlISZSPECIF-
IC...". The AOIGBuilder does not currently consider striitgrals
of this format. We intend to address this limitation in flgwrork.

Find-Concept = GES

On tasks “set snipe”, “gather music files”, and “search for
song”, Find-Concept’s performance was very similar to GH'-
formance (see Figure 7(g), 7(i), and 7(e), respectivelye Tol-
lowing does not compare Find-Concept with GES but rathewsho
areas where Find-Concept can be improved.

Subjects had difficulty translating the concept “set sniipgd
a concrete query. Subjects often entered the initial quenyp&”
as a verb. However, in the concept “set snipe” “snipe” is tinead

object. The query “snipe” as a verb caused Find-Conceptacke
for a different concept than “set snipe”.

Almost all subjects that searched for the concept “gathesienu
files” with Find-Concept entered the query “find music”. Fi@dn-
cept did not recommend the relevant term “files” during quety
pansion because the verb “find” is used with too many othexctlir
objects besides “files”. We envision improving our recomaeen
tions by performing analysis on the AOIG to determine that th
direct objects “music” and “music file” are similar if theises and
their semantic similarity are analyzed.

Find-Concept had difficulty locating three of the five methad
the gold set of “search for song” because three methods jghou
getResu(), toStringSearch(), andSearchResult.new()) had weak
natural language clues. Find-Concept found the other twihaas
that had strong clues (group Bearch() andsearch()). However,
the methods in group A were strongly linked with group B via
program structure links. In future work, we plan to expanarske
result sets via program structure links, which could captginoup
A by expanding outwards from group B, even with only partial
natural language clues.

6.2 Effort

In Figure 8, we present the mean time required by subjects to
perform search tasks for each tool. Our results indicatetlegime
required by each tool is not significantly different. Theref we
conclude that all the tools require equivalent user efféde. infer

that Find-Concept saves time for maintenance tasks bydsirg

the location rate, or the average number of relevant methods
found per time unit. Finding relevant methods faster shiedd to
understanding concerns sooner and thus solving mainteriasks
more quickly.

7. Conclusions

In this paper, we described the Find-Concept search prodeish
has the goal of locating action-oriented concerns in lamece
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800 by improving its theory and implementation. The current GOI

r 1 Builder accurately analyzes the majority of method names co
600 - e rectly [32], but, as noted in our experimental evaluatios- di
I © o i cussion, Find-Concept’'s performance is directly affeddgdany
400 g | shortcomings of the AOIGBuilder. We are currently refinimg t
AOIGBuilder by identifying cases where the AOIGBuilderlai
and creating new techniques for these cases.

20r ) Although we have evaluated Find-Concept on several open
S R source programs of varying quality and size with promisiesgpits,
or ; T we have not directly evaluated the effect of naming coneastion
ELex GES FC Find-Concept’s or the AOIGBuilder’s performance. In gatewe
expect our tools to perform better on high quality sourceectie
plan to evaluate this quantitatively in the future.

Find-Concept assumes that many programming tasks focus on
actions. We believe that most bug reports refer to actioased
on our extensive reading of bug reports for this project, @un
experience submitting bug reports, and our intuition. Hmvewe
have not performed a quantitative evaluation of this phesran,
which we leave as future work.

Within the Find-Concept framework, there are many oppa+tun
ties for full automation, such as automatically expandingrées.
We plan to investigate opportunities for further autormtifind-
Concept.

[e}e]

Time (s)

Figure 8. Overall effort results for each tool.

code bases with the aid of NLP on source code. We presented
its query expansion and result graph construction algosttas

well as our implementation. We evaluated our approach tatiog
action-oriented concerns and compared it to a state-efithkex-

ical search tool and a modified commercial information eval

tool in terms of search effectiveness and user effort. Qlyava
found that Find-Concept was more consistent and more affect
than either ELex or GES, without requiring additional usiéore

In cases where Find-Concept's performance is worse or a@imil
to GES, Find-Concept's performance could be improved by aug
menting the AOIGBuilder’s theory and implementation, whige References
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