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Abstract
Most current software systems contain undocumented high-level
ideas implemented across multiple files and modules. When devel-
opers perform program maintenance tasks, they often waste time
and effort locating and understanding these scattered concerns. We
have developed a semi-automated concern location and compre-
hension tool, Find-Concept, designed to reduce the time developers
spend on maintenance tasks and to increase their confidence in the
results of these tasks. Find-Concept is effective because it searches
a unique natural language-based representation of source code,
uses novel techniques to expand initial queries into more effec-
tive queries, and displays search results in an easy-to-comprehend
format. We describe the Find-Concept tool, the underlying pro-
gram analysis, and an experimental study comparing Find-Con-
cept’s search effectiveness with two state-of-the-art lexical and in-
formation retrieval-based search tools. Across nine action-oriented
concern location tasks derived from open source bug reports, our
Eclipse-based tool produced more effective queries more consis-
tently than either competing search tool with similar user effort.

Categories and Subject Descriptors: D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques

General Terms: Design, Experimentation, Languages

Keywords: Reverse engineering, Program analysis, Feature Loca-
tion, Remodularization

1. Introduction
Throughout the life cycle of an application, between 60-90%of
resources are devoted to modifying the application to meet new
requirements and to fix discovered faults [12]. To modify an ap-
plication, developers must identify the high-level idea, or concept,
to be changed and then locate (or find), comprehend, and mod-
ify the concept’sconcern, or implementation, in the code [19].
Because no complete methodologies address the concern location
and comprehension problem, more development time is spent read-
ing, locating, and comprehending source code than actuallywriting
code [25]. Therefore, a software development organizationcould
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reduce maintenance costs by reducing the difficulty of locating and
comprehending concerns.

One of the most common approaches to easing concern loca-
tion is to group related concerns into modules bydecomposinga
system with respect to a particular type of concept, namely objects.
An object-oriented decomposition facilitates locating and com-
prehending object-oriented concerns because the relevantcode is
grouped into an object class file instead of disjointed code segments
scattered throughout many program files. For example, in theopen
source juke box application Jajuk [13], program code related to a
music player resides in the abstractPlayer object (this includes the
core player functionality of playing, pausing, stopping, muting, and
seeking). This object-oriented decomposition makes comprehend-
ing and maintainingPlayer easier but can causeaction-oriented
concepts, such as “play track”, to become scattered across the code
base. The research community agrees that object-oriented program-
ming causes certain concerns to become scattered [17, 36], and we
argue that many of these scattered concerns are action-oriented be-
cause of the natural tension between objects and actions [32]. In ad-
dition to thePlayer object, in the Jajuk example, the “play track”
concern is scattered in classes representing a track, a music repos-
itory view, the concrete player, and a FIFO playlist queue. In this
case, the action-oriented concepts are scattered to satisfy the object-
oriented decomposition [32].

Aspect-oriented programming (AOP) can help modularize high-
level, action-oriented concerns by implementing actions in aspects.
However, implementing too many actions as aspects could cause
objectsto become scattered. Imagine refactoring the above “play
track” concern into an aspect by removing theplay() method
from thePlayer class—creating aPlayer that has no independent
ability to play. Thus, refactoring the scattered concern “play track”
into an aspect may not be appropriate. Yet there are many concerns
where AOP offers a pleasing alternative to the scattering ofaction-
oriented concerns. To perform (some) refactoring from objects
to actions (in aspects) as well as locate and comprehend actions
that are not refactored, developers need techniques to locate and
comprehend action-oriented concerns.

Locating a concern is commonly called theconcept assign-
ment problem. In addition to theconcept assignment problem, we
also target concern comprehension. Our strategy for addressing
the challenges of the concept assignment problem and concern
comprehension is based on a novel approach to processing source
code—namely, a hybrid of structural program analysis and natural
language processing (NLP) applied to source code. Our approach
is search-based with queries performed over a program modelthat
captures theaction-oriented relations between identifiersin a pro-
gram. We perform NLP analysis on source code by leveraging the
information about occurrences of verbs and their direct objects



in the program, which are explicitly represented in the program’s
action-oriented identifier graph model (AOIG) [32] and by per-
forming additional NLP analysis.

The AOIG represents the actions in a program, supplemented
with the direct object of each action. Often verbs, such as “re-
move,” act on many different objects in a single program, such as
“remove attribute”, “remove screen”, “remove entry”, and “remove
template”. Therefore, to identify specific actions, the AOIG repre-
sents the direct objects of each verb (e.g., the direct object of the
phrase “remove the attribute” is “attribute”). We discuss the ratio-
nale for extracting this information from programs as well as the
general structure of the AOIG in Section 4.1.

In our previous work, we motivated the use of NLP on pro-
gram source code and presented the action-oriented identifier graph
(AOIG), focusing on its definition, an example use, and a con-
struction algorithm. We also suggested applications of theAOIG
to demonstrate its usefulness, including a simple filter viewing tool
over the AOIG to be used for feature location [32]. This paperfo-
cuses on NLP-based source code analysis and structural program
analysis using the AOIG to address the challenges of the concept
assignment problem. Specifically, this paper provides the following
set ofnovel contributions to the state of the art beyond our previous
work [32]:

• The application of the AOIG program representation to concern
location, including

A query expansion algorithm, with a novel word recommen-
dation algorithm which combines NLP analysis and struc-
tural program analysis to assist in expanding user search
queries into more effective queries

A result graph construction algorithmthat connects search
results via structural links to create an easily compre-
hendible, graphical concern representation

An implementation of our approachas an Eclipse plug-in
enabling interactive concern location and comprehension
with tedious NLP and structural analysis performed auto-
matically

• An evaluation of our approach to locating action-oriented con-
cerns versus a state-of-the-art lexical search tool and a commer-
cial information retrieval tool, including

A comparison of each tool’s search effectiveness

An analysis of the tasks on which our approach performed
well, average, and poor

A comparison of user effort required to operate each tool

Although we believe the result graph is more understandable
than other tools’ result sets (i.e., ranked or un-ranked lists), we
leave such an evaluation to future work.

For the software engineer, these contributions translate into (1)
decreased time spent locating and comprehending code related to a
concept and (2) increased confidence in a code modification due to
increased confidence in locating the relevant code with a search.

Our experimental evaluation investigated which of the state-
of-the-art code search tools (Find-Concept and two others)is more
effective at locating concerns by forming and executing a query.
We asked 18 human subjects to each complete nine concern loca-
tion tasks using the tools, and we measured the search effectiveness
and the required effort for each task. Find-Concept found concerns
more effectively and more consistently than either of its competi-
tors across all tasks while requiring similar effort. However, the
performance of each tool varied for each concern location task.
While Find-Concept performed more effectively or equivalently to

its strongest competitor on seven out of nine tasks, it performed
less effectively on two out of nine tasks. After a thorough analysis
of these two tasks, we concluded that Find-Concept’s effectiveness
could be improved by enhancing its underlying technology (i.e., the
AOIG-Building software). For instance, the AOIG-Buildingsoft-
ware failed on a few key cases, decreasing Find-Concept’s effec-
tiveness. We are currently extending and revising the AOIG-Builder
to handle these cases.

In Section 2, we present the state of the art for concern location.
We give an overview of our natural language-based search process
with an example in Section 3 and provide details of how we com-
bine program structure and natural language analysis in Section 4.
We present our evaluation procedure in Section 5 and presentthe
results and analysis in Section 6. Finally, we conclude witha sum-
mary in Section 7 and future research directions in Section 8.

2. State of the Art
Locating and understanding a concern, or theconcept assignment
problem, is a fundamental activity that developers, especially soft-
ware maintainers, must perform often [21, 29]. When software en-
gineers try to locate source code related to a concept, they typi-
cally use a variety of ad hoc techniques such as scrolling through
files, following call graph links, analyzing dynamic information,
or searching files using mechanisms similar to UNIXgrep. These
approaches can be categorized as one of three fundamental ap-
proaches: search-based (scrolling andgrep), program structure
navigation (call graph and type hierarchy links), and dynamic ap-
proaches.

2.1 Search-based Approaches

In the current literature, there are two types of searches that are used
to locate concerns: lexical-based and information retrieval-based.
Most searching techniques are evaluated in terms ofprecision, the
number of desirable items found divided by the number of actual
items found; andrecall, the number of desirable items found di-
vided by the number of possible desirable items. Here, we discuss
both types of search-based approaches, with the goal of highpreci-
sion and high recall in mind.

2.1.1 Lexical Searches

Programmers commonly use lexical searches to locate concepts in
code using regular expression queries. The problem with lexical
search tools likegrep [28] is that regular expression queries are
extremely fragile, causing low recall. Expert developers often com-
pensate by searching for overly general terms, leading to large re-
sult sets with low precision and no ranking of relevance within the
large result sets.

Many natural language features cause regular expression queries
to exhibit low recall. Features such as morphology changes,syn-
onyms, line breaks, and reordered terms will cause regular expres-
sion queries to fail. For example, a user’s search for the concept
“find” will fail if he uses a regular expression search for “find” and
the concern is implemented using a different morphologicalform of
the word, such as “found”. Similarly, a user’s search for theconcept
“remove” will fail if the concept is implemented using the synonym
“delete”. Also, searches for two interacting words that occur near
each other (such as the phrase “find node”) will often fail, because
line breaks and word ordering changes break most simple regular
expression searches. Searches for “find*node”1 might return false
positives, such as “find the term in the node”.

The low recall of regular expression queries causes expert devel-
opers to broaden their query if an initial query fails to return results.

1 “*” stands for 0-many characters of any type



However, commonly occurring sub-strings in the code cause even
mildly broad search terms to return large result sets, leading to low
precision searches. If a user initially searches for the term “prints”
and no results are returned, he is likely to broaden his queryand
search for “print”. However, in Java code, the result will include
a large number of false positives caused by the commonly used
methodSystem.out.println(). It is too cumbersome for a devel-
oper to read through a low precision result set caused by overly
broad lexical searches.

2.1.2 Information Retrieval

Information retrieval (IR) technology uses the frequency of words
in documents to determine similarity between documents and
queries. Because IR calculates a similarity score, it can rank the
results of a query according to relevance. IR also gracefully han-
dles multiple word queries [27]. IR does not, therefore, suffer from
all the difficulties of regular expression queries. IR’s search queries
are notas fragileand it does not return un-ranked result sets.

IR technology by itself does not avoid all of the problems
that trouble lexical searches. For instance, IR tools rarely handle
natural language issues such as morphology, resulting in reduced
recall searches. IR technology also returns false positives because
it does not account for sentence structure. A search for the concept
“play music” using the terms “play” and “music” could returnthe
irrelevant comment “The video should play while the music is
silent”. Furthermore, IR generally does not account for synonyms,
resulting in reduced recall searches (although some approaches
attempt to learn related words from word frequency and context
information [22]).

In spite of its apparent shortcomings, researchers have success-
fully applied IR to locate concepts [22, 39] and reconstructdoc-
umentation traceability links in source code [1, 20]. We argue that
this success is a testament to the wealth of information stored in the
identifiers and comments of a code base and that NLP-based tech-
niques can be effective. Using light weight NLP, we can account
for morphology, synonyms, and sentence structure, providing op-
portunities for improved search.

2.2 Program Structure Navigation

Program navigation is one of the more promising approaches to
identifying concerns in code. Researchers have proposed following
program structure links (e.g., call graph edges, class inheritance
links, and class membership links) to discover code relatedto a
concern [8, 30], and also for recommending which link to follow
next to identify related code [29].

While program navigation is an excellent technique for refining
a set of modules in a mostly discovered concern, it is difficult to
discover an entirely new concern. This is due to the large number
of links in a program, and the potential for structural disconnect
between parts of the same concern [33]. For this reason, we believe
that program structure navigation is an excellent complement to our
approach and should be used to refine our result sets.

2.3 Dynamic Approaches

Software reconnaissance is a technique for deducing modules
that implement a certain feature by analyzing dynamic informa-
tion [18]. Other approaches to the concept assignment problem
have been inspired by this work [7, 11]. Dynamic analysis-based
approaches like software reconnaissance usually require test cases
that exercise the target concern and those that do not. Thesetest
cases are often difficult to construct, especially when a concern is
not user-triggerable.

2.4 Other Related Work

Researchers have used natural language processing to identify as-
pects in requirements, whereas we identify concerns in source code.
Baniassad et. al. created one of the first techniques that used NLP
to mine for aspects in requirements, the Theme approach, which
is semi-automated [2]. Sampaio et. al. later created a technique for
automaticallyidentifying aspects in requirements [31]. Both works
have served as inspiration for our approach, but the nature of ana-
lyzing requirements as opposed to source code has led to notably
different approaches.

Thorsten [10] and De Volder [38] have both proposed ways of
visualizing the history of an exploration through a programas users
search for a feature. We believe that visualizing the interactions be-
tween modules is important for program understanding, therefore,
the ideas presented in Thorsten and De Volder’s works have served
as inspiration for parts of our tool’s design.

2.5 Summary

We hypothesize that search-based approaches to the conceptas-
signment problem are the most appropriate fundamental methodol-
ogy because they have the potential to locate many points related
to a concept with little effort from the software engineer [22]. It
should be noted that currently both program structure navigation
and dynamic approaches require significantly more effort from the
user.

3. Our NLP-Based Search Approach
When using a search-based methodology to solve the concept as-
signment problem, there are three major challenges:(1) the dif-
ficulty of mapping from a high-level concept to an appropriate
query on the source code,(2) an inability to search with high pre-
cision and recall, and(3) the tedious task of understanding large
result sets. Our approach leverages natural language information
provided by the AOIG along with program structure information
to address these challenges by(1) aiding the user in mapping their
concept to a concrete query,(2)searching over an NLP-based repre-
sentation of the concerns, and(3) presenting the search result set of
methods as a graph that shows the relationships between the meth-
ods. After describing our search-based process, we discusshow we
met the above challenges in Section 3.2.4.

3.1 Overview of Approach

To locate a concern in source code using our approach, as embodied
in the Find-Concept tool, the user must take three major steps:
initial query formulation, query expansion, and search andresult
graph inspection.

First the user(1) formulates a query from their initial concept.
OOP style requires programmers to organize their code according
to objects (or nouns, using natural language as a metaphor),causing
a program’s actions (verbs) to become scattered during implemen-
tation. Therefore, we primarily search for verbs. Often verbs, such
as “remove”, act on many different objects in a single program. If
the user is interested in a subset of this scattered verb’s implemen-
tation, he can also specify a direct object, such as “circle”(creating
the query “remove circle”). Thus, an initial query in our system
consists of a verb and a direct object.

Next, the user(2) expands the query by examining the recom-
mendations given by the system. The system recommends words
related to those already in the query, using its knowledge ofnatural
language as well as how the words are used within the program.

Finally, the user(3) searches the AOIG and inspects the re-
sult graph (a visualization of the query results). Find-Concept con-
structs the result graph from the search result set by performing



Figure 1. The Find-Concept Process

Step Set Updates
1 Abstract Initial-Query = “automatically fin-

ish the word”
2 Concrete Initial-Query = finish word
3 Verb-Query = finish

Direct-Object-Query = word
4 Verb-Query = finish, finished

Direct-Object-Query = the word, all words,
complete word, first word

5 Verb-Recommendations = complete, end,
stop, close, get, ...

6 ...user chooses “complete”
Verb-Query = finish, finished, complete,
completed

5 Direct-Object-Recommendations = comple-
tions, text, line, paragraph, ...

6 ...user chooses “completions”
Direct-Object-Query = the word, all words,
... first word, completions

5 Verb-Recommendations = end, stop, close,
get, ...

6 ...user decides not to add any words

Figure 2. Evolution of query and lists in example

program analysis to discover the structural relationshipsbetween
methods. The user can browse the result graph and directly access
related source code by clicking on a node, which helps the user
understand the concern.

Larger Context of Approach:Because any code search tool is
unlikely to achieve 100% accuracy, developers should use search
tools in conjunction with program navigation tools. Code search
tools provide the “seeds”, or starting methods, for programnavi-
gation tools, which are more accurate, but much more time con-
suming. When developers use code search tools (a seed-finder) in
conjunction with program navigation tools (a seed-expander), even
a small improvement in the code search tool’s accuracy speeds up
the overall process significantly, because the developer has to com-
plete less of the task using the time consuming program navigation
tool.

3.2 The Find-Concept Process

Find-Concept takes as input a target concept, and after interaction
with the user, outputs a search result graph for the concept.Figure 1
provides an overview of the Find-Concept process. In Figure1,
each node is a state in the Find-Concept process and each edge
is labeled with the corresponding step in our running example,
presented below. In this example, we consider the problem of
locating the concern ‘automatically finish the word’ in a text editing
program. This feature allows users to press a combination ofkeys
to automatically finish a partially completed word.

3.2.1 Forming the Initial Query

Step 1 - Formulate Abstract Query:The user formulates an abstract
Initial-Query for the target concept. In our example, the Initial-Qu-
ery is based on the idea ‘automatically finish the word’.

Step 2 - Formulate Concrete Query:The user decomposes this
idea into a concrete Initial-Query consisting of a verb V anddirect
object DO,finish andword. We chose the termfinish instead of
complete in this example to highlight how Find-Concept handles
even naive user input well.

Step 3 - Input Query:Find-Concept maintains both a Verb-Qu-
ery and Direct-Object-Query (see Figure 2), which are initialized
by the user inputting the Initial-Query consisting of V and DO. In
this case, the Verb-Query is initialized to{finish} and the Direct-
Object-Query is initialized to{word}.

Step 4 - Initial Query Expansion:When the user enters the In-
itial-Query, Find-Concept recommends addingdifferent formsof

V and DO to Verb-Query and Direct-Object-Query, respectively.
The user chooses to accept or omit these added words for Verb-
Query and Direct-Object-Query. In this example, Find-Concept
suggests that the user add the wordfinished to Verb-Query and
direct objects, such asthe word andall words, to Direct-Object-
Query. After the user enters the Initial-Query and accepts Find-
-Concept’s recommendations, the initial Verb-Query consists of
{finish, finished} and the initial Direct-Object-Query is{the word,
all words, complete word, first word}, as in Figure 2.

3.2.2 Query Expansion

The Initial-Query consisting of Verb-Query and Direct-Object-Qu-
ery is expanded to a complete query by incrementally creating a
complete Verb-Query and a complete Direct-Object-Query through
the user’s selections ofautomatic word suggestions(Steps 5-7).

Step 5 - Generate Recommendation Lists:The user begins to
expand the Verb-Query by having Find-Concept make a ranked,
related Verb-Recommendations list for the Verb-Query. Next, the
user examines the Verb-Recommendations. Find-Concept only
presents the top 10 ranked recommendations. Words that Find-
-Concept estimates are most relevant to the current query appear
near the beginning of Verb-Recommendations, and less relevant
words appear towards the end of Verb-Recommendations. The user
begins to expand the Direct-Object-Query in the same manner. The
recommendations for this example are presented in Figure 2.

Step 6 - Examine Recommendation Lists and Choose Rec-
ommendations:The user examines the Verb-Recommendations
{complete, end, stop, close, get, ...} as in Figure 2. Notice that
since the Verb-Query is{finish, finished}, Find-Concept recom-
mendssynonymsof finish that appear in the program. Since the
Direct-Object-Query is{word, all words,...} and complete ap-
pears withword in the AOIG, complete is recommended first.
The user examines the recommendations and quickly determines
that the wordcomplete is related to the concept becausecom-
plete is ranked first, and addscomplete to Verb-Query. Then,
the user examines the ranked Direct-Object-Recommendations
{completions, text, line, paragraph, ...}. From the Direct-Object-
Recommendations, the user decides to add{completion, comple-
tions} to Direct-Object-Query. As the user adds words to the Verb-
Query or the Direct-Object-Query, Find-Concept suggests adding
all forms of an added word (e.g., if “complete” is added then Find-
Concept will recommend adding “completing” and “completes”).



Figure 3. “complete word”’s result graph. This figure is virtually
identical to the result graph Find-Concept presents to the user—
the only difference is that we reduced the horizontal spacing to
conform to this document’s two-column format.

Repeat Steps 5-6 - Continue Expansion Process Until Satis-
fied: The user repeats steps 5-6 until satisfied with the expanded
query consisting of Verb-Query and Direct-Object-Query. After
adding a word to Verb-Query or Direct-Object-Query, the Verb-
Recommendations and the Direct-Object-Recommendations are
likely to change since they are calculated using information from
both Verb-Query and Direct-Object-Query. Therefore in this exam-
ple, after updating Direct-Object-Query, the user again checks the
Verb-Recommendations{ end, stop, close, get,...}, but decides
not to add any more words because none of the recommendations
appear to be relevant. The user then checks the Direct-Object-Re-
commendations and also decides not to add more words, leaving
the Verb-Query and Direct-Object-Query as they stand in Figure 2.

Step 7a - Optional Feedback:At any point during the query
formulation or expansion process, the user can inspect the list of
methods that match the current query. The size of this list helps the
user decide when to stop expanding his query. For instance, if the
list of methods after Step 4 in Figure 2 contains no members, the
user will likely continue expanding his query.

Step 7b - Optional Manual Additions:Occasionally, for diffi-
cult instances of the concern location problem, the user might have
few relevant search results even after expanding the query several
times. To look for possible additions to the query, the user should
inspect the source code of the list of methods generated in Step 7a.
There, he will often discover a term to add to the original query that
was not included on a recommendation list. This usually happens
when a term is extremely misspelled (e.g., spelling “complete” as
“cmpleet”) or when a developer uses a word as a synonym that is
not actually a synonym (e.g., using “complete” and “append”as
synonyms) because these cases cause Find-Concept’s recommen-
dation algorithm to perform sub-optimally. However, even in these
extreme cases, the Find-Concept recommendation algorithmcan
perform well because it uses complementary clues.

3.2.3 Search and Display Result Graph

Step 8 - Generate Result Graph:The end of a user’s possibly
iterative, interactive session of query expansion triggers a search
over the AOIG using the developed query. Find-Concept analyzes
the results and generates the results set in an easily understood
form, called theresult graph. The result graph consists of nodes that

represent methods and edges that represent structural relationships.
For this example, the result graph for the queryfinish word is
shown in Figure 3.

Step 9a - Examine Result Graph:The user would most likely
inspect the result graph by viewing the largest connected subgraph,
top-down. The user can then determine whether a node represents
part of the concern by browsing the linked source code or by
simply examining the node’s name and neighbors in the program’s
structural graph. In this example, the graph’s root node is method
CompleteWord.completeWord(), as shown by the result graph
in Figure 3. By viewing the source code forCompleteWord.com-
pleteWord() (triggered by clicking on the associated node in the
displayed result graph) as well as its child nodes, the user realizes
this method constitutes the core offinish word. Given the result
graph for the initial query, whose nodes are tightly linked with
source code, it is easy to understand this concern.

Step 9b - Optionally Explore Result Graph for Additional
Terms:For very challenging instances of the concept assignment
problem, the user may opt to follow an extra step. If a connected
subgraph appears incomplete, users can explore the source code as-
sociated with the subgraph, using structural navigation, to identify
additional terms to expand their query. The user then repeats steps
4-9.

3.2.4 Discussion

In our example, the user was faced with many of the typical chal-
lenges that occur during search-based concern location tasks. Find-
Concept is well-suited to deal with these difficulties, as seen when
we look more closely at the following details.

Find-Concept addresses the challenge of creating effective
queries by expanding users’ initial queries. The user’s initial query
of “finish word” is ineffective, returning no results. However, the
user interacted with Find-Concept to expand the query via syn-
onyms to add “complete”, and then via morphological relationships
to add “completing” and “words”, which leads to a more effective
query.

Find-Concept addresses the goal of searching with high preci-
sion and recall by assisting the user in expanding queries aswell
as searching over the AOIG instead of the program text. The query
expansion (i.e., “finish word”→ “finish, finished, complete, com-
pleting, word, words”) increases the recall of the search. Alexical
or IR-based search forfinish word is difficult because the string
complet (the beginning ofcomplete, completing, etc.) appears
182 times in this code, mainly in other contexts unrelated tothe
concernfinish word.

Find-Concept searches with high precision by returning only
procedures where both the verb “complete” and the direct object
“word” appear. When the wordcomplete is used with another
direct object, such ascomplete choices, then complete appears
in the code but is unrelated tofinish word. Similarly, when the
string complete appears, but it is not used as a verb (e.g., search
complete graph), thencomplete appears in code but is unrelated to
finish word. Find-Concept assures that this search has high recall
by including all morphological forms of “complete” and “word” in
its search.

Lastly, Find-Concept presents our search results in a meaningful
and understandable way to the developer by displaying the query
results as a graph. Once found, thefinish word concern is difficult
to understand because the concern is implemented in three different
classes:CompleteWord, Buffer, andCompletion (see Figure 3). It
is difficult to view all of the concern’s code segments and inter-
relationships at once in a textual view. Find-Concept visualizes the
identified concern by showing all code segments as well as their
inter-relationships in graph form, thus making the concerneasier to
understand.



4. Underlying Program Analysis
To enable the natural language-based search process, Find-Con-
cept first builds a natural language representation of source code
(described in Section 4.1). Throughout the process of building an
effective query, Find-Concept uses the algorithm in Section 4.2 to
recommend possible query expansions. Finally, once Find-Con-
cept searches the AOIG using the developed query, Find-Con-
cept analyzes the results and computes the result graph using the
algorithm described in Section 4.3.

4.1 Extracting Verb-DO Information

Both the word recommendation for query expansion and the search
process utilize NLP in conjunction with an underlying Action-
Oriented Identifier Graph (AOIG) [32] to reconnect the scattered
actions of an OOP system. The AOIG is well-suited for use in Find-
Concept because it focuses on the actions of the program, andFind-
-Concept’s intended use is to locate action-oriented concerns. In a
programming language, verbs correspond to actions (or operations)
and nouns correspond to objects [4]. Similarly, the Java Language
Specification recommends that “method names should be verbsor
verb phrases...” and “names of class types should be descriptive
nouns or noun phrases” [14].

It is important to consider thethemeto precisely identify a
specific action. Athemeis the object that the action (implied by
the verb) acts upon, and usually appears as a direct object (DO).
There is an especially strong relationship between verbs and their
themes in English [6]. An example is (parked, car) in the sentence
“The person parked thecar.”

An algorithm to construct the AOIG for a program is the fo-
cus of a previous paper [32]. We highlight the intuitive definition
and example here. The AOIG model explicitly represents the occur-
rences of verbs and direct objects (DOs) in a program, as implied
by the usage of user-defined identifiers. We currently only analyze
occurrences of verbs and DOs in method declarations and com-
ments, string literals, and local variable names within or referring
to method declarations, because method declarations are the core
of concerns. We map each verb-DO pair to all its occurrences in
the source code.

An AOIG representation of a program contains four kinds of
nodes: averb nodefor each distinct verb in the program, adirect
object (DO) nodefor each unique direct object in the program, a
verb-DO nodefor each verb-DO pair identified in the program, and
a use nodefor each occurrence of a verb-DO pair in a program’s
comments or code. A verb-DO pair is defined to be two co-located
identifiers in which the first identifier is an action or verb, and
the second identifier is being used as a direct object for the first
identifier’s action.

An AOIG has two kinds of edges: pairing edges and use edges.
There exists apairing edgefrom a verbv or DO donode to a verb-
DO node whenv anddo are used together, i.e., appear in the same
sentence or phrase and interact, as (jump, hurdle) do in the phrase
“jump the hurdle”. For each use of a verb-DO pair in the program,
there exists ause edgein the AOIG mapping the verb-DO node to
the corresponding use node. Although a verb (or DO) node may
have edges to multiple verb-DO nodes, a verb-DO node has only
two incoming edges: one from the verb and one from the DO node
involved in the relation.

Figure 4 shows the form of an AOIG. In this figure, we can
see thatverb1 has twopairing edges, one to<verb1, DO1> and
one to<verb1, DO2>, which are bothverb-DO nodes. <verb1,
DO1> has twouse edges, which represent locations in the source
code where this pair occurs. In previous work, we described how to
build the AOIG with reasonable time and space costs using open-
source NLP components and open-source Java analysis compo-

Figure 4. Example of an AOIG

nents to extract the verb-DO information from both commentsand
method signatures [32].

4.2 Word Recommendation

An important contribution of our Find-Concept search process is
word recommendation. The following relationships are usedto
construct a ranking of recommended wordsw for addition to Verb-
Query, which are stored and presented to the user as Verb-Reco-
mmendations. Note that words related to the current Verb-Query
and Direct-Object-Query are both considered when constructing
Verb-Recommendations. To construct Direct-Object-Recommend-
ations, a similar set of relationships is considered, but with all Verb-
Query and Verb-Recommendations references replaced with Di-
rect-Object-Query and Direct-Object-Recommendations, respec-
tively, and all Direct-Object-Query references replaced with Verb-
Query.

• Similar Semantics - If the word w is semantically related to a
word in Verb-Query or Direct-Object-Query,w is added to Verb-
Recommendations:

• Stemmed/Rooted Matching - If the word w has the same
stem/root as a word in Verb-Query or Direct-Object-Query
(e.g.,finished and finishing have the same stem),w is added
to Verb-Recommendations.

• Synonym Matching - If the wordw is a synonym of a word in
Verb-Query or Direct-Object-Query (e.g.,finish andcomplete
are synonyms),w is added to Verb-Recommendations.

• Similar Use - If the wordw is co-located in the AOIG with a word
which appears in Direct-Object-Query (i.e., appear in a verb-DO
node together),w is added to Verb-Recommendations. For example,
if Direct-Object-Query containsword, andword is co-located with
complete in the AOIG, thencomplete is potentially relevant and
added to Verb-Recommendations.

If the word w is co-located with several words in Direct-Ob-
ject-Query, thenw will be added to Verb-Recommendations sev-
eral times, which effectively increasesw’s ranking in Verb-Reco-
mmendations. The rationale is that a word that interacts with sev-
eral confirmed words of interest is often related.

4.2.1 Word Recommendation Algorithm

Figure 5 presents the algorithm for creating Verb-Recommend-
ations—the ranked recommendations of highly-related words to
Verb-Query based on these relationships. Given a word set, our
new word recommendation algorithm builds a ranked list of highly-
related words, using the AOIG model of the program and addi-



Input: Verb-Query , Direct-Object-Query, AOIG
Output: a ranked list of recommendations, Verb-Recommendations
1: For all wordsw in (Verb-Query∪ Direct-Object-Query)
2: Synonyms = getSynonyms(w)
3: AllForms = getAllFormsOfWord(w)
4: AllSimilar = Synonyms ∪ AllForms
5: For all wordsws in AllSimilar
6: if( AOIG containsws )
7: weight(ws) = syn
8: addws to Verb-Recommendations
9: For all wordsw in Verb-Query
10: Uses = getCoLocatedWords(w, AOIG)
11: For all wordswu in Uses
12: if( Verb-Recommendations containswu )
13: weight(wu) = weight(wu) + use

14: else weight(wu) = use
15: addwu to Verb-Recommendations
16:Sort Verb-Recommendations by decreasing weight

Figure 5. Word Recommendation Algorithm

tional NLP analysis on the source program. The algorithm takes
as input a Verb-Query, a Direct-Object-Query, and the AOIG rep-
resentation of the source program. The termssyn anduse desig-
nate configurable weights that change the relative importance of the
synonym (syn) and similar use (use) relationships just described.
From our initial studies and hand tuning of parameters, we consider
syn more important thanuse by a factor of two.

Consider a situation where Verb-Query consists of the term
complete and Direct-Object-Query consists of the termword, as in
the word editing program in Section 3.2. Looking for recommenda-
tions for Direct-Object-Query, we would expect Direct-Object-Re-
commendations to be similar to{completions, finisher, lexeme,
choice}. The termcompletions is ranked highest because it is a
synonym of a word in Verb-Query (complete) and appears in the
AOIG paired with a word in the Verb-Query (complete again). This
causescompletions to be added to Direct-Object-Recommenda-
tions on line 8 in the algorithm in Figure 5 and its weight to be
increased further on line 13. The termfinisher is ranked highly be-
cause it is a synonym of a word in Verb-Query, namelycomplete,
causing it to be added to Direct-Object-Recommendations online
8. lexeme is also ranked highly because it is a synonym of a word
in the Direct-Object-Query, namelyword. Finally, choice is added
to Direct-Object-Recommendations on line 15, even though it is
ranked lowest.choice is ranked lowest because, although it appears
often in code with the verbcomplete, it does not have a synonym
relationship with any word in either Verb-Query or Direct-Object-
Query.

4.2.2 Runtime Analysis

The word recommendation algorithm’s runtime is
O(w ∗ max(s, c)), wherew is the number of words in Verb-Query,c
is the size of the largest set of co-located words, ands is the size of
the largest set of synonyms for a word contained in Verb-Query or
Direct-Object-Query. However, in practice, bothc ands are usually
small (less than 10). In the context of Find-Concept, we havefound
the word recommendation algorithm to perform quickly, presenting
little to no noticeable delay for the user.

4.3 Computing the Result Graph

Figure 6 presents the algorithm for the actual search and thecon-
struction of the search result graph. When the user is satisfied with
the query expansion, i.e., the current Verb-Query and Direct-Ob-
ject-Query, Find-Concept identifies all verb-DO nodes in the AOIG
model of the program that involve both a verb from Verb-Query

Input: Verb-Query, Direct-Object-Query, AOIG,database(P )
Note:database(P ) is a database of program structure facts.
Output: Result Graph RG
1: Verb-Query = Verb-Query∪ {get, set, execute, construct}
2: methods[] = identify verbDOpairs(Verb-Query, Direct-

Object-Query, AOIG)
3: HashSetOfMethods = new HashSet(methods)
4: RG = empty graph
5: For each method i∈ methods[]
6: edges[] = getEdges(methods[i], database(P ))
7: For each edge k∈ edges[]
8: if(HashSetOfMethods contains target(edges[k])
9: addEdge(RG, edges[k])

Figure 6. Result Graph Construction Algorithm

and a direct object from Direct-Object-Query. From experience,
we have found that the search algorithm works better if Verb-Qu-
ery is first augmented with connecting verbs, such asget, set, exe-
cute, andconstruct (line 1). If the Verb-Query starts as{complete,
completes, completed}, it becomes{complete, completes, com-
pleted, get, set, execute, construct}.

If the Direct-Object-Query is{word, completions, keyword },
the algorithm finds all verb-DO pairs (and corresponding methods)
that are composed of a word from each set, such ascomplete
keyword or get completions (line 2). Find-Concept follows the
use edges of the AOIG to map these verb-DO pairs to the methods
where they exist in the program. By performing the search over
the AOIG’s use edges, Find-Concept returns search results that
are critical to the understanding of the original verb-DO pair’s
implementation and, furthermore, enable return of a small set of
methods very relevant to the concern.

Given the set of methodsM with the verb-DO pairs involv-
ing both Verb-Query and Direct-Object-Query, Find-Concept uses
structural program analysis to determine all edges in the call graph,
class hierarchy graph, or precondition graph that connect any of
these methods inM to each other. In Figure 6, we refer to these
structural facts as the database of program structure facts. Find-
-Concept presents a visualization of the result graph consisting of
all the methods inM and any structural links connecting the meth-
ods inM, as the search result. The user can then examine the result
graph and click a node to view the associated code.

In Figure 6, the function identifyverbDOpairs(), which is a
search function over the AOIG, runs in O(largestSet), where
largestSet is the size of the largest of Verb-Query and Direct-Ob-
ject-Query sets. The result graph construction time is O(me), where
m is the size of the set of methods inM ande is the largest number
of program structure edges attached to one method. In practice,e
is usually small (less than 5). The size ofM is dependent on the
verb-DO pair uses in the source program, which is dependent on
the target concept and its implementation in the source program.
Typically, the size ofM is considerably smaller than the number
of methods in the application. In the context of Find-Concept,
computing the result graph takes the most time, but we attribute
this to our prototype implementation and not to fundamentally high
runtime costs.

5. Evaluation Methodology
To validate our ideas, we implemented our technique as an Eclipse
plugin, named Find-Concept, and compared Find-Concept to
Eclipse’s built-in lexical search (ELex) [16] and a modifiedGoogle
Eclipse search (GES) [27]. We focused our evaluation on the fol-
lowing research questions:



Application No. % Code No. Bugs
Name NCLOC Methods Commented (Open/Total)

jBidWatcher 23,179 1,571 37.34 213/1,024
javaHMO 23,797 1,532 28.24 75/185
Jajuk 30,847 1,586 54.24 1/193
iReport 74,392 4,364 27.76 59/65

Table 1. Subject Applications’ Characteristics

RQ1 Which search tool (Find-Concept, GES, or ELex) is most
effective at locating concerns by forming and executing a query?

RQ2 Which search tool requires the least human subject effort to
form an effective query?

While we believe that the result graph provides a result set format
that is easier to understand than other tools’ formats, we leave an
evaluation of the result graph’s understandability for future work.

5.1 Independent Variables

Because Find-Concept’s purpose is to help developers complete
maintenance and evolution tasks, evaluating Find-Concept’s query
expansion mechanism and search over the AOIG requires studying
actual human subjects. Therefore, we designed our experiment to
manipulate three independent variables: search tools, search tasks,
and human subjects.

5.1.1 Search Tools

Because we believe that search-based approaches to concernloca-
tion are faster than navigation-based approaches (see Section 1),
we focused our evaluation on search-based approaches. We chose
one search tool from each of the following state-of-the-artpro-
gram search technology categories: lexical-based (ELex),IR-based
(GES), and NLP-based (Find-Concept).

Lexical Search. ELex allows users to search using a regular ex-
pression query over source code files of a given project, returning
an unranked list of files that match the query. The results areor-
dered alphabetically by package name and then file name. ELex’s
functionality is similar togrep’s functionality, and ELex is a good
representative of the state of the art in lexical searches.

Google Eclipse Search. GES integrates Google Desktop Search
into the Eclipse workbench, allowing users to search Java files with
IR-style queries (i.e., a set of words) and returning a set ofranked
files. We altered GES slightly to return individual procedures in-
stead of entire files, which is more appropriate for the giventasks.
Although Google’s exact IR algorithm is proprietary, the authors
of GES claim that Google Desktop provides an accurate, IR-based
search and does not suffer from inefficient queries or inefficient
re-indexing of files during evolution, which provides an advantage
over their previous prototypes which used latent semantic analy-
sis [27].

Find-Concept. To implement Find-Concept, we used many com-
ponents, related to both NLP and structural program analysis. For
NLP, we used the Porter Stemmer [26] to perform stemming to rec-
ognize different forms of the same word, Maxent in OpenNLP [24]
for part-of-speech tagging to determine the root of direct-object
phrases, and a stand-alone, optimized version of WordNet [35] as a
synonym finder. We used Eclipse’s JDT [9] to perform quick pars-
ing of the source code, and a database of program analysis informa-
tion constructed by Eclipse’s JDT to quickly access the callgraph
and the type hierarchy graph [29]. We used Grappa [3] to enable
visualization of the result graph and modified Grappa to support
one-click access from the result graph to the correspondingsource
code.

Comparing Heterogeneous Results.To evaluate precision and re-
call fairly for tools with different forms of output, we converted
each tool’s output into a list of methods. For ELex, we returned
the entire result set because each result was an occurrence of the
search expression, and there is no metric for ranking a single occur-
rence higher than another. For GES, we returned the top ten results,
ranking results by the number of search terms they contained. Re-
turning more than ten results would unfairly skew GES’s precision
lower than the other tools. For Find-Concept, we returned the top
ten results. Although Find-Concept does not naturally rankresults,
we ranked methods by the prominence of their placement in the
result graph using theconnectedness-factor. For a given noden,
theconnectedness-factoris the number of nodes inn’s connected
sub-graph added to the sum ofn’s outgoing and incoming edges.
This heuristic approximates the visual prominence ofn in the result
graph.

5.1.2 Search Tasks

To compare the search results of different tools, we first identified
a set of search tasks. Asearch task consists of an application
and aconcept. We identified four active, sizable, open-source Java
applications with available bug report repositories. In aneffort
to identify realistic concepts, we extracted commonly occurring
concepts from bug reports. We then identified the concern foreach
concept in the source.

Subject Applications. We identified open-source Java applications
that met the following constraints: at least 25 KLOC, at least 50
available bug reports, and at least 1000 methods.JbidWatcheris
an online auction monitoring and sniping application.Jajuk is a
multi-platform music jukebox designed for users with largemusic
collections.IReport is a report generation and editing application.
JavaHMO is an expansion of the TiVo Home Media Option soft-
ware that allows users to access and display different typesof me-
dia.

We also identified a text messenger application for use in train-
ing, PlanetaMessenger[5]. Because this application was only used
for training the human subjects, it was not subjected to the same
constraints as the subject applications.PlanetaMessengermeets
our size and procedure count constraints, but has less than 50 bug
reports.

Relevant characteristics of our four subject applicationsare pre-
sented in Table 1. We calculated these characteristics using the
RefactorIt plug-in [34] and by consulting Sourceforge’s project
statistics [15]. The ‘% Code Commented’ was calculated by divid-
ing the number of commented lines of code by the non-commented
lines of code (NCLOC).

Concepts. From these four subject applications and the train-
ing application, we identified eleven action-oriented concepts –
nine as search targets and two as training tasks. Because we pre-
sented the concepts to our human subjects in a visual form (as
explained in Section 5.3 underSubjects’ Tasks), we only selected
user-observable concepts [23] for the experiment. To ensure the
concepts in our experiment were realistic, we searched through
bug reports for each application. For each application, we started
with the most recent bugs in the database, identified the concept(s)
for each bug report, and stopped when we identified two to three
concepts that were associated with several bug reports. To ensure
the tools were used evenly by all human subjects, we selectedan
additional concern from jBidWatcher because it had the mostbug
reports—for a total of nine concerns. Thus, we focused the study
on concerns that actual developers need to search for to fix bugs. A
summary of the concepts we selected is in Table 2.



Task Name Application Description Gold Textual
Set Size Clues

Add Textfield iReport Insert a textfield into a report 5 Part
Compile Report iReport Compile the source of a report into the final report 8 Full
Add Auction jBidWatcher Add an auction to the local list of auctions to monitor 10 Full
Set Snipe jBidWatcher Set the price for the program to automatically bid on the user’s behalf at a specified time 12 Part
Save Auctions jBidWatcher Save the list of auctions that theuser is currently monitoring 9 Full
Gather Music Files javaHMO Inspect the local hard-drive formusic files to automatically add to the music library 4 None
Load Movie Listings javaHMO Download movie listings from a remote movie listings service 5 none
Search for Songs Jajuk Search the user’s music library for a track using regular expressions 5 none
Play Track Jajuk Play an audio file 12 Part

Table 2. Search Tasks

5.1.3 Human Subjects

To make our study’s findings relevant to the practice of software
engineering, we sought out human subjects who program on a
regular basis. We used 13 full-time professional Java developers as
well as five graduate students (all in systems research), fora total
of 18 subjects. Although the subjects were a mix of advanced and
intermediate programmers, the developers are typically required to
use search tools for maintenance tasks on a daily basis.

5.2 Dependent Variables and Measures

To answer RQ1 and RQ2, we measured the effectiveness of each
tool’s query formulation and execution (RQ1) and human subject
effort (RQ2).

5.2.1 Effectiveness

To measure the effectiveness of a search,precision and recall
are often used.Precision is the ratio of the number ofrelevant
procedures retrieved to the total number of procedures retrieved.
Recall is the ratio of relevant procedures retrieved to the total
number of relevant procedures existing in the source application.
High precision means the result set contains few irrelevantresults,
whereas high recall implies most of the relevant results areincluded
in the result set.

A good search result set requires both precision and recall to
be high, and the quality of the result is bounded by the lower
measure. To combine these measures, we use thef-measure, which
is commonly used to evaluate query effectiveness in IR [37].The
f-measure is defined to be the harmonic mean of precision and
recall, calculated as(2∗precision∗recall)/(precision+recall).
The f-measure is better suited than more simplistic combination
techniques like averaging because it weighs the lower measure
more heavily. For instance, a query with 90% precision but only
10% recall returns few results, but most results are relevant. The
f-measure for this case is 18%, whereas the average of precision
and recall is 50%. The f-measure (18%) better reflects the query’s
effectiveness, since the query only locates 10% of the overall target
concern.

To calculate precision and recall, we need to identify the “gold
set” of methods that represent each concern. However, we areaware
of no benchmark concerns in the community or a rigorous defini-
tion of concerns. Thus, we used our intuitive definition of a concern
(the implementation of a high-level concept) and a human’s ability
to interpret and apply this definition to locate the gold set.To pro-
vide low bias, we recruited a new group member, unfamiliar with
our previous and current work, to identify concerns. For each con-
cept, we asked him to locate the code that implements it. He was
given access to the application’s code base (which he was unfamil-
iar with) and all of Eclipse’s typical functionality [16]. After he had
identified a set of methods, the first author, who was also unfamiliar
with the applications, verified this set. The two then discussed and
reconciled the few methods they disagreed upon. More than 90%
of each identified gold set was located by the new project member

alone. To enable replication of this experiment and to offerconcern
benchmarks to the community, we provide a list of the methodsin
each concept’s gold set2. Table 2 displays the size of each gold set.
The “Textual Clues” column documents the level of search term
clues contained in the application’s GUI, as explained in Section
5.3.

5.2.2 Effort

To evaluate human subject effort, we measured the amount of time
each subject required to form a satisfactory query for each task. We
began timing when the subject claimed to understand the concept
visually presented and stopped when the subject was satisfied with
his query.

5.3 Experimental Procedure

Each of the 18 human subjects completed 9 tasks. Subjects were
assigned one search tool for each task such that every subject used
each tool three times. We randomized the task and tool order to
avoid biasing our results. With one exception, each tool wasused
three times consecutively to avoid human subject confusionfrom
switching between tools. An example schedule for three human
subjects is presented below.

Execution Slots

Subject 1
Task 1 3 6 2 8 5 9 7 4
Tool 2 2 2 3 3 3 1 1 1

Subject 2
Task 1 3 6 2 8 5 9 7 4
Tool 3 3 3 1 1 1 2 2 2

Subject 3
Task 1 3 6 2 8 5 9 7 4
Tool 1 1 1 2 2 2 3 3 3

Note that each row only covers nine out of the possible 27
Task-Tool combinations (Task 1 with Tool 2 is a single Task-Tool
combination). Our experimental setup requires three subjects to
cover every possible Task-Tool combination, represented by the
three rows in the above table.

In the schedule above, each human subject performs the tasks
in the same order. While we randomize the task order for each
group of three subjects, within that group each subject’s tasks have
the same order. Since a group of three human subjects represents
every Task-Tool combination, we felt it reasonable to keep the same
ordering of tasks within a group to ensure that, for instance, Task 1
is completed with each tool in the first execution slot.

In the overall experiment, we had 18 subjects, meaning that
6 schedules similar to the above schedule were run. Since each
schedule covers each Task-Tool combination, we observed every
Task-Tool combination 6 times.

Training. To ensure subjects understood how to use each tool, we
trained every human subject on each tool prior to the evaluation
tasks. We presented the subject with a written script that guided
him through the use of each tool on two training tasks, locating

2 www.cis.udel.edu/˜shepherd/Research.htm



the “send message” and “add profile” concepts in PlanetaMessen-
ger, our training application. We observed each subject as they per-
formed the training tasks and corrected any misuse of the tools.
However, during experimental evaluation, we did not correct any
usage. During the training session, we included advanced search
features, such as the wildcard “*” for lexical search, because expert
developers use advanced features to cope with the short-comings
of current search tools.

Task Setup. For each task, we asked the subjects to form a query
using the assigned tool that yielded the highest precision and re-
call values using as little time as possible. To avoid biasing the
human subject’s query terms by providing a natural languagede-
scription of the task, we presented each task to the subject visually.
We displayed a series of screen shots that showed the correspond-
ing concept occurring during the execution of the subject applica-
tion. Some screen shots of the action occurring in the application
contained natural language clues (e.g., a menu item labeled“com-
pile”). We have noted whether a screen shot gave the subject clues
in the last column of Table 2. Since this text was visible during the
normal execution of the application we consider these cluesreason-
able. After the subjects viewed the screen shots, we asked them to
verbalize the concept, and we confirmed with a “yes” if the subject
correctly understood the concept. In a few cases, the subject did not
understand the concept and we showed them the screen shots an-
other time before they understood the concept. We then askedthe
subject to search for that concern with the tool they were assigned
for that task. Once the queries were formed by the human subject,
we executed the queries with the assigned tool for that task and
examined the result sets to compare with the gold set, calculating
precision, recall, and f-measure.

5.4 Threats to Validity

The set of concerns and corresponding gold sets of methods isa
threat to validity because it is possible that the selected tasks fa-
vored a certain tool. To minimize this threat, we selected concerns
through an objective process involving bug reports, and thenat-
urally subjective selection of the gold sets was conducted by a re-
searcher with no prior understanding of Find-Concept or thesubject
applications.

Because we used only four subject applications in our experi-
ment, it is possible that our results cannot be generalized to all Java
applications. To maximize the generality of our results, weused
reasonably-sized, popular open-source applications. We also iden-
tified concerns from bug reports, ensuring that the concernswere
of interest in real-world situations. Because we only used action-
oriented, user-observable concepts, we cannot generalizeour re-
sults to all types of concepts.

6. Results
In this section, we describe the overall effectiveness of each tool,
compare Find-Concept’s performance to ELex and GES, and sum-
marize user effort measured across all tools.

6.1 Effectiveness

Figure 7 (a) presents a box plot of the f-measure for each tool
across every subject user and search task. For completeness, we
have included the precision and recall results for each taskin
Figure 9. However, we believe that f-measure is a more appropriate
performance measure for concern location tasks. Figure 7 (b)–(j)
illustrates the f-measure for each tool separated by task. In each
figure, the box represents 50% of the data and spans the width of the
inner quartile range (IQR), with each whisker extending1.5∗IQR
beyond the top and bottom of the box. The center horizontal line

within each box denotes the median,+ represents the mean, and
outliers are represented by◦.

As illustrated by Figure 7 (a), Find-Concept tends to have better
precision and recall, as combined in the f-measure. The short height
of Find-Concept’s box compared to GES’s box indicates that Find-
Concept more consistently produced higher results than GES.

6.1.1 Find-Concept vs. ELex

Find-Concept is consistently more effective than ELex at locating
concerns (see Figure 7 (a)). We believe this is due to the prob-
lems described in Section 2.1.1 that plague ELex, causing low per-
formance. For instance, it is difficult to use ELex to locate the
concept “play track” because ELex does not handle concatenated
search terms well. This caused subjects to broaden initial queries
like “play*music” (0 matches) to“play” (1995 matches); neither
of which is an effective query due to the number of results re-
turned. ELex also does not recommend synonyms nor does it ac-
count for morphological forms. Users searching for the concept
“add textfield” often searched for only “add*textfield” or “cre-
ate*textfield”, thus missing relevant results.

6.1.2 Find-Concept vs. GES

While Figure 7 (a) shows that Find-Concept is more effective
than GES overall, we found that the tasks had a large impact on
tool performance. Out of 9 tasks, we found that Find-Concept
outperformed (i.e., achieved a higher mean F-measure than)GES
on 4 tasks, GES outperformed Find-Concept on 2 tasks, and Find-
-Concept and GES performed similarly for 3 tasks. Find-Concept
performed as well or better than GES on 7 out of 9 tasks. Here, we
analyze the results closely.

Find-Concept > GES
Find-Concept performed better than GES on tasks “add textfield”,

“add auction”, “save auctions”, and “play track” (see Figure 7(b),
7(d), 7(f), and 7(j), respectively); we believe for many of the rea-
sons we anticipated in Section 3.

When searching for the concept “add textfield”, subjects often
began with the initial query “add textfield”. Because of its ability to
identify synonyms, Find-Concept recommended that the users add
“construct” and “create” to this query. These additions increased
the query’s effectiveness because the relevant concern is imple-
mented using the verbs “add”, “create”, and “construct”.

Find-Concept also expanded queries to include morphological
variations of words, expanding from “auction” to include “auc-
tions” (for the “save auctions” task). This expansion led toan in-
crease in query effectiveness because a search for “auction” misses
an important method where “auctions” is used instead of “auction”.

Find-Concept created recommendations based on the structure
of the AOIG, sometimes leading to surprising but effective recom-
mendations. For instance, in the “save auctions” task, Find-Con-
cept recommended adding the direct object “file” when the initial
query was “save auctions”. Find-Concept recommended “file”be-
cause “file” appears to be similar to “auctions” in the AOIG. In
our study, the user often accepted this recommendation, leading to
increased query effectiveness.

Searching over the AOIG created a higher precision search for
Find-Concept. During the “play track” task, a subject usingFind-
-Concept can search for theverb “play” and locate the relatively
small occurrences of the term “play” where “play” is used as a
verb (approximately 41 occurrences in approximately 34 different
methods). However, using GES or ELex, users’ queries returned
over 500 methods where “play” occurs, with many relevant meth-
ods ranked low.
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Figure 7. Overall results by tool shown by task. Find-Concept is abbreviated with FC. See Section 6.1 for a thorough explanation ofthe
graph’s notation.

Find-Concept < GES
GES performed better than Find-Concept on tasks “compile re-

port” and “load movie listings” (see Figure 7(c) and 7(h), respec-
tively); we believe this is due to limitations of the currentAOIG-
Builder and a lack of natural language interpretable clues in the
corresponding source code (see Table 1 for the percent of code that
is commented).

Users searching for the concept “compile report” often used
the terms “compile report” as their initial query. Because the
AOIGBuilder has difficulty interpreting natural language clues for
certain program elements, the AOIG misses a few key nodes. For
instance, the AOIGBuilder has trouble interpreting the class-name
IReportCompiler. The AOIGBuilder is able to identify the verb
“compile” but is unable to identify the direct object “report” be-
cause of its limited rule set. Thus, a search for “compile report”
will fail because no “report” node exists for the class nameIRe-
portCompiler. We intend to augment the AOIGBuilder to interpret
class names likeIReportCompiler in the future.

GES performed better on the “load movie listings” task because
terms relevant to the search were located in text our NLP analysis
does not consider—meaning these clues were not in the AOIG.
For instance, the term “movie” only appeared in the string literal
“www.movies.go.com/cgi/movielistings/request.dll&ZIPSPECIF-
IC...”. The AOIGBuilder does not currently consider stringliterals
of this format. We intend to address this limitation in future work.

Find-Concept ≡ GES
On tasks “set snipe”, “gather music files”, and “search for

song”, Find-Concept’s performance was very similar to GES’s per-
formance (see Figure 7(g), 7(i), and 7(e), respectively). The fol-
lowing does not compare Find-Concept with GES but rather shows
areas where Find-Concept can be improved.

Subjects had difficulty translating the concept “set snipe”into
a concrete query. Subjects often entered the initial query “snipe”
as a verb. However, in the concept “set snipe” “snipe” is the direct

object. The query “snipe” as a verb caused Find-Concept to search
for a different concept than “set snipe”.

Almost all subjects that searched for the concept “gather music
files” with Find-Concept entered the query “find music”. Find-Con-
cept did not recommend the relevant term “files” during queryex-
pansion because the verb “find” is used with too many other direct
objects besides “files”. We envision improving our recommenda-
tions by performing analysis on the AOIG to determine that the
direct objects “music” and “music file” are similar if their uses and
their semantic similarity are analyzed.

Find-Concept had difficulty locating three of the five methods in
the gold set of “search for song” because three methods (group A:
getResu(), toStringSearch(), andSearchResult.new()) had weak
natural language clues. Find-Concept found the other two methods
that had strong clues (group B:search() andsearch()). However,
the methods in group A were strongly linked with group B via
program structure links. In future work, we plan to expand search
result sets via program structure links, which could capture group
A by expanding outwards from group B, even with only partial
natural language clues.
6.2 Effort

In Figure 8, we present the mean time required by subjects to
perform search tasks for each tool. Our results indicate that the time
required by each tool is not significantly different. Therefore, we
conclude that all the tools require equivalent user effort.We infer
that Find-Concept saves time for maintenance tasks by increasing
the location rate, or the average number of relevant methods
found per time unit. Finding relevant methods faster shouldlead to
understanding concerns sooner and thus solving maintenance tasks
more quickly.

7. Conclusions
In this paper, we described the Find-Concept search processwhich
has the goal of locating action-oriented concerns in large source
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Figure 9. Precision and Recall results shown by tool and task. (Find-Concept is abbreviated with FC).
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code bases with the aid of NLP on source code. We presented
its query expansion and result graph construction algorithms as
well as our implementation. We evaluated our approach to locating
action-oriented concerns and compared it to a state-of-the-art lex-
ical search tool and a modified commercial information retrieval
tool in terms of search effectiveness and user effort. Overall, we
found that Find-Concept was more consistent and more effective
than either ELex or GES, without requiring additional user effort.
In cases where Find-Concept’s performance is worse or similar
to GES, Find-Concept’s performance could be improved by aug-
menting the AOIGBuilder’s theory and implementation, which we
plan to examine in future work. We believe Find-Concept’s demon-
strated effectiveness warrants further investigation of concern loca-
tion mechanisms that utilize natural language and program struc-
ture information.

8. Future Work
The most promising area of future work that would improve Find-
-Concept’s performance is to create a more effective AOIGBuilder

by improving its theory and implementation. The current AOIG-
Builder accurately analyzes the majority of method names cor-
rectly [32], but, as noted in our experimental evaluation dis-
cussion, Find-Concept’s performance is directly affectedby any
shortcomings of the AOIGBuilder. We are currently refining the
AOIGBuilder by identifying cases where the AOIGBuilder fails
and creating new techniques for these cases.

Although we have evaluated Find-Concept on several open
source programs of varying quality and size with promising results,
we have not directly evaluated the effect of naming conventions on
Find-Concept’s or the AOIGBuilder’s performance. In general, we
expect our tools to perform better on high quality source code. We
plan to evaluate this quantitatively in the future.

Find-Concept assumes that many programming tasks focus on
actions. We believe that most bug reports refer to actions, based
on our extensive reading of bug reports for this project, ourown
experience submitting bug reports, and our intuition. However, we
have not performed a quantitative evaluation of this phenomenon,
which we leave as future work.

Within the Find-Concept framework, there are many opportuni-
ties for full automation, such as automatically expanding queries.
We plan to investigate opportunities for further automating Find-
Concept.
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