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Applying Concept Analysis to User-Session-
Based Testing of Web Applications
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Abstract—The continuous use of the Web for daily operations by businesses, consumers, and the government has created a great
demand for reliable Web applications. One promising approach to testing the functionality of Web applications leverages the user-

session data collected by Web servers. User-session-based testing automatically generates test cases based on real user profiles.
The key contribution of this paper is the application of concept analysis for clustering user sessions and a set of heuristics for test case
selection. Existing incremental concept analysis algorithms are exploited to avoid collecting and maintaining large user-session data
sets and to thus provide scalability. We have completely automated the process from user session collection and test suite reduction
through test case replay. Our incremental test suite update algorithm, coupled with our experimental study, indicates that concept

analysis provides a promising means for incrementally updating reduced test suites in response to newly captured user sessions with

little loss in fault detection capability and program coverage.

Index Terms—Software testing, Web applications, user-session-based testing, test suite reduction, concept analysis, incremental test

suite reduction.

1 INTRODUCTION

As the quantity and breadth of Web-based software
systems continue to grow at a rapid pace, assuring the
quality and reliability of this software domain is becoming
critical. Low reliability can result in serious detrimental
effects for businesses, consumers, and the government as
they increasingly depend on the Internet for routine daily
operations. A major impediment to producing reliable
software is the labor and resource-intensive nature of
software testing. A short time to market dictates little
motivation for time-consuming testing strategies. For Web
applications, additional challenges—such as complex con-
trol and value flow paths, unexpected transitions intro-
duced by user interactions with the browser, and frequent
updates—complicate testing beyond the analysis and
testing considerations of the more traditional domains.
Many of the current testing tools address Web usability,
performance, and portability issues [1]. For example, link
testers navigate a Web site and verify that all hyperlinks
refer to valid documents. Form testers create scripts that
initialize a form, press each button, and type preset scripts
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into text fields, ending with pressing the submit button.
Compatibility testers ensure that a Web application func-
tions properly within different browsers.

Functional and structural testing tools have also been
developed for Web applications. Tools such as Cactus [2],
which utilizes JUnit [3], provide test frameworks for unit
testing the functionality of Java-based Web programs.
HttpUnit [4] is a Web testing tool that emulates a browser
and determines the correctness of returned documents
using an oracle comparator. In addition, Web-based
analysis and testing tools have been developed that model
the underlying structure and semantics of Web programs
[5], [6], [7], [8] toward a white-box approach to testing.
These white-box techniques enable the extension of path-
based testing to Web applications. However, the white-box
techniques often require manually identifying the input
data that will exercise the paths to be tested, especially the
paths that are not covered by test cases generated from
functional specifications.

One approach to testing the functionality of Web
applications that addresses the problems of the path-
based approaches is to utilize capture and replay
mechanisms to record user-induced events, gather and
convert them into scripts, and replay them for testing [9],
[10]. Tools such as WebKing [11] and Rational Robot [10]
provide automated testing of Web applications by
collecting data from users through minimal configuration
changes to the Web server. The recorded events are
typically base requests and name-value pairs (for exam-
ple, form field data) sent as requests to the Web server. A
base request for a Web application is the request type and
resource location without the associated data (for exam-
ple, GET /apps/bookstore/Login.jsp). The ability to record
these requests is often built into the Web server, so little
effort is needed to record the desired events. The testing
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provided by WebKing [11] may not be comprehensive
because WebKing requires users to record critical paths and
tests for only these paths in the program. In a controlled
experiment, Elbaum et al. [9] showed that user-session data
can be used to generate test suites that are as effective
overall as suites generated by two implementations of Ricca
and Tonella’s white-box techniques [7]. These results
motivated user-session-based testing as an approach to test
the functionality of Web applications while relieving the
tester from generating the input data manually and also to
enhance a test suite with test data that represents usage as the
operational profile of an application evolves. Elbaum et al.
also observed that the fault detection capability appears to
increase with larger numbers of captured user sessions;
unfortunately, the test preparation and execution time
quickly becomes impractical. Although existing test reduc-
tion techniques [12] can be applied to reduce the number of
maintained test cases, the overhead of selection and analysis
of the large user-session data sets is nonscalable.

This paper presents an approach for achieving scalable
user-session-based testing of Web applications. The key
insight is formulating an approach to selecting test cases
(that is, user sessions) for test suite reduction based on
clustering logged user sessions by concept analysis. We
view the collection of logged user sessions as a set of use
cases, where a use case is a behaviorally related sequence of
events performed by the user through a dialogue with the
system [13]. Test suites are reduced with the criteria of
covering all base requests in the original test suite and
covering distinct use cases, where we specify a use case to
be a set of base requests. Existing incremental concept
analysis techniques can be exploited to analyze the user
sessions on the fly as sessions are captured and converted
into test cases and, thus, we can continually reflect the set of
use cases representing actual executed user behavior by a
reduced test suite. Using existing tools and developing
some simple scripts, we automated the entire process from
gathering user sessions through the identification of a
reduced test suite and replay of the reduced test suite for
coverage analysis and fault detection [14], [15]. In our
previous experiments, the resulting program coverage of
the reduced test suite is almost identical to the original test
suite, with some loss in fault detection. In this paper, we
extend our previous work in [16] by proposing and
evaluating two new heuristics for test suite reduction and
reporting significantly more experimental evaluation re-
sults with two new subject Web applications and newly
collected user session data. The main contributions of this
paper are the following:

1. the formulation of the test suite reduction problem
for user-session-based testing of Web applications in
terms of concept analysis,

2. harnessing incremental concept analysis for test
suite reduction to manage large numbers of user
sessions in the presence of an evolving operational
profile of the application,

3. three heuristics for test suite reduction based on
concept analysis, and

4. experimental evaluation of the effectiveness of the
reduced suites with three subject Web applications.

In Section 2, we provide the background on Web
applications, user-session-based testing, and concept
analysis. We apply concept analysis to user-session-based
testing and the test suite reduction problem in Section 3.
In Section 4, we present three heuristics for test suite
reduction. In Section 5, we present an approach to scalable
test suite update with incremental concept analysis and, in
Section 6, we present the space and time costs for batch
and incremental concept analysis. Section 7 describes our
experimental study with three subject applications. We
conclude and present future work in Section 8.

2 BACKGROUND AND STATE OF THE ART

2.1 Web Applications

Broadly defined, a Web application consists of a set of Web
pages and components that form a system that executes
using Web server(s), network, HTTP, and browser(s) in
which user input (navigation and data input) affects the
state of the system. A Web page can be either static—in
which case, the content is the same for all users—or
dynamic such that its content may depend on user input.

Web applications may include an integration of numer-
ous technologies, third-party reusable modules, a well-
defined layered architecture, dynamically generated pages
with dynamic content, and extensions to an application
framework. Large Web-based software systems can require
thousands to millions of lines of code, contain many
interactions between objects, and involve significant inter-
action with users. In addition, changing user profiles and
frequent small maintenance changes complicate automated
testing [17].

In this paper, we target Web applications written in Java
using servlets and JSPs. The applications consist of a back-
end data store, a Web server, and a client browser. Since our
user-session-based testing techniques are language inde-
pendent and since they require only user sessions for
testing, our testing techniques can be easily extended to
other Web technologies.

2.2 Testing Web Applications
2.2.1 Program-Based Testing

In addition to tools that test the appearance and validity of a
Web application [1], there are tools that analyze and model
the underlying structure and semantics of Web programs.

With the goal of providing automated data flow testing,
Liu et al. [5] and Kung et al. [18] developed the object-
oriented Web test model (WATM), which consists of
multiple models, each targeted at capturing a different tier
of the Web application. They suggest that data flow analysis
can be performed at multiple levels. Though the models
capture interactions between different components of a
Web application, it is not clear if the models have been
implemented and experimentally evaluated. With multiple
models to represent control flow, we believe that the
models can easily become impractical in size and complex-
ity for a medium-sized dynamic Web application as the
data flow analysis progresses from the lower (function)
level to higher (application) levels. The model also is
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focused on HTML and XML documents and does not
mention many other features inherent in Web applications.

Ricca and Tonella [7] developed a high-level Unified
Modeling Language (UML)-based representation of a Web
application and described how to perform page, hyperlink,
def-use, all-uses, and all-paths testing based on the data
dependences computed using the model. Their ReWeb tool
loads and analyzes the pages of the Web application and
builds the UML model and the TestWeb tool generates and
executes test cases. However, the user needs to intervene to
generate an input. To our knowledge, the cost effectiveness
of the proposed models has not been thoroughly evaluated.

Di Lucca et al. [6] developed a Web application model
and a set of tools for the evaluation and automation of
testing Web applications. They presented an object-oriented
test model of a Web application and proposed definitions of
unit and integration levels of testing. They developed
functional testing techniques based on decision tables,
which help in generating effective test cases. However,
their approach to generating test input is not automated.

Andrews et al. [8] proposed an approach to modeling
Web applications with finite-state machines (FSMs) and use
coverage criteria based on FSM test sequences. They
represent test requirements as subsequences of states in
the FSMs, generate test cases by combining the test
sequences, and propose a technique to reduce the set of
inputs. However, their model does not handle dynamic
aspects of Web applications, such as transitions introduced
by the user through the browser, and connections to remote
components. To our knowledge, neither the model nor the
testing strategy has been evaluated.

In summary, to enable the practical modeling and
analysis of a Web application’s structure, the analysis
typically ignores browser interactions, does not consider
dynamic user location and behaviors, and models only
parts of the application. User-session-based testing ad-
dresses the challenges inherent in modeling and testing
Web applications by leveraging user input data, rather than
manually generating test data.

2.2.2 User-Session-Based Testing

In user-session-based testing, each user session is a sequence of
user requests in the form of base requests and name-value
pairs. When cookies are available, we use cookies to generate
user sessions. Otherwise, we say a user session begins when a
request from a new Internet Protocol (IP) address arrives at
the server and ends when the user leaves the Web site or the
session times out. We consider a 45 minute gap between two
requests from a user to be equivalent to a session timing out.
To transform a user session into a test case, each logged
request is changed into an HTTP request that can be sent to a
Web server. A test case consists of a set of HTTP requests that
are associated with each user session. Different strategies can
be applied to construct test cases for the collected user
sessions [9], [10], [11], [19].

Elbaum et al. [9] provided promising results that
demonstrate the fault detection capabilities and cost
effectiveness of user-session-based testing. Their user-
session-based techniques discovered certain types of faults;
however, faults associated with rarely entered data were
not detected. In addition, they observed that the effective-
ness of user-session-based testing improves as the number

of collected sessions increases; however, the cost of
collecting, analyzing, and replaying test cases also in-
creases.

User-session-based testing techniques are complemen-
tary to the testing performed during the development phase
of the application [5], [6], [7], [20], [21], [22], [23]. In
addition, user-session-based testing is particularly useful
when the program specifications and requirements are not
available for test case generation.

2.3 Test Suite Reduction

A large number of user sessions can be logged for a
frequently used Web application and it may not be practical
to use all of the user sessions when testing the application.
In addition, an evolving application can cause some test
cases to become obsolete and also may require augmenting
an existing test suite with new test cases that test the
application’s new functionality. The additional test cases
can lead to redundant test cases, which waste valuable
testing resources. In general, the goal of test suite reduction
for a given test requirement (for example, statement or all-
uses coverage) is to produce a test suite that is smaller than
the original suite’s size yet still satisfies the original suite’s
test requirement. Since test suite reduction produces a
smaller test suite, it has several advantages, such as
reducing the cost of executing, validating, and managing
test suites as the application evolves. Our goal is to select
test cases for a reduced suite that covers both all base
requests of the original suite and distinct use cases. In our
current test suite reduction approach, we do not identify
and remove test cases that become obsolete due to
application version changes; instead our focus is to manage
large test suites within the same application version.
Several test suite reduction techniques have been
proposed [12], [24], [25], [26], [27], [28], [29], [30]. For
instance, Harrold et al. [12] developed a test suite reduction
technique that employs a heuristic based on the minimum
cardinality hitting set to select a representative set of test
cases that satisfies a set of testing requirements. To our
knowledge, these techniques do not include incremental
approaches to test suite reduction. Harder et al. [31]
proposed an operational-abstraction-based minimization
technique that can be executed incrementally, but dynami-
cally generating operational abstractions can be costly.

2.4 Concept Analysis

Our work focuses on applying a concept-analysis-based
approach and its variations to reducing test suites for user-
session-based testing of Web applications. Concept analysis
is a mathematical technique for clustering objects that have
common discrete attributes [32]. Concept analysis takes as
input a set O of objects, a set A of attributes, and a binary
relation R C O x A, called a context, which relates the objects
to their attributes. The relation R is implemented as a
Boolean-valued table in which there exists a row for each
object in O and a column for each attribute in A; the entry of
table[o, a] is true if object o has attribute a; otherwise, itis false.
For example, consider the context depicted in Fig. 1a. The
object set O is {airplane, boat, rollerskates, unicycle}; the
attribute set A is

{wheel(s), over80mph, passengers, wear, engine}.
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wheels | over80mph | passengers | wear | engine
airplane true true true false | true
boat false true true false true
rollerskates true false false true false
unicycle true false false false | false
(a)
({airplane, boat, rollerskates, unicyc[e),@)
wheels engine, passengers, over80mph

({unicycle, rollerskates, airplane}, {wheels}) >/ ({boat, airplane}, {over80mph, passengers, engine})

({airplane}, {wheels, over80mph, passengers, engine})

({rollerskates}, {wheels, wear})

( @ {wheels, over80mph, passengers, wear, engine})

(b)

unicycle

\ boat

airplane

wear

rollerskates

Fig. 1. Example of concept analysis for modes of transportation. (a) Relation table (that is, context). (b) Full and sparse concept lattice

representations.

Concept analysis identifies all of the concepts for a given
tuple (O, A, R), where a concept is a tuple ¢t = (O;, A4;) in
which O; C O and A; C A. The tuple t is defined such that
all and only objects in O; share all and only attributes in A;
and all and only attributes in A; share all and only the
objects in O;. The concepts form a partial order defined as
(Ol,Al) < (OQ,AQ) 1ff 01 C 02 or, equivalently, A1 B) AQ.
Thus, the partial order can be viewed as a subset relation on
the objects or a superset relation on the attributes. The set of
all concepts of a context and the partial ordering form a
complete lattice, called the concept lattice, which is repre-
sented by a directed acyclic graph with a node for each
concept and edges denoting the < partial ordering. The top
element T of the concept lattice is the most general concept
with the set of all of the attributes that are shared by all
objects in O. The bottom element L is the most special
concept with the set of all of the objects that have all of the
attributes in A. In the example, T is

({airplane, boat, rollerskates, unicycle}, @),

whereas | is
(@, {wheels, over80mph, passengers, wear, engine}).

The full concept lattice is depicted on the left side in
Fig. 1b. A sparse representation (shown on the right side)
can be used to depict the concept lattice. In the sparse
representation of the lattice, a node n is marked with an
attribute a if the node is the most general concept that has a
in its attribute set. Similarly, a node n is marked with an
object o if the node is the most special concept with o in its
object set. Attribute sets are shown just above each node,
whereas object sets are shown just below each node. For
example, consider the node labeled above by {wheels} and
below by {unicycle}. This node represents the concept
({unicycle, rollerskates, airplane}, {wheels}).

Krone and Snelting first introduced the idea of concept
analysis for use in software engineering tasks, specifically
for configuration analysis [33]. Concept analysis has also
been applied in evaluating class hierarchies [34], debugging
temporal specifications [35], redocumentation [36], and
recovering components [37], [38], [39], [40]. Ball introduced
the use of concept analysis of test coverage data to compute
dynamic analogs to static control flow relationships [41].
The binary relation consisted of tests (objects) and program
entities (attributes) that a test may cover. A key benefit is an
intermediate coverage criterion between statement and
path-based coverage. Since our initial work [16], Tallam
and Gupta [42] have presented a greedy approach to test
suite minimization inspired by concept analysis.

Concept analysis is one form of clustering. Researchers
have applied clustering to various software engineering
problems. To improve the accuracy of software reliability
estimation [43], cluster analysis has also been utilized to
partition a set of program executions into clusters based on
the similarity of their profiles. Dickinson et al. [44] have
utilized different cluster analysis techniques along with a
failure pursuit sampling technique to select profiles to
reveal failures. They have experimentally shown that such
techniques are effective [44].

3 APPLYING CONCEPT ANALYSIS TO TESTING

To apply concept analysis to user-session-based testing, we
use objects to represent the information uniquely identify-
ing user sessions (that is, test cases) and attributes to
represent base requests. Since we use user sessions to test
the Web application, we will use the terms user sessions
and test cases interchangeably in this paper. Although a test
case is considered to be a sequence of base requests and
associated name-value pairs for accurate replay, we define a
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Fig. 2. (a) Relation table of the original suite of user sessions.
(b) Concept lattice for test suite reduction.

test case during concept analysis to be the set of base
requests accessed by the user, without the name-value pairs
and without any ordering on the base requests. This
considerably reduces the number of attributes to be
analyzed. In [14], we present the results of an experimental
study with two subject Web applications—an online book-
store application and an online portal. We examined the
clustering of test cases by concept analysis in terms of
common subsequences of base requests. Our experiments
indicate that single base requests can be effective when used
as attributes for test suite reduction.

A pair (test case s, base request u) is in the binary relation iff
s requests u. Thus, each true entry in a row r of the relation
table represents a base request that the single user repre-
sented by row r accesses. For column c, the set of true entries
represents the set of users who have requested the same base
request, possibly with different name-value pairs.

As an example, the relation table in Fig. 2a shows the
context for a user-session-based test suite for a portion of a
bookstore Web application. Consider the row for the test
case us3. The (true) marks in the relation table indicate that
test case us3 accessed the base requests GDef, GReg, GLog,
PLog, and GShop. We distinguish a GET (G) request from a
POST (P) request when building the lattice because they are
different requests. Based on the original relation table,
concept analysis derives the sparse representation of the
lattice in Fig. 2b.

3.1 Properties of the Concept Lattice

Lattices generated from concept analysis for test suite
reduction will exhibit several interesting properties and
relationships. Interpreting the sparse representation in
Fig. 2b, a test case s accesses all base requests at or above
the concept uniquely labeled by s in the lattice. For
example, the test case us3 requests PLog, GShop, GDef,
GReg, and GLog. A node labeled with a test case s and no
attributes indicates that s accessed no unique base requests.
For example, us6 accesses no unique base requests.
Similarly, all test cases at or below the concept uniquely
labeled by base request u access the base request u. In
Fig. 2b, test cases us2, us3, us4, and us6 access the base
request GShop.

The T of the lattice denotes the base requests that are
accessed by all of the test cases in the lattice. In our
example, GReg, GDef, and GLog are requested by all of the
test cases in our original test suite. The L of the lattice
denotes the test cases that access all base requests in the
context. Here, L is not labeled with any test case, denoting
that no test case accesses all the base requests in the context.

To determine the common base requests requested by
two separate test cases sl and s2, the closest common node ¢
toward T starting at the nodes labeled with s1 and s2 is
identified. User sessions s1 and s2 both access all of the base
requests at or above c. For example, test cases us3 and us4
both access the base requests GShop, GDef, GReg, and GLog.
Similarly, to identify the test cases that jointly request two
base requests ul and 2, the closest common node d toward
1 starting at the nodes uniquely labeled by «1 and w2 is
determined. All test cases at or below d request both u1 and
u2. For example, test cases us3 and us6 access both the base
requests PLog and GShop.

3.2 Using the Lattice for Test Suite Reduction

Our test suite reduction technique exploits the concept
lattice’s hierarchical use case clustering properties, where a
use case is viewed as the set of base requests executed by a
test case. Given a context with a set of test cases as objects O,
we define the similarity of a set of test cases O; C O as the
number of attributes shared by all of the test cases in O;.
Based on the partial ordering reflected in the concept lattice,
if (O1,41) < (09, As), then the set of objects O; are more
similar than O,. User sessions labeling nodes closer to L are
more similar in their set of base requests than nodes higher in
the concept lattice along a certain path in the lattice.

Although we view a use case as the set of base requests
executed by a test case, traditionally, a use case is viewed as
a behaviorally related sequence of events performed by a
user when interacting with the application [13]. Our
previous studies have shown that similarity in sets of base
requests translates to similarity in covering similar sub-
sequences of base requests and in covering similar program
characteristics [14]. Thus, clusters of test cases based on
their set of single base requests can be viewed as clusters of
similar use cases of the application. We developed heur-
istics for selecting a subset of test cases as the current test
suite, based on the clustering of the current concept lattice.
In the next section, we present three heuristics for test suite
reduction based on the concept lattice.

4 TEST SELECTION HEURISTICS
4.1 One-Per-Node Heuristic

The one-per-node heuristic seeks to cover all of the base
requests present in the original suite and maximize use case
representation in the reduced suite by selecting one test case
from every node (that is, cluster) in the lattice without
duplication. The one-per-node heuristic can be implemented
by selecting one test case from each node in the sparse
representation of the concept lattice. If there are multiple
test cases clustered together in a node, we select one test
case at random. Selecting a session from each node in a
sparse representation of a lattice is equivalent to selecting
one representative for each set of duplicate rows in the
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relation table. Thus, one-per-node can also be implemented
by removing duplicate rows from the relation table. In
Fig. 2b, the one-per-node heuristic selects test cases us2, us6,
us3, us4, and usl for the reduced suite. For the node one
level below T, either us1 or us5 could be randomly selected.

The one-per-node heuristic appears to naively exploit the
lattice’s clustering and partial ordering. Nodes that are
higher in the lattice, that is, further away from L , contain
base requests (attributes) that are accessed by many test
cases (objects). The one-per-node heuristic thus selects test
cases representing frequently accessed base request sets
—and the program code covered on executing these base
request sets—as well as test cases from each level of the
lattice for the reduced suite. However, by selecting from
every node in the lattice, the one-per-node heuristic will
create a large reduced test suite.

4.2 Test-All-Exec-Requests Heuristic

In the second heuristic for user-session selection, which we
call test-all-exec-requests (presented in [16]), we seek to
identify the smallest set of test cases that will cover all of the
base requests executed by the original test suite while
representing different use cases.

The details of this heuristic are as follows: The reduced
test suite contains a test case from L if the set of test cases at
1 is nonempty and from each node next to L that is one
level up the lattice from L, which we call next-to-bottom
nodes. These nodes contain objects that are highly similar to
each other. From the partial ordering in the lattice, if 1 ’s
object set is empty, then the objects in a given next-to-bottom
node contain the exact same set of attributes. Since one of
the test-all-exec-requests heuristic goals is to increase the use-
case representation in the reduced test suite, we include test
cases from both 1 and next-to-bottom nodes. We do not
select duplicate test cases when selecting test cases from L
and next-to-bottom nodes. When more than one test case is
clustered together in a L or next-to-bottom node, we
randomly select one representative test case from the node.
The heuristic operates on the sparse representation of the
concept lattice. This heuristic can also be implemented by
examining subset relations directly in the relation table.

To validate clustering test cases based on concept
analysis and the test-all-exec-requests heuristic for test-case
selection, we performed experimental studies and user
session analysis [14]. These studies examined the common-
ality of base request subsequences of objects clustered into
the same concepts and also compared the subsequence
commonality of the selected test cases with those in the
remainder of the suite; the study is described fully in [14].
The results support using concept analysis with a heuristic
for user-session selection, where we choose representatives
from different clusters of similar use cases. Since our goal is
also to represent use cases in the reduced suite in addition
to satisfying all of the requirements (that is, base requests),
our approach differs from traditional reduction techniques
that select the next test case with the most additional
requirements coverage until 100 percent coverage is
obtained [12].

In our example in Fig. 2a, the original test suite is all of
the test cases in the original context. The reduced test suite,
however, contains only test cases us2 and us6, which label

the next-to-bottom nodes. By traversing the concept lattice to
T along all paths from these nodes, we will find that the set
of base requests accessed by the two test cases is exactly the
set of all base requests accessed by the original test suite. In
addition, in previous work [14], we found that next-to-
bottom nodes represent distinct use cases and, thus, each use
case covers a different set of methods and faults in the
program code. Thus, the reduced suite obtained by
applying the test-all-exec-requests covers all base requests
covered by the original suite while representing different
use cases of the application. Since the test-all-exec-requests
heuristic selects a small subset of test cases, the reduced test
suite is likely to have low program-code-coverage and fault
detection effectiveness compared to the original suite. This
expectation motivated the development of the k-limited
heuristic presented in the next section.

4.3 Ek-Limited Heuristic

The k-limited heuristic selects test cases such that the
resulting test suite covers all of the base requests covered by
the original suite while maintaining varied use cases,
beyond the use case representation provided by the fest-
all-exec-requests heuristic. The k-limited heuristic selects a
reduced suite that represents more use cases than the test-
all-exec-requests heuristic by including test cases from nodes
that are k levels above L in the sparse representation of the
lattice. For k=1, the test-all-exec-requests heuristic and the
k-limited heuristic will select the same reduced suite. For
k > 1, we select one test case from each node in the lattice
that is less than or equal to k levels up from L. For
k = max_depth_of _lattice, k-limited selects the same re-
duced suite as one-per-node. As with the other heuristics, if
multiple test cases are clustered together in a node, we
select one representative test case at random.

The main challenge with the k-limited heuristic is
determining the nodes in each of the k levels. Because a
concept lattice is not a tree, a node may exist at multiple
levels, depending on the path traversed from L. To
guarantee that each concept node in the lattice is assigned
a unique level, a node is placed at the highest level possible.
For example, in Fig. 3a, there are paths of lengths 2 and 3
from L to node 1. Following the approach described above,
node 1 is placed at the higher of the two levels, level 3
(Fig. 3e). We assign nodes to the highest level when
traversing the lattice from L1 to ensure that nodes
representing more specialized use cases (nodes that are
lower in the lattice along a path) are included in the reduced
suite before more general use cases (nodes that are higher in
the lattice along a path). Also, note that assigning a node to
the highest level would result in creating a smaller test suite
than if the node is assigned to the lowest level. Through our
experimental studies, we provide intuition on reasonable
values of k£ and study the trade-offs between increasing the
number of levels represented in the reduced test suite
versus the effectiveness of the test suite.

5 INCREMENTAL CONCEPT ANALYSIS

The key to enabling the generation of a reduced test suite
with base request and use case coverage similar to a test
suite based on large user-session data sets, without the
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Lattice for original suite of user sessions. (c) Concept lattice after adding us7. (d) Concept lattice after adding us8.

overhead for storing and processing the complete set at
once, is the ability to incrementally perform concept
analysis. The general approach is to start with an initial
user-session data set and incrementally analyze additional
test cases with respect to the current reduced test suite. The
incremental analysis results in an updated concept lattice,
which is then used to incrementally update the reduced test
suite. More specifically, the incremental update problem
can be formulated as follows:
Given an additional test case s and a tuple (O,A,R, L),
where O is the set of test cases (that is, objects) in the current
reduced test suite, A is the set of possible base requests in
the Web application (that is, attributes), R is the binary
relation describing the base requests that are accessed by
each test case in O, and L is the concept lattice output from
the concept analysis of (O, A,R), modify the concept
lattice L to incorporate the test case s and its attributes,
creating an updated lattice L' without complete reanalysis to
build L’ and then create an updated reduced test suite 7"
with respect to L.

By using incremental concept analysis, an updated
reduced test suite can be created that reflects the current
operational profile of the application as represented by the
captured user sessions. However, our current approach to
incremental concept analysis cannot be used to address test
suite changes as a result of software maintenance, for
example, removing obsolete test cases as a result of
application code changes.

Our incremental algorithm, shown in Fig. 5, utilizes
Godin et al’s incremental lattice update algorithm
(IncrementalLatticelpdate in Fig. 5), which takes as input

the current lattice L and the new object with its attributes
[45]. Once an initial concept lattice L has been constructed
from relation table R, there is no need to maintain R. The
incremental lattice update may create new nodes, modify
existing nodes, add new edges, and change existing edges
that represent the partial ordering. As a result, nodes that
were at a specific level p (where p is defined as the length of
the longest path from L to the node) may now be raised in
the lattice and new nodes may have been created at the
level p. However, existing internal nodes will never “sink”
in the lattice because the partial ordering between existing
nodes is unchanged by the addition of new nodes [14].
The insertion of a new node and the increase in the level
of some nodes upon insertion are the only changes that can
immediately affect the updating of the reduced test suite for
all our heuristics. Thus, all three of our heuristics, one-per-
node, test-all-exec-requests, and k-limited, require maintaining
only the test cases from the old reduced test suite and the
corresponding concept lattice for incremental test suite
update. Other test cases from the original test suite will not
be added to form the new reduced test suite and thus need
not be maintained. The old and new reduced node sets in
Fig. 6 allow for identifying test cases added (due to a new
node) or deleted (due to an increase in a node’s level) from
the current reduced test suite. If the software engineer is not
interested in this change information, the update can simply
replace the old reduced test suite by the new test suite.
Although the old reduced suite may be small for test-all-
exec-requests, the other heuristics require storing a larger
reduced suite. For the one-per-node heuristic, since the
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Algorithm: IncrementalReducedTestSuiteUpdate

Input: ConceptLattice, L
Added user session, s
Reduction heuristic, reduction-heur
Old reduced set of nodes, old-reduced-node-set
Output: Updated Lattice, L'
Updated Test Suite, 7"
let a = set of requests in s
[*IncrementalLatticeUpdate returns the updated lattice I,
and the new nodes that were added to L', add-nodes */
(L', add-nodes) = IncrementalLatticeUpdate(L, (s,a))
new-reduced-node-set =
ComputeReducedNodeSet (reduction-heur, L', add-nodes,
old-reduced-node-set )
T =0
foreach node n in new-reduced-node-set
let (0, a) be the label on n in the sparse lattice L’
if (o != null)
randomly select user session s’ in o
add s’ to T’
return L', T’

Fig. 5. Incremental reduced test suite update.

heuristic selects from every node in the lattice, maintaining
the reduced suite entails storing one test case per node in
the lattice (that is, the reduced suite before update). As a
result, the saved space may not be large. For the k-limited
heuristic, depending on the value of k, a differently sized
subset of test cases from the original suite is maintained.
Also, a batch analysis of all the sessions yields the same
reduced set of nodes as the batch analysis of an initial
subset of the sessions followed by an incremental analysis
of the remaining sessions [14].

To demonstrate the incremental test suite update
algorithm, we begin with the initial concept relation table
in Fig. 4a (excluding the us7 and us8 rows) and its
corresponding concept lattice in Fig. 4b. Consider the
addition of the test case us’/, which contains all base
requests except GBooks. Fig. 4c shows the incrementally
updated concept lattice as output by the incremental
concept analysis. The changes include a new (shaded) node
and the edge updates and additions, which move one of the
old nodes at the next-to-bottom level (level 1) up in the
concept lattice.

For the one-per-node heuristic, the new reduced test suite
would be updated to include the new user session us7 in
addition to the old reduced test suite. Upon applying the
test-all-exec-requests heuristic, the incremental update to the
reduced test suite deletes test case us2 and adds test case
us7. The updated reduced suite selected by the k-limited
heuristic depends on the value of k. For k=3, the
incremental update to the reduced suite adds the new test
case us/7 and deletes test case us1.

Now, consider the addition of the test case us8, which
contains only three base requests, as indicated by the last
row of the augmented relation table. Fig. 4d shows the
incrementally updated concept lattice after the addition of
both test cases us7 and us8. In this case, us8 resulted in a
new node and edges higher in the lattice. Because nodes at
the next-to-bottom level remain unchanged, the reduced test
suite selected by the test-all-exec-requests heuristic remains

Algorithm: ComputeReducedNodeSet

Input: Reduction heuristic, reduction-heur
Updated Lattice, L’
Nodes added to the updated lattice, add-nodes
OIld reduced set of nodes, old-reduced-node-set
Output: Updated reduced nodes set, reduced-node-set
let k = stopping level of the reduction-heur
let reduced-node-set = old-reduced-node-set
AssignLevelsToNodes(L’, k) /* See Section IV */
foreach node n in reduced-node-set
if level of nin L' > k
remove n from reduced-node-set
foreach node n in add-nodes
if (level of n in L' < k)
add n to reduced-node-set
return reduced-node-set

Fig. 6. Compute the reduced node set.

unchanged and the new test case is not stored. The one-per-
node heuristic, however, would include us8 in the reduced
test suite.

6 THEORETICAL SPACE AND TIME COSTS

In this analysis, |O] is defined as the cardinality of the set of
objects, that is, user sessions, and |A4| is defined as the
cardinality of the set of attributes, that is, the base requests
of the Web application, in the initial user-session set. The
relation table is O(|O] x |A|).

The initial batch concept analysis requires space for the
initial user-session test set, relation table, and concept
lattice. Incrementally updating the reduced test suite does
not need the relation table; we need to maintain space only
for the concept lattice (with objects and attributes from the
reduced test suite), the current reduced user-session test set,
and the new user sessions. During concept analysis, the
lattice L can have at most 2™ concepts, where m =
min(|O|,|A|) in the worst case, but the worst case is not
expected in practice [45]. Assuming, for each test case in O,
there is a reasonable fixed upper bound g, on the number
of requests from A that it requests, the lattice grows linearly
with respect to |O| such that |L| = O(2%|0O|). In our
experience, the size of the lattice is even much smaller than
O(2%|0|); we contrast the theoretical size bounds with our
empirical results in Section 7.2.

Time complexity for Lindig’s batch concept analysis
algorithm is quadratic in the size of the input relation [46].
The time complexity of Godin et al.’s incremental algorithm
for our problem (where the number of base requests any
given test case will request is limited) is O(|O]), linearly
bounded by the number of user sessions in the current
reduced test suite [45].

7 EXPERIMENTS

In our experimental studies, we focused on providing
evidence of the potential effectiveness of applying our
proposed methodology for automatic but scalable test suite
reduction. The objective of the experimental study was to
address the following research questions:
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TABLE 1
Objects of Analysis
Metrics Book CPM MASPLAS
Classes 11 75 9
Methods 319 173 22
Conditions 1720 1260 108
NCLOC 7615 9401 999
Seeded faults 40 135 29
Total number of user sessions (|O|) 125 890 169
Total number of requests accessed 3640 12352 1107
Number of unique requests (| A|) 10 69 24
Largest user session in number of requests 160 585 69
Average user session in number of requests 29 14 7
Maximum number of unique requests requested by a test case, gmaa 10 40 14
Mean number of unique requests requested by a test case, gmean 6.9 6.7 4.8
Theoretical maximum number of concepts, 2™, m = min(O, A) 210 =1024 269 =59 x 10?7 | 222 =1.6 x 107
Theoretical max when limited number of unique requests per test case, 29maz|O| | since gmaz == |4|, 240 % 890 = 214 % 169 =
2141 = 210 = 1024 9.8 x 10%4 2.7 x 10°
From Godin’s observations, ¢mean|O)| 6.9 x 125 = 862 6.7 X 890 = 5963 | 4.8 x 169 = 811
Our measured number of concepts 72 2695 682

1. How much test-case reduction can be achieved by
applying the different reduction heuristics?

2. How effective are the reduced test suites in terms of
program coverage and fault detection?

3. What is the cost effectiveness of incremental and
batch concept analysis for reduced test suite update?

7.1 Independent and Dependent Variables

The independent variables of our study are the objects (test
cases) and attributes (base requests) input to concept
analysis, as well as the test suite reduction heuristic applied.
The objects and attributes are based on the original suite. To
answer our research questions, we used four dependent
variables as our measures: reduced suite size, program
coverage, fault detection, and space required for the
reduced suite.

7.2 Objects of Analysis

The subject applications are an open source e-commerce
bookstore (Book) [47], a course project manager (CPM)
developed and first deployed at Duke University in 2001,
and a conference registration and paper submissions system
(MASPLAS). Table 1 shows the characteristics of our subject
programs and collected user sessions. The noncommented
lines of code (NCLOC) shown in Table 1 are the number of
noncommented lines of Java code; since the Web applica-
tion server automatically compiles JSPs into Java servlets,
we also measure Java code for JSPs.

Book allows users to register, log in, browse for books,
search for books by keyword, rate books, add books to a
shopping cart, modify personal information, and log out.
Book uses JSPs for its front end and a MySQL database for
the back end. To collect the 125 user sessions for Book, we
sent e-mail to local newsgroups and posted advertisements
in the university’s classifieds Web page asking for volunteer
users. Since we did not include administrative functionality
in our study, we removed requests to administration-
related pages from the user sessions.

In CPM, course instructors log in and create grader
accounts for teaching assistants. Instructors and teaching
assistants set up group accounts for students, assign grades,
and create schedules for demonstration time slots for

students. CPM also sends e-mail to notify users about
account creation, grade postings, and changes to reserved
time slots. Users interact with an HTML application
interface generated by Java servlets and JSPs. CPM manages
its state in a file-based data store. We collected 890 user
sessions from instructors, teaching assistants, and students
using CPM during the 2004-2005 academic year and the
2005 Fall semester at the University of Delaware.

MASPLAS is a Web application developed by one of the
paper’s authors for a regional workshop where we collected
169 user sessions. Users can register for the workshop,
upload abstracts and papers, and view the schedule,
proceedings, and other related information. MASPLAS
displays front-end pages in HTML, the back-end code is
implemented in both Java and JSP, and a MySQL database
is at the back end.

Table 1 also shows the theoretical and measured number
of concepts on applying concept analysis to our subject
applications. The lattice’s size for each application is much
smaller than the theoretical bounds discussed in Section 6.
For example, CPM’s resulting lattice has 2,695 concepts,
which is far less than 2%|O| = 9.8 x 10'. Similarly to
Godin et al.’s conclusions from experimental results that the
growth factor in practice is far less than 2%« [45], our
experiments showed that the size of the lattice is less than
Gmean|O| (6.7 x 890 = 5,963 concepts for CPM), where gean
is the mean number of the test cases’ unique requests. We
believe that, in general, the size of the lattice will be much
smaller than the theoretical bounds because users (and,
therefore, the test cases) do not cover all possible subsets of
some attributes: Some attributes will always appear
together and others will never appear together. Also,
because most users are likely to access the application
similarly, the set of distinct requests is similar, that is, only a
few test cases give rise to a unique set of requests.

7.3 Experimental Framework

We constructed an automated system, illustrated in Fig. 7,
that enables the incremental generation of a reduced test
suite of user sessions, replaying the original and reduced
test suite, and generation of program coverage and fault
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Fig. 7. Experimental framework.

detection reports of the replayed suites. The process begins
with the collection of user-session data, as shown in Step 1
in Fig. 7. For each user request, we record the originating
IP address, timestamp, base request, cookie information,
and GET or POST data. The access log is sent to the test
suite creation engine in Step 2. In Step 3, we reduce the
initial set of user sessions, whereas, in Step 8, we
incrementally update the reduced test suite with new user
sessions from the new access log in Step 7. In Step 3, we
parse the access log to generate a relation table, which is
input into the Concept Analysis Tool, Lindig’s concepts tool
[46], to construct a concept lattice. The heuristic for creating
the reduced test suite from the lattice is embedded in the
Test Suite Reducer.

In Step 4, the Clover [48] Coverage Evaluator instru-
ments the application’s source files for program coverage
analysis and generates the coverage report in Step 6. For
JSPs, the server compiles the JSP into a Java servlet,
which Clover then instruments for coverage. Since the
compiled Java servlet contains server-dependent code,
similar to libraries in traditional programs, we want to
ignore the server-dependent code in our coverage reports.
Thus, during the instrumentation phase, we instruct
Clover to ignore server-dependent statements and instru-
ment only the Java code that maps directly back to the
JSPs. Steps 4 and 6 are the only steps that assume a Java-
based Web application; to handle other languages, we
need only plug in a coverage tool that handles that
language.

Step 5 replays the reduced suite. We implemented a
customized replay tool using HTTPClient [49], which
handles GET and POST requests, file upload, and main-
taining the client’s session state. Our replay tool takes as
input the user sessions in the form of sequences of base
requests and name-value pairs and replays the sessions on
the application while maintaining the state of the user
session and the application.

There are a number of ways to maintain the Web
application state during replay [15]. Our current imple-
mentation, with_state replay, replays the original suite

Test Suite

Reducer
(3) Test Case Creation

and records the application state before each user session.
The framework then restores the application state before
replaying each user session in the reduced suite.

Steps 7, 8, and 9 incrementally update the reduced test
suite. The Incremental Test-Suite Updater implements the
incremental concept analysis algorithm [45], which takes as
input the lattice and a new user session. The Test-Suite
Reducer then uses the updated lattice to create the reduced
test suite. Step 10 is the Fault Detection Phase.

7.4 Methodology

To answer our research questions, we generated reduced
suites for each subject application using each of the
proposed heuristics. Because of the nondeterminism in
selecting test cases when multiple test cases are clustered
together in a node, we generated 30 reduced test suites for
each heuristic. We replayed each reduced suite and
measured the program code covered and the number of
faults detected.

For the fault detection experiments, graduate and under-
graduate students familiar with JSP, Java servlets, and
HTML manually seeded realistic faults in Book, CPM, and
MASPLAS. Faults were seeded in the application—one fault
per version. In general, five types of faults were seeded in
the applications—data store faults (faults that exercise the
application code interacting with the data store), logic faults
(application code logic errors in the data and control flow),
form faults (modifications to name-value pairs and form
actions), appearance faults (faults that change the way in
which the user views the page), and link faults (faults that
change the hyperlink’s location). The total number of faults
seeded in each application is presented in Table 1. The
original and reduced suites were replayed on the nonfaulty
or “clean” application to generate the expected output, as
well as on each faulty version to generate the actual output.
Although we developed several automated, modular oracle
comparators for Web applications in previous work [15], we
manually created the fault detection report for each reduced
test suite in this paper to eliminate the threat to validity
from an oracle comparator that could have false positives
and false negatives.
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Fig. 8. Reduced test suite size. (a) Book. (b) MASPLAS. (c) CPM.

7.5 Threats to Validity

Because of the nondeterminism in selecting test cases when
multiple test cases are in a concept node, we may select a
test case that does not have the same program coverage and
fault detection effectiveness as every other test case in the
node. We attempt to minimize this threat by executing the
reduction algorithm 30 times and reporting the mean, the
standard deviation, and the overall distribution of each
metric. The size of our subject Web applications may not
show large differences in program code coverage and fault
detection when comparing the reduction heuristics. Because
we conducted our experiments on three applications,
generalizing our results to other Web applications may
not be fair. The types of users and usage of each application
could affect the amount of test suite reduction because our
results depend on the collected user sessions.

Since we only consider the number of faults detected by
the reduced suites and not the severity of the faults missed,
the conclusions of our experiment could be different if the
results were weighted by fault severity. Manually seeded
faults may be more difficult to expose than naturally
occurring faults [50]. Though we tried to model the seeded
faults as closely as possible to naturally occurring faults
—even including naturally occurring faults from previous
deployments of CPM and MASPLAS—some of the seeded
faults may not be accurate representations of natural faults.

7.6 Data and Analysis
7.6.1 Reduced Test Suite Size

Fig. 8 shows the size of the reduced test suites generated for
our three subject applications using the various heuristics.
The z-axis represents the heuristics. We abbreviate the
heuristics as follows: 1-lim refers to the test-all-exec-requests
heuristic, k-lim refers to the k-limited heuristic for k£ > 2, and
1-per refers to the one-per-node heuristic. We use the same
z-axis labels for all the graphs in this paper. The y-axis
represents the reduction in test suite size as a percentage of
the original test suite. Unlike coverage and fault detection,
whose results vary with each reduced suite selected,
reduced suite size is constant for a given subject application
and reduction heuristic, regardless of the number of times

©

the reduction heuristic is applied. Therefore, we use a bar
graph, rather than a box plot, to represent the reduction in
test suite size.

For all of the subject applications, we observe that test-all-
exec-requests (1-lim in figures) selects the smallest reduced
suite, the one-per-node heuristic selects the largest test suite,
and, as the k value increases, the k-limited heuristic selects
larger reduced suites. As expected, one-per-node provides
the least reduction in test suite size since the heuristic
selects one test case from each concept node, effectively
removing duplicate test cases in terms of sets of base
requests. However, the “duplicate” test cases contain data
along with the base requests and, therefore, are not
necessarily duplicates in terms of program coverage and
fault detection.

7.6.2 Program Coverage Effectiveness

Fig. 9 shows the program coverage loss of the Book and
CPM reduced suites. The y-axis is the number of statements
covered by the original suite that the reduced suite does not
cover. In each figure, the box represents 50 percent of the
data and spans the width of the inner quartile range (IQR),
with each whisker extending 1.5 * IQR beyond the top and
bottom of the box. The center horizontal line within each
box denotes the median coverage loss, + represents the
mean, and o represents an outlier. A similar graph is used to
show the fault detection effectiveness results.

As expected, in Fig. 9, we observe that, as the reduced
test suite size increases, the loss in program coverage
decreases. The heuristic test-all-exec-requests loses much
more program code coverage than the reduced suites
selected by the 2-limited heuristics for the small increase
in reduced test suite size. In addition, the statements
missed between the k-limited reduced suites becomes
almost constant as k increases, especially for k£ > 3 (Book)
and k > 8 (CPM). To support our observation that there is
little difference in coverage between reduced suites for
higher values of k, we examined the individual statements
covered by each test case. We found that there exist
statements covered only by a single test case and that these
test cases are clustered lower in the lattice—k < 5 for Book
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(c) CPM coverage loss. (d) CPM fault loss.

and k£ < 9 in CPM. Therefore, selecting k values above these
levels does not significantly improve the amount of
program code covered by the reduced suites. These results
also support our design of the reduction heuristics to
traverse the lattice from the bottom up, rather than top
down, because traversing bottom up ensures selecting test
cases that cover unique statements. Also, none of the
reduced suites cover all of the statements covered by the
original suite. It may not be possible to get a reduced suite
with 100 percent original suite statement coverage with our
heuristics because concept analysis clusters test cases based
on base request coverage and not statement coverage.
Figs. 10a and 10c show the mean and standard deviation
of the program coverage lost on executing 30 reduced suites
generated using each heuristic. The variation in code loss
between the reduced suites selected by a given heuristic is
larger for Book than CPM, as seen by the standard deviation
in Figs. 10a and 10c, respectively. On examining the lattice,
we found that, at lower levels, Book has a larger number of
test cases clustered together in a node. The clustered test
cases do not all cover the same code. Thus, selecting test

cases at random causes the variation in code covered. For
CPM (Fig. 10c), the variation in code loss is smaller because,
often, a node contains only one test case at lower levels.

We do not present graphs of the MASPLAS coverage and
fault detection results because the fest-all-exec-requests re-
duced test suite for MASPLAS covers only one less statement
than the original suite. Since the other heuristics are at least as
good as test-all-exec-requests, that is, the reduced suites
generated by the other heuristics cover all of the statements
covered by the original suite, we did not observe significant
improvement by using the other heuristics.

7.6.3 Fault Detection Effectiveness
Fig. 11 presents the fault detection results of the reduced
suites for Book and CPM. The y-axis presents the number of
faults detected by the original suite that the reduced suite
misses. Figs. 10b and 10d show the mean and standard
deviation of the faults lost on executing 30 reduced suites
for each heuristic.

The fault detection effectiveness of a reduced suite
depends on 1) the number of test cases in the reduced
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Fig. 11. Fault detection effectiveness. (a) Book. (b) CPM.

suite and 2) the specific test cases that are selected by the
reduction heuristic from each concept in the lattice. In
Fig. 11, the number of test cases in the reduced suite affects
the number of faults lost—as k and the size of the reduced
suites increase, the number of faults lost decreases.
Similarly to program coverage, the faults missed between
the k-limited reduced suites becomes almost constant as &
increases, especially for k£ > 5 (Book) and k£ > 9 (CPM). The
specific test cases that are selected appear to have little
effect on the number of faults detected, from the lack of
variation in Fig. 11 (1-2 faults for Book and 0-3 for CPM).

We note that one fault missed by all reduced suites in
Book interacts with the server state of the system. During
replay, we reset the database state to the time before the test
case execution, but we ignored the server state, so the fault
is never caught. In previous work [15], we presented the
challenges and reasoning for ignoring the server state.

The test-all-exec-requests reduced test suite for MASPLAS
detects all of the faults detected by the original suite. Since
the other heuristics generate test suites that are at least as
good (that is, they also detect all of the faults detected by the
original suite), graphs of these MASPLAS results are not
included.

7.6.4 Incremental versus Batch

We evaluated the effectiveness of incremental concept
analysis by comparing the size of the files required by the
incremental and batch techniques to eventually produce the
reduced suite. Time costs are not reported for incremental
and batch because we believe it is unfair to compare our
implementation of the incremental algorithm, which is an
unoptimized and slow academic prototype, against the
publicly available academic tool concepts [46].

Table 2 presents the suite sizes and space savings for
incremental and batch concept analysis for the test-all-exec-
requests heuristic. The batch algorithm requires the complete
original set of test cases to generate the reduced test suite,
whereas the incremental concept analysis algorithm only
requires the reduced test suite and the lattice. We do not
show the space requirements for the lattice in Table 2
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because the space required depends on the lattice imple-
mentation. For example, the sparse representation of the
lattice contains all of the information in the full lattice
representation with smaller space requirements. In Table 2,
we note that, for all of the subject applications, space
savings greater than 82 percent are obtained by using the
incremental concept analysis. A batch analysis of all of the
test cases yields the same reduced suite as the batch
analysis of an initial subset of the test cases followed by an
incremental analysis of the remaining test cases [14].

Thus, the incremental reduction process saves consider-
able space costs by not maintaining the original suite of test
cases. In a production environment, the incremental
reduction process could be performed overnight with the
collection of that day’s test cases to produce a fresh updated
suite of test cases for testing while still saving space by
keeping a continually reduced suite. In its current form, the
incremental algorithm can be used only in situations where
the user sessions (test cases) are changing and not where
application versions change.

7.6.5 Analysis Summary

From our results, concept analysis-based reduction with the
test-all-exec-requests heuristic produces a reduced test suite
much smaller in size, but loses some of the original suite’s
effectiveness in terms of program coverage and fault
detection. By reducing the test suite size, the tester saves
time because the tester need not execute the large original
suite. We also note that, as various heuristics are applied,
the resulting reduced suites have varied fault detection and

TABLE 2
Space Requirements for Incremental and Batch
for test-all-exec-requests

Applications | Original Suite | Reduced Suite | Space Savings
MASPLAS 336KB 20KB 94%
Book 1.IMB 65KB 94%
CPM 1.5MB 268KB 82%
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program coverage effectiveness, as expected. Hence, a tester
can choose an appropriate heuristic to obtain the desired
suite characteristics.

Our results suggest that a trade-off exists between test
suite size and effectiveness. Although one-per-node performs
as effectively as the original suite in terms of program code
coverage and fault detection for all of the applications, the
trade-off between the reduced test suite size and the
effectiveness of the suite needs to be considered. However,
we observed that the 2-limited heuristic selects a test suite
that is only slightly larger (3-5 percent) in size than the test-
all-exec-requests heuristic, but is more effective in terms of
program coverage and fault detection effectiveness. For
larger values of k, the tester must determine if the small
increase in effectiveness is worth the large increase in test
suite size.

We investigated two other approaches to converting the
lattice into a tree prior to applying the k-limited heuristic. In
cases of conflict regarding a node’s position, we followed
two other approaches: 1) Place the node at the lower of the
two levels and 2) compare the node’s attribute set to its
predecessors’ attribute sets (when traversing the node from
1) and assign the node to the level where the difference is
the least [14]. In our experimental investigation, we found
that the reduced suites generated by these two techniques
are similar in program coverage and fault detection
effectiveness to the suites generated by the k-limited
technique presented in this paper.

We observed that, when a large number of test cases are
clustered together, the variation in suite effectiveness is
large for a given selection heuristic. If a large number of test
cases are clustered together, our results suggest that using
different attributes for clustering test cases, such as
sequences of requests or data associated with the request,
could reduce the variation caused by using the current
attribute, base request only [51]. The associated trade-off,
however, is the increase in the reduced test suite size.

We also evaluated the effectiveness of incremental
versus batch concept analysis in terms of space savings
and found that considerable storage can be saved by using
incremental concept analysis for test suite update.

8 CoONCLUSIONS AND FUTURE WORK

By applying concept analysis to cluster test cases and then
carefully selecting test cases from the resulting concept
lattice, we are able to maintain and incrementally update a
reduced test suite for user-session-based testing of Web
applications. We presented three heuristics for test suite
selection. Our experiments show that statement coverage
similar to that of the original suite can be sustained while
reducing the storage requirements. Similarly to other
experiments [9], our experiments show that there is a
trade-off between the amount of test suite reduction and
fault detection capability. However, the incremental update
algorithm enables a continuous examination of new test
cases that could increase fault detection capability without
storing the larger set of session data to determine the
reduced test suite.

From our experimental evaluations, the 2-limited heuristic
appears to be a good compromise between maintaining the

test suite size that covers all base requests and maintaining
distinct use case representation while still being effective in
terms of program coverage and fault detection. Our experi-
mental results suggest that applying concept analysis with
base requests as an attribute clusters sessions that uniquely
detect a fault together with sessions that donot detect the fault
but have similar attribute coverage. The results motivated
clustering by concept analysis with other attributes, such as
with the data associated with the base request and base
request sequences [51].

To our knowledge, incremental approaches do not exist
for the existing requirements-based reduction techniques
[12], [25], [26]. Thus, the incremental approach to concept
analysis described in this paper provides a space-saving
alternative to the requirements-based reduction techniques.
In our previous studies [52], we found that, for the domain
of Web applications, reduced suites based on reduction by
base request coverage that maintains use case representa-
tion is as effective in terms of program code coverage and
fault detection as reduced suites from reduction techniques
that use program-based requirements [12]. In addition,
clustering test cases by concept analysis and applying the
reduction heuristics is cheaper than the reduction techni-
ques based on program-based requirements since our
technique saves time by not computing the requirements’
mappings prior to reduction.

In the future, we plan to investigate issues in regression
user-session-based testing of Web applications, such as
identifying and removing obsolete test cases and test case
prioritization.
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