
An Empirical Comparison of Test Suite Reduction Techniques for
User-session-based Testing of Web Applications

Sara Sprenkle, Sreedevi Sampath,
Emily Gibson, Lori Pollock

Computer and Information Sciences
University of Delaware

Newark, DE 19716
{sprenkle, sampath, gibson, pollock}@cis.udel.edu

Amie Souter
Computer Science
Drexel University

Philadelphia, PA 19104
souter@cs.drexel.edu

Abstract

Automated cost-effective test strategies are needed to
provide reliable, secure, and usable web applications. As a
software maintainer updates an application, test cases must
accurately reflect usage to expose faults that users are most
likely to encounter. User-session-based testing is an auto-
mated approach to enhancing an initial test suite with real
user data, enabling additional testing during maintenance
as well as adding test data that represents usage as oper-
ational profiles evolve. Test suite reduction techniques are
critical to the cost effectiveness of user-session-based test-
ing because a key issue is the cost of collecting, analyzing,
and replaying the large number of test cases generated from
user-session data. We performed an empirical study com-
paring the test suite size, program coverage, fault detection
capability, and costs of three requirements-based reduction
techniques and three variations of concept analysis reduc-
tion applied to two web applications. The statistical anal-
ysis of our results indicates that concept analysis-based re-
duction is a cost-effective alternative to requirements-based
approaches.

1. Introduction
The demand for reliable, secure, and usable web-based

applications continues to increase as private consumers,
businesses, and government agencies rely on the Internet for
important routine tasks. To increase the reliability of such
applications, developers need automated, cost-effective test
strategies that adequately test the continuously evolving
web application under changing usage profiles. One effec-
tive approach to testing web applications is user-session-
based testing, which relies on capturing and replaying real
user sessions [7, 25, 19, 20]. As developers perform main-
tenance tasks, perhaps unintentionally inserting faults, they
can use user-session-based testing to discover errors that

users are likely to encounter. Late in the life cycle of the
application, original user-session-based tests are unlikely to
represent the current usage of the system. When the appli-
cation is under maintenance, testers should use recent user
sessions when testing. These tests provide more relevant
feedback to developers who are updating the older code
base, detecting potential faults exposed by current use.

A major problem with user-session-based testing is the
cost of collecting, analyzing, and replaying the large num-
ber of test cases generated from user-session data. For user-
session-based testing to be cost-effective, testers must be
able to remove redundant test cases from the test suite with-
out sacrificing much of the original suite’s fault detection
and coverage properties.

We have formulated the test suite reduction problem for
user-session-based testing in terms of clustering user ses-
sions by concept analysis. Our approach, Concept, can
continually reflect the set of use cases representing actual
executed user behavior in a minimal test suite. The ap-
proach exploits existing incremental concept analysis tech-
niques to analyze the user sessions as they are captured and
converted into test cases [24, 25]. Concept utilizes con-
cept analysis to cluster together user sessions that represent
similar use cases. By applying a heuristic to select user ses-
sions from the clusters, Concept generates a reduced test
suite that covers all the unique URLs of the original test
suite, while representing the common URL subsequences of
the original test suite’s different use cases [26]. Our previ-
ous experiments indicated that the reduced suites have very
little program coverage loss while significantly reducing the
storage requirements [25].

Concept differs from test reduction techniques that
were developed without primary focus on web applications.
Other techniques require an association between test cases
and the program’s test requirements [11]. For example, a
requirements-based approach determines an association be-

tween test cases and their statement coverage and then se-
lects a representative set of test cases for the reduced test
suite such that the test cases cover each executed statement
at least once. To create this mapping, all test cases must be
executed to map executed statements to corresponding test
cases. Since Concept does not use any program coverage
in its decisions, it does not need to collect program coverage
information or create requirement mappings.

The primary contribution of this paper is an empirical
study of the tradeoffs between reducing user-session test
suites for web applications using requirements-based reduc-
tion techniques versus the Concept reduction approach.
Concept does not require the overhead of program cover-
age collection and provides an on-the-fly approach. How-
ever, requirements-based reduction techniques may be more
effective in reducing the test suite’s size and maintaining
fault detection capability. The goal of this paper is to gain
insight into these tradeoffs. We have compared three varia-
tions of Conceptwith three requirements-based reduction
techniques: Random, Greedy, and Harrold, Gupta, and
Soffa’s reduction [11]1. We study each of the requirements-
based techniques with respect to method, statement, condi-
tional, and URL coverage criteria.

We compared the reduced test suite size, program cover-
age, fault detection, and time and space costs of each of the
techniques for two web applications. The analysis of our
results indicates that concept analysis-based reduction is a
cost-effective alternative to requirements-based approaches.

In the next section, we provide background on web appli-
cations and user-session-based testing. We briefly describe
each reduction technique and the foreseen tradeoffs in Sec-
tion 3. Section 4 presents our experiment design. In Sec-
tion 5, we present our results and analysis. We describe
future work in Section 6.

2. User-session-based Testing
Broadly defined, a web application is an application that

executes on a web server and is available to users over a
network. A web application generally encompasses a set
of static and dynamic web pages. Based on user requests
and server state, the web application generates dynamic re-
sponses. Large web-based software systems can require
thousands to millions of lines of code, contain many inter-
actions between objects, and involve significant user inter-
action. Changing user profiles and frequent small mainte-
nance changes complicate automated testing [14].

In this paper, we target web applications written in Java
using servlets and JSPs. The applications consist of a back-
end data store and a web server. However, because our tech-
nique only requires user sessions, we can extend it to other
web technologies such as PHP.

1We do not compare incremental concept analysis as other reduction
techniques do not have incremental approaches.

In user-session-based testing, each user session is a col-
lection of user requests in the form of URL and name-value
pairs (i.e., input field names and their values). A user ses-
sion begins when a user from a new IP address makes a re-
quest from the server and ends when the user leaves the web
site or the session times out. To transform a user session into
a test case, each logged request is changed into an HTTP re-
quest that can be sent to a web server. A test case consists
of a set of HTTP requests that are associated with each user
session. Different strategies can be applied to construct test
cases from the collected user sessions [7, 19, 20, 28].

Elbaum et al. [7] demonstrated the fault-detection ca-
pabilities and cost-effectiveness of user-session-based test-
ing. They found that user session techniques uncover cer-
tain types of faults but not faults associated with rarely en-
tered data. They showed that increasing the number of col-
lected user sessions increases the effectiveness—as well as
the cost—of user-session-based testing.

Techniques and tools have also been developed to aid
in the initial stages of testing web applications [1, 6, 8,
16, 17, 18, 22]. User-session-based testing approaches are
complementary to these techniques.

3. Test Suite Reduction Techniques

An evolving program can require augmenting an exist-
ing test suite with new test cases that test the program’s new
functionality. The additional test cases can lead to redun-
dant test cases, which waste valuable testing resources, in
the testing process. The goal of test suite reduction for a
given test requirement (e.g., statement or all-uses coverage)
is to produce a test suite that is smaller than the original
suite’s size yet still satisfies the original suite’s test require-
ment. Advantages of test-suite reduction techniques include
reducing the cost of executing, validating, and managing
test suites as the application evolves.

Our study focuses on requirements-based reduction tech-
niques and a concept analysis-based approach. Reduc-
tion techniques have also been developed based on bi-
criteria models, which derive a reduced test suite that maxi-
mizes coverage and improves the error-detection rate of the
suite [3]. Harder et al. [10] applied an operational differ-
ence technique to generate and minimize the number of test
cases. Their technique dynamically generates operational
abstractions from test suite executions by adding test cases
until the operational abstractions do not change. However,
the technique requires executing the test cases to determine
their impact on the operational abstraction.

We use the example test suite in Figure 1(a) to illustrate
our study’s reduction techniques. The rows show a subset of
user sessions from a bookstore web application. The corre-
sponding URLs of the application label the columns. Each
table entry represents a user session’s URL request.

us2 us6

us4

GBooksPLog

GMyInfo

GDef GReg GLog

us5us1
GShop

us3

G
D

ef

G
R

eg

G
Lo

g

P
Lo

g

G
S

ho
p

G
B

oo
ks

G
M

yI
nf

o

1

2

3

4

5

6

us

(a) Original Suite of User Sessions (b) Concept Lattice

Figure 1. Example for Reduction Techniques

Figure 2. Test Suite Reduction Process

3.1. Requirements-based Approaches

We show the reduction process for requirements-based
reduction techniques in Figure 2 and describe the reduce
algorithm more formally: Let P be a program under test, R
be a test requirement, T be a test suite developed for P, and
T’ be the reduced test suite obtained by analyzing P and T.
1. Begin with an empty reduced test suite, T’.
2. Select a candidate test case t from T.
3. Add t to T’.
4. Repeat 2 and 3 until the suite satisfies R.

The distinguishing property of requirements-based re-
duction approaches is test case selection in step 2 above [11,
13]. A naive approach, which we call Random, is to se-
lect test cases randomly until the suite satisfies the crite-
rion. Consider reducing the test suite in Figure 1(a) using
the Random approach with the all-URL coverage criterion.
all-URL coverage covers each URL of the application at
least once. The algorithm might first select us1 for the re-
duced suite and then select us6. Then, the algorithm might
select us3 as a candidate and include it, even though us3
does not provide any more coverage than the current re-
duced test suite. The random selection process continues
until the reduced test suite satisfies the all-URL coverage
criterion. The final reduced test suite could thus be {us1,
us2, us3, us6}. The disadvantage of randomly selecting test

cases is that the reduced test suite may not be minimal for a
given original test suite and criterion.

Alternatively, we can reduce the suite by choosing the
test case that provides the most marginal improvement of
the test suite in terms of the criterion. This reduction ap-
proach, which we call Greedy, selects test cases such that
each subsequent test case provides maximum coverage of
the targeted criterion.

In Figure 1(a), us6 is the candidate test case with max-
imum URL coverage and is the first test case selected for
the reduced suite using Greedy. Then, since us2 provides
the most marginal improvement for the all-URL coverage
criterion, us2 is added to the reduced suite. The combina-
tion of us6 and us2 satisfies the all-URL coverage criterion;
therefore, Greedy reduces the test suite to {us6, us2}. In
the presence of ties, Greedy randomly selects a session.

In this example, Greedy reduces the test suite more
than Random. However, Greedy’s disadvantage is the
time to determine the test case that provides maximum cov-
erage improvement. Random and Greedy are approxima-
tions to the solution of the minimum set covering problem.
Wong et al. [30] developed a tool, ATACMIN, which uses
heuristics to find exact solutions to the minimum set cover-
ing problem applied to test suite reduction.

Harrold et al. [11] developed a test suite reduction tech-
nique, which we call HGS, with a heuristic that selects a
representative test set from the original test suite by approx-
imating the optimal reduced set. Determining the optimal
reduced set is an NP-complete problem [11]. Before the al-
gorithm can reduce the test set, test cases must be associated
with the requirements they meet. The number of test cases
that cover a requirement is the requirement’s cardinality.
After a test case is added to the reduced set, the algorithm
marks the test case’s covered requirements. The algorithm
then selects the most frequently occurring test case among
the unmarked test cases with lowest requirement cardinal-
ity, i.e., the test case that covers the most unmarked require-
ments. In the case of ties, the algorithm chooses the test case
that occurs most frequently at the next higher requirement
cardinality. Breaking ties repeats until cardinality equals
the maximum cardinality, at which point the algorithm ran-
domly selects from the tied test cases. HGS stops selecting
test cases when at least one test case in the reduced set cov-
ers each test requirement.

In Figure 1(a), the columns in the matrix represent the
association between all-URL coverage requirement and the
test cases. HGS will choose us2 first because it is the only
user session that covers GMyInfo and marks the require-
ment GMyInfo as met. The algorithm then considers re-
quirements with cardinality two—PLog and GBooks—and
then selects the test case that occurs most frequently in the
union of these two columns. Since us6 occurs two times
while us3 and us4 each occur only once, us6 is added to the

reduced set, and the algorithm marks the requirements that
us6 meets. Since the set {us2,us6} meets all requirements,
HGS selection halts. HGS can also reduce the test suite with
multiple test selection criteria. For example, the algorithm
can be used to reduce the test suite such that it satisfies both
structural and functional criteria.

Elbaum et al. [7] applied HGS to a suite of user
sessions—consisting of URL and name–value pairs for each
user session—with the selection criterion of program cover-
age. The authors reported that they achieve 98% reduction
with a loss of three faults when applied at function-level and
93% reduction at block-level with one less fault detected.
Their application of HGS requires the entire original test
suite of user sessions. We are unaware of any algorithms
that incrementally update the reduced test suite using HGS.

3.2. Concept Analysis Approach

Concept analysis is a mathematical technique for clus-
tering objects that have common discrete attributes [2]. To
apply concept analysis to the test suite reduction in user-
session-based testing, the objects, O, represent the informa-
tion uniquely identifying user sessions (i.e., test cases) and
attributes, A, represent URLs.

As shown in Figure 2, concept analysis-based test suite
reduction first performs concept analysis to build a concept
lattice where each node of the lattice is a tuple (Oi, Ai) such
that all the objects in Oi ⊆ O share all and only the at-
tributes in Ai ⊆ A and vice versa. The edges of the lat-
tice denote the partial ordering between the concept nodes.
Figure 1 (b) shows the sparse representation of the concept
lattice for the example user sessions. In user-session-based-
testing, the test cases (i.e., user sessions) are representa-
tive of the applications’ use cases [12]. We developed a
heuristic based on the concept lattice for selecting a subset
of user sessions to be maintained as the current test suite.
Our heuristic for user-session selection, called test-all-exec-
URLs, seeks to identify the smallest set of user sessions that
covers the original test suite’s executed URLs and use cases.
The reduced test suite contains a user session from the bot-
tom node, ⊥2 of the concept lattice, and a user session from
each concept node that is one level up the lattice from ⊥
(also called next-to-bottom nodes). In Figure 1(b) the next-
to-bottom nodes are labeled by us2 and us6; therefore by
applying the Concept heuristic, the reduced test suite sat-
isfying the all-URL coverage criterion would be {us2, us6}.

Though the Concept approach may not result in the
minimum test suite for a given criterion, we believe this ap-
proach maintains the original suite’s use case representation
in the reduced test suite [27]. In addition, we have shown
that the concept analysis approach is able to incrementally
update the test suite of user sessions so the original suite
need not be maintained for test suite reduction. Details on

2The ⊥ contains the URLs that all the user sessions request.

Metrics Bookstore CPM
Classes 11 75
Methods 385 172
Conditions 1808 1274
Non-comment LOC 7791 9300
Seeded Faults 40 86
Number of User Sessions 125 261
Total URLs Requested 3640 3881
Largest User Session 160 URLs 152 URLs
Average User Session 29 URLs 15 URLs

Table 1. Objects of Analysis

applying concept analysis and the heuristic for test suite re-
duction can be found in our previous papers [26, 25].
3.3. Expected Cost-Benefit Tradeoffs

We expect the different test suite reduction techniques
to vary in the size, contents, program coverage, and fault
detection capability of the reduced test suite, as well as re-
duction time and space costs. We expect Concept’s test
suite size to be larger than that generated by HGS. However,
we believe the tradeoff in size will be offset by the fault
detection effectiveness of Concept because of the heuris-
tic’s use-case clustering. In our earlier small examples of
each algorithm, the reduced test sets were similar or iden-
tical. In practice, we believe the Concept test suite will
be more representative of the application’s use cases than
the test suites generated by the other techniques. We ex-
pect the overhead for building the requirement mappings
to dominate the time for the requirement-based reduction
techniques. We also expect the concept lattice and the re-
quirements mapping to have similar space needs.

4. Empirical Study
We compare three requirements-based approaches (with

different coverage criteria) and three variations of the con-
cept analysis approach by analyzing their reduced test suite
size, program coverage, fault detection effectiveness, and
time and space requirements. Contradictory results [23, 30]
indicate that a reduction technique’s fault-detection capabil-
ity can vary with the program domain. Our goal is to eval-
uate the tradeoffs of the concept analysis-based approach
(in addition to the benefits of incremental test suite update)
with respect to other techniques for web applications.

In this section, we present our goals and design.
4.1. Research Questions and Hypotheses

We designed our study to investigate the following re-
search questions and hypotheses:
Question 1. By what percentages do the various reduction
techniques reduce the test suite size?
Question 2. How effective is the program coverage of the
reduced suites as compared to the original suite?
Question 3. Compared to the original suite, how effective
are the reduced suites with respect to fault detection?
Question 4. What are the relative time and space costs of
the reduction techniques?

Our hypotheses with regard to the questions are
Suite Size Hypothesis: Concept will generate larger re-
duced suites than HGS and Greedy but smaller than those
generated by Random. Because of concept analysis’s hi-
erarchical clustering, we expect Concept’s reduced suite
to be more diverse in terms of use case representation,while
avoiding redundancy.
Coverage Hypothesis: The program coverage of the re-
duced suite generated by Concept will be similar to the
original suite’s coverage and less than the suites gener-
ated to satisfy the program-based requirements. Because
of its use-case representation, Concept’s reduced suite
will have higher URL coverage than Greedy or HGS with
the URL criterion. The relations may not hold between
Random and Concept for both the URL criterion and
program coverage criteria because we believe a tradeoff be-
tween reduced test suite size and the suite’s coverage exists.
Fault Detection Hypothesis: Concept’s reduced suite
will have similar fault detection to the original suite and
greater fault detection than the requirements-based ap-
proaches with the URL criterion because of the use-case
representation. Concept and the requirements-based tech-
niques with program coverage criteria will detect similar
numbers of faults. The relations may not hold between
Random and Concept because the larger test suite size
will increase Random’s ability to detect faults.
Costs Hypothesis: To perform the reduction, Concept
only requires the concept lattice, while HGS, Greedy, and
Random need to create and store the requirement map-
pings. As a result, Concept will require far less space
and time overhead than HGS, Greedy, and Random.

4.2. Subject Programs and Data Collection
Table 1 shows the characteristics of our two subject pro-

grams: an open-source, e-commerce Bookstore [9] and a
course project manager (CPM) developed and first deployed
at Duke University in 2001. Bookstore allows users to reg-
ister, login, browse for books, search for books by keyword,
rate books, add books to a shopping cart, modify personal
information, and logout. Bookstore uses JSP for its front-
end and MySQL database for the backend.

To collect our 125 user sessions for Bookstore, we sent
email to local newsgroups and posted padvertisements, ask-
ing for volunteer Bookstore users to mimic their typical on-
line bookstore usage. Since we did not include adminis-
trative functionality in our study, we removed requests to
administration-related pages from the user sessions. Table 1
presents the characteristics of the collected user sessions.

In CPM, course instructors login and create grader ac-
counts for teaching assistants. Instructors and teaching as-
sistants set up group accounts for students, assign grades,
and create schedules for demonstration time slots for stu-
dents. CPM also sends emails to notify users about account
creation, grade postings, and changes to reserved time slots.

Users interact with an HTML application interface gener-
ated by Java servlets and JSPs. CPM manages its state in a
file-based datastore.

We collected 261 user sessions from instructors and stu-
dents using CPM during the 2004-05 summer, fall, and
spring sessions at the University of Delaware. The URLs
in the user sessions mapped to the application’s 60 servlet
classes and to its HTML and JSP pages.

For the fault detection experiments, graduate and un-
dergraduate students familiar with JSP/Java servlets/HTML
manually seeded realistic faults in Bookstore and CPM. In
general, the seeded faults inserted errors into the applica-
tion’s control flow, the generated UI web pages, and/or the
datastore interactions.

4.3. Variables and Measures

Our study’s independent variable is the applied reduc-
tion technique with its reduction requirement. As men-
tioned earlier, we do not compare incremental concept anal-
ysis as we are not aware of any existing incremental ap-
proaches for the other reduction techniques. The dependent
variables are the size, program coverage, and fault detec-
tion effectiveness of the reduced test suite and the reduc-
tion’s time/space costs. A tester wants small reduced suites,
which require little replay time. Thus, we measure size both
as a percent of the test cases in the original test suite and as
the total number of URLs requested. We include requested
URLs in our results as a better replay-time and space ap-
proximation than the number of test cases because the user
sessions vary in number of requested URLs.

4.4. General Methodology

For each subject application, our experiments consisted
of three phases: generating user sessions, creating reduced
suites for each technique, and replaying each reduced suite
to collect coverage and fault detection data.
Generating User Sessions. We augmented the Resin [21]
web server’s access logging class to record the GET and
POST name-value pairs. We then parsed the web server’s
augmented access log to create the user sessions. A user
session begins when a user from a new IP address accesses
the application and ends when the user leaves the applica-
tion or when the session expires after 45 minutes of inactiv-
ity. Because image requests do not affect the application’s
execution, we do not include them in our user sessions.
Creating Reduced Suites. We generated reduced suites for
the requirements-based and concept analysis techniques, as
shown in Figure 2.

For the requirements-based approaches, we map user
sessions to requirements (program or URL coverage). The
three techniques (Random, Greedy, HGS) use the map-
pings to generate reduced test suites, labeled in our re-
sults as Ran-S, Ran-M, Ran-C, Ran-U, Grd-S, Grd-M,
Grd-C, Grd-U, HGS-S, HGS-M, HGS-C, HGS-U, where

 0

 5

 10

 15

 20

ConHGS-UGrd-URan-UHGS-CHGS-MHGS-SGrd-CGrd-MGrd-SRan-CRan-MRan-S
 0

 200

 400

 600

 800

 1000

P
er

ce
nt

 o
f O

rig
in

al
 T

es
t C

as
es

T
ot

al
 U

R
Ls

 R
eq

ue
st

ed

Reduction Techniques

Percent of Original Test Cases
Total URLs Requested

92% 71% 94%3430 2670 3440

Figure 3. Bookstore: Reduced Suite Size for Reduction Techniques

90%

 0

 5

 10

 15

 20

 25

ConHGS-UGrd-URan-UHGS-CHGS-MHGS-SGrd-CGrd-MGrd-SRan-CRan-MRan-S
 0

 500

 1000

 1500

 2000

 2500

P
er

ce
nt

 o
f O

rig
in

al
 T

es
t C

as
es

T
ot

al
 U

R
Ls

 R
eq

ue
st

ed

Reduction Techniques

% of Original Test Cases
Total URLs Requested

97% 32803800 88%3380 3700 84%

Figure 4. CPM: Reduced Suite Size for Reduction Techniques

S, M, C, and U represent statement, method, condi-
tional, and URL, respectively. We implemented the map-
ping programs in Perl and the reduction techniques in Java.
Since the requirements-based reduction techniques are non-
deterministic, we executed each reduction algorithm 100
times for each reduction criterion. We chose to generate
100 reduced suites to ensure that the sample means of our
results are normally distributed.

We apply concept analysis to the URL coverage re-
quirement only. Given the original suite of user sessions,
Lindig’s concepts tool [15], written in C, creates a lat-
tice that clusters sessions by their common requested URLs.
We apply our heuristic test-all-exec-URLs, implemented in
Java, on the generated lattice to create the reduced suite.

We generated two additional reduced suites from the lat-
tice by changing how the heuristic selects user sessions
from the selected concept nodes containing multiple user
sessions. Our hypothesis is that sessions clustered together
should have the same use cases and therefore detect the
same faults [27]. Thus, the session chosen from each node
should not affect the generated reduced suite’s effective-
ness. To speed up replaying Concept’s reduced suite, we
created Con-Min, which selects from each next to bottom
node the session that requests the least URLs. As another
reference point, we include Con-Max, which selects the
session that requests the most URLs.

Replaying Reduced Suites. We used the framework
from [29] to measure program coverage and detected faults

of each user session and the generated reduced suites.
Maintaining application state is a controllability issue for

accurately replaying the reduced test suite [4]. The data
store must be populated with appropriate data for the appli-
cation to execute as it did originally. To maintain accurate
state for our applications, we replay the original suite of user
sessions and save the state after executing each session. We
then restore the saved state as the current state when replay-
ing the corresponding user session in the reduced suite.

We used Cenqua’s Clover coverage tool [5] to collect our
program coverage results. We used application-specific or-
acles to detect faults. For bookstore, we could use a simple
diff to detect differences between the faulty and original
web page results. Because CPM includes dynamic behav-
ior, such as time-dependent functionality, we used an oracle
that detects faults based only on differences in the HTML
tag structure.

4.5. Threats to Validity
Internal Validity. While the Bookstore application is sim-
ilar to a real e-commerce application, users could not com-
plete a monetary transaction. The reduced functionality
may have simplified the pool of sessions collected, thus
presenting an internal threat to validity. To reduce another
threat to internal validity, one developer implemented the
requirements-based reduction techniques using a common
reduction superclass.
Conclusion Validity. Accurate web application testing re-
quires maintaining the state of the application. Our fault de-

Technique Random Greedy HGS
S M C U S M C U S M C U

H0 (Null) ≤ C ≤ C ≤ C ≤ C ≥ C ≥ C ≥ C ≥ C ≥ C ≥ C ≥ C ≥ C
Ha (Orig) > C > C > C > C < C < C < C < C < C < C < C < C

Accept Book (% conf) 81,79 62,61 88,87 50,54 95,99 100,63 99,86 99,70 99,78 99,81 99,95 99,71
Ha? CPM (% conf) 99,98 67,61 98,95 67,61 99,73 100,97 99,97 100,99 99,86 100,99 99,99 100,99

Table 2. Significance Levels (percent of test cases, number of URLs) for Suite Size Hypothesis

tection and coverage results may be skewed because of how
we maintain the application state. This could be viewed as
a potential threat to the conclusion validity of the fault de-
tection and coverage experiments.
External Validity. This empirical comparison needs to be
evaluated further by experimenting with larger real-world
web applications. The in-house nature of the subject ap-
plications and the data collection are threats to the external
validity of the experiment.

5. Results and Analysis
5.1. Reduced Test Suite Size

We compared the size of the reduced test suites gener-
ated by each reduction technique. Figures 3 and 4 show the
results for Bookstore and CPM, respectively. The left y-axis
represents the number of test cases in the reduced suite as a
percent of the original test suite size. The right y-axis repre-
sents the total URLs requested (including repeating URLs)
by the user sessions in the reduced suite. The x-axis lists
the reduction techniques. The solid bars represent the re-
sults from the median reduced suite for each technique.
In addition to the median, for each of the nondeterminis-
tic techniques, we plot the 25th and 75th percentiles of test
cases (for the lighter bars) and total URLs requested (for
the darker bars). For Concept, the range lines represent
the results for Con-Min and Con-Max. On the left side of
the vertical line are the results from the nine program cri-
terion requirements-based (PRG REQ) techniques. To the
right of the vertical line are the results from the URL cri-
terion requirements-based (URL REQ) and concept analysis
(URL CON) techniques. We consistently use this separated
layout for all our graphs.

From Figures 3 and 4 all techniques except Random
reduced the original test suite to at most a quarter of
its original number of test cases. Among the URL REQ
and URL CON techniques HGS-U and Grd-U provide the
smallest reduced suite both in terms of number of user
sessions and total URLs requested. Concept creates the
largest reduced suites with the goal of maintaining use case
representation. URL REQ and URL CON techniques pro-
duced the smallest reduced suites because there are many
fewer URLs in the applications than methods, conditions,
or statements (Table 1). Also, multiple user sessions re-
quested each URL; thus, even Ran-U could produce small
test suites. For example, twenty-seven user sessions re-
quested AdvSearch.jsp, the least frequently accessed

URL in Bookstore.
Table 2 shows the results of evaluating our null hy-

potheses using the t-test for Suite Size Hypothesis. For
Bookstore (Figure 3), we can reject the null hypotheses
for HGS-M, HGS-U, Grd-M, and Grd-U with statisti-
cal significance. Contrary to what we expected, HGS-S,
HGS-C, Grd-S, and Grd-C create larger reduced suites
than Concept both in the number of user sessions and to-
tal URLs requested. We believe Bookstore’s simple func-
tionality and few use cases explain this anomaly. We are
investigating if the larger reduced suites contain redundant
use cases that Concept eliminates.

The CPM reduced suites (Figure 4) for all techniques
(with a more pronounced difference for Concept) contain
more test cases than Bookstore because of CPM’s complex
functionality and larger number of classes, URLs, and use
cases. CPM’s user sessions were more diverse than Book-
store’s; some sessions uniquely accessed certain URLs, and
therefore, certain code. The diversity in user sessions re-
sulted in no variations of Concept because each next to
⊥ node contained only one session. Therefore, Concept
results do not have error bars for CPM.

From Table 2, CPM’s results support rejecting our null
hypotheses for number of test cases Greedy and HGS at the
.05 significance (95% confidence) level. Therefore we con-
clude the Greedy and HGS reduction techniques produce
smaller suites than Concept. The Random techniques
produced larger suites than Concept, and we can reject
the Ran-S and Ran-C null hypotheses with 99% confi-
dence. Because of the high variability in size for Ran-M
and Ran-U, we cannot reject these null hypotheses with
statistical significance. However, the test suites generated
by Ran-M and Ran-U are not desirable because their size
characteristics are inconsistent across executions.
5.2. Program Coverage

Figures 5 and 6 show the results from program cover-
age for each of our subject applications. We represent the
reduction techniques along the x-axis and percent program
coverage along the y-axis. The horizontal lines represent
the original test suite’s method/statement/condition cover-
age. The lines on each bar show the range of coverage for
the 25th and 75th percentiles of the nondeterministic ap-
proaches and the minimum and maximum program cover-
age for Concept.

We can make similar, expected observations about Book-
store’s and CPM’s results: larger reduced suites cover more

 0

 20

 40

 60

 80

 100

ConHGS-UGrd-URan-UHGS-CHGS-MHGS-SGrd-CGrd-MGrd-SRan-CRan-MRan-S

P
er

ce
nt

 P
ro

gr
am

 C
ov

er
ag

e

Reduction Techniques

Method Coverage
Statement Coverage

Conditional Coverage

Orig Cond Cvg

Orig Stmt Cvg

Orig Meth Cvg

Figure 5. Bookstore: Program Coverage Effectiveness of Reduced Test Suites

 40

 50

 60

 70

 80

 90

 100

ConHGS-UGrd-URan-UHGS-CHGS-MHGS-SGrd-CGrd-MGrd-SRan-CRan-MRan-S

P
er

ce
nt

 P
ro

gr
am

 C
ov

er
ag

e

Reduction Techniques

Method Coverage
Statement Coverage

Conditional Coverage

Orig Meth Cvg

Orig Stmt Cvg

Orig Cond Cvg

Figure 6. CPM: Program Coverage Effectiveness of Reduced Test Suites

code. For the PRG REQ techniques, the reduced suites pro-
duced the same coverage for the requirement as the original
suite because the reduced suite was generated to satisfy the
program coverage requirement, e.g., reduced suites gener-
ated to satisfy the statement-coverage requirement covered
as many statements as the original suite. Overall, the tech-
niques generated for statement coverage covered the most
code in terms of methods, statements, and conditionals.

Though Concept is URL-based reduction, it provides
program coverage comparable to (within 2% of) PRG REQ
techniques. Concept has slightly less coverage than the
original suite and Random’s reduced suites, which con-
tain many more test cases than Concept. Concept
provides more program coverage than the URL REQ tech-
niques, Greedy and HGS. We note that the samples for
Grd-U and HGS-U have standard deviations of 10. Thus, a
tester will not know if the generated test suite from Grd-U
and HGS-U will obtain high coverage.

5.3. Fault Detection Effectiveness
Figures 7 and 8 show each technique’s fault detection.

The x-axis represents the reduction techniques. The left y-
axis represents the percent of the original suite’s detected
faults that the reduced suite also detects, and the right y-axis
represents the average number of faults detected per test
case. Bookstore’s original suite detected 36 of the 40 faults
seeded, while CPM’s original suite detected 40 of the 86
seeded faults (using HTML-tag oracle). The lines on each
bar represent the range for the 25th and 75th percentiles of
fault detection (for the lighter bars) and the number of faults

per test case (for the darker bars) for the nondeterministic
approaches and the minimum and maximum for Concept.

Similar to the coverage experiments, the number of faults
detected by the reduction techniques is directly related to
the size of the reduced suite. Random PRG REQ techniques
achieve the best fault detection at the cost of larger re-
duced suites. The reduced test suites generated by Random
PRG REQ techniques have low numbers of faults per test
case as compared to the other suites.

For both Bookstore and CPM, the Concept variations
show similar fault detection to the best PRG REQ tech-
niques, detecting all but one of CPM’s faults and all but two
of Bookstore’s faults. Concept also detects more faults
than HGS-U.

5.4. Analysis of Time and Space Costs
Figure 9 depicts the major stages of the requirements-

based and concept analysis approaches as nodes with edges
indicating the flow between phases. The Concept phases
for test suite reduction are Parse Log, Create Lattice and Re-
duce, while Parse Log and the remaining phases are part of
the requirements-based techniques, illustrated in Figure 2.
Bookstore and CPM’s measurements are prefaced by B: and
C:, respectively. We present approximate measurements for
the times for each phase as well as the space for the concept
lattice and requirement mappings. The times in each reduce
phase is the range of time required to generate one reduced
suite for each technique.

The size of the requirement mappings is the product
of the number of requirements, e.g., statements, methods,

 40

 50

 60

 70

 80

 90

 100

ConHGS-UGrd-URan-UHGS-CHGS-MHGS-SGrd-CGrd-MGrd-SRan-CRan-MRan-S
 0

 5

 10

 15

 20

 25

 30

P
er

ce
nt

 F
au

lts
 D

et
ec

te
d

F

au
lts

 D
et

ec
te

d
P

er
 T

es
t C

as
e

Reduction Techniques

Faults Detected Detected Faults/Test Case

Figure 7. Bookstore: Fault Detection Effectiveness of Reduced Test Suites

 70

 75

 80

 85

 90

 95

 100

ConHGS-UGrd-URan-UHGS-CHGS-MHGS-SGrd-CGrd-MGrd-SRan-CRan-MRan-S
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

P
er

ce
nt

 F
au

lts
 D

et
ec

te
d

F

au
lts

 D
et

ec
te

d
P

er
 T

es
t C

as
e

Reduction Techniques

Faults Detected Detected Faults/Test Case

Figure 8. CPM: Fault Detection Effectiveness of Reduced Test Suites

conditionals, or URLs, and the number of sessions that
cover each requirement. For Bookstore, the concept lat-
tice’s space requirements are smaller than all of the program
coverage requirement maps and considerably smaller than
statement coverage. In contrast, CPM’s space needs for the
requirement mappings in all cases but statement coverage
are less than the concept lattice—the statement map is four
times larger than the concept lattice.

We report all time measurements in seconds except for
the requirement mapping construction for program cover-
age, which is reported in hours as appropriate. None of
our developed tools were optimized for performance and
none are meant for production-level work. However, we
can conclude that the reduction techniques have compara-
ble execution times. We did not measure the time to gen-
erate each requirements-based reduced suite because col-
lecting coverage information for each session (the shaded
phase) is clearly the bottleneck of the requirements-based
approaches. Considering all steps required in the reduc-
tion process, Concept costs considerably less than the
PRG REQ techniques.

5.5. Analysis Summary and Discussion
The experiments provide evidence that URL-based re-

duced test suites are competitive with program coverage
requirements-based techniques with respect to reduced test
suite size, program coverage, and fault detection. As
expected, there is a tradeoff between reduced suite size
and fault detection, but other factors—such as choosing

Concept Analysis

Create Lattice

Reduce

Requirements−Based

 Parse Log

Map MethodsMap Statements

Reduce Reduce Reduce Reduce

Map URLsMap Conditionals

B: 7s C: 4s

B: 12.5 hours C: 21.5 hours

C: 10s, 1.3M

B: 4−8 s
C: 3−5 s

B: 1−2 s
C: 1−2 s

B: 1−2 s
C: 1−2 s

B: .5−1 s
C: .5−1 s

C: .8s, 20K

B: 4s, 71K
C: 5s, 48KB: 0.92s

B: 0.08s, 50K

B: 4s, 178KB: 9s, 2.6M
C: 5s, 65K

B: .8s, 8K

C: 0.52s, 411K

C: 2.08s

Get Statement, Method, Conditional Coverage Get URL coverage
0s, with log parse

Figure 9. Approximate Time and Space Costs

test cases based on their use case representation—can re-
sult in better fault detection. A problem with the HGS,
Greedy, and Random reduction techniques is their non-
determinism. Even in our small case studies, we noted some
techniques generated reduced suites with a wide range in
size, coverage, and fault detection. With Concept, the
reduced suites have consistently small size, high coverage,
and high fault detection. From our experiments, the Suite
Size Hypothesis is satisfied when Concept is compared
to URL REQ techniques; however, the hypothesis does not
hold for some of the PRG REQ techniques. Our results sup-
port the Coverage Hypothesis, Fault Detection Hypothe-
sis and the Costs Hypothesis as discussed in Sections 5.2,

5.3 and 5.4.
We argue that incremental test suite reduction based on

concept-analysis clustering of user sessions is necessary for
a web-based system that undergoes maintenance, evolution
and usage changes. In this paper, we empirically evalu-
ate several reduction algorithms to identify the tradeoffs
in practice. Concept’s significantly lower reduction cost
coupled with its high program coverage and fault detection
effectiveness promoteConcept as an appealing alternative
to test suite reduction for user-session-based testing of web
applications.

6. Future Work
Future work includes performing the experiments on dif-

ferent sets of user sessions as well as with more applications
and larger user session sets. We are also investigating a so-
lution to the data state problem for more accurate replay of
user sessions.

Acknowledgments
We thank Dr. Allen Gibson, a statistics instructor with the
Stillman School of Business at Seton Hall University, for
his assistance in the statistical analysis of our results. We
also thank Jeffrey Chase, Richard Kisley, and Sara Sprenkle
for their development efforts of CPM. Finally, we thank the
anonymous reviewers for their constructive feedback.

References

[1] M. Benedikt, J. Freire, and P. Godefroid. VeriWeb: Automat-
ically testing dynamic web sites. In International Conference
on World Wide Web, May 2002.

[2] G. Birkhoff. Lattice Theory, volume 5. American Mathemat-
ical Soc. Colloquium Publications, 1940.

[3] J. Black, E. Melachrinoudis, and D. Kaeli. Bi-criteria models
for all-uses test suite reduction. In International Conference
on Software Engineering, 2004.

[4] D. Chays, Y. Deng, P. Frankl, S. Dan, F. Vokolos, and
E. Weyuker. An agenda for testing relational database appli-
cations. Software Testing, Verification and Reliability, 14:17–
44, Mar. 2004.

[5] Cenqua clover code coverage for Java.
<http://www.cenqua.com/clover/>, 2005.

[6] Y. Deng, P. Frankl, and J. Wang. Testing of web database ap-
plications. In Workshop on Testing, Analysis and Verification
of Web Services, July 2004.

[7] S. Elbaum, G. Rothermel, S. Karre, and M. Fisher. Leverag-
ing user session data to support web application testing. IEEE
Transactions on Software Engineering, May 2005.

[8] C. Fu, B. Ryder, A. Milanova, and D. Wonnacott. Testing of
Java Web Services for Robustness. In International Sympo-
sium on Software Testing and Analysis, July 2004.

[9] Open source web applications with source code.
<http://www.gotocode.com>, 2003.

[10] M. Harder, J. Mellen, and M. D. Ernst. Improving test suites
via operational abstraction. In International Conference on
Software Engineering, 2003.

[11] M. J. Harrold, R. Gupta, and M. L. Soffa. A methodology
for controlling the size of a test suite. ACM Transactions on
Software Engineering Methodology, 2(3):270–285, 1993.

[12] I. Jacobson. The use-case construct in object-oriented soft-
ware engineering. In J. M. Carroll, editor, Scenario-based
Design: Envisioning Work and Technology in System Devel-
opment, 1995.

[13] J. A. Jones and M. J. Harrold. Test suite reduction and pri-
oritization for modified condition/decision coverage. IEEE
Transactions on Software Engineering, 29(3), March 2003.

[14] E. Kirda, M. Jazayeri, C. Kerer, and M. Schranz. Experi-
ences in engineering flexible web service. IEEE MultiMedia,
8(1):58–65, 2001.

[15] C. Lindig. Concepts tool. <http://www.st.cs.uni-
sb.de/ lindig/src/concepts.html>, 2005.

[16] C.-H. Liu, D. C. Kung, and P. Hsia. Object-based data flow
testing of web applications. In First Asia-Pacific Conference
on Quality Software, 2000.

[17] G. D. Lucca, A. Fasolino, F. Faralli, and U. D. Carlini. Test-
ing web applications. In International Conference on Soft-
ware Maintenance, 2002.

[18] J. Offutt and W. Xu. Generating test cases for web services
using data perturbation. In Workshop on Testing, Analysis and
Verification of Web Services, July 2004.

[19] Parasoft WebKing. <http://www.parsoft.com>, 2004.
[20] Rational Robot. <http://www-

306.ibm.com/software/awdtools/tester/robot/>, 2005.
[21] Caucho Resin. <http://www.caucho.com/resin/>, 2005.
[22] F. Ricca and P. Tonella. Analysis and testing of web applica-

tions. In Int’l Conf. on Software Engineering, 2001.
[23] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong.

Empirical studies of test suite reduction. Journal of Software
Testing, Verification, and Reliability, 4(2), Dec. 2002.

[24] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock. Com-
posing a framework to automate testing of operational web-
based software. In International Conference on Software
Maintenance, September 2004.

[25] S. Sampath, V. Mihaylov, A. Souter, and L. Pollock. A scal-
able approach to user-session based testing of web applica-
tions through concept analysis. In Automated Software Engi-
neering Conference, September 2004.

[26] S. Sampath, A. Souter, and L. Pollock. Towards defining and
exploiting similarities in web application use cases through
user session analysis. Workshop on Dyn Analysis, May 2004.

[27] S. Sampath, S. Sprenkle, E. Gibson, L. Pollock, and
A. Souter. Analyzing clusters of web application user ses-
sions. Workshop on Dyn Analysis, May 2005.

[28] J. Sant, A. Souter, and L. Greenwald. An exploration of sta-
tistical models of automated test case generation. Workshop
on Dyn Analysis, May 2005.

[29] S. Sprenkle, S. Sampath, E. Gibson, L. Pollock, and
A. Souter. An empirical comparison of test suite reduction
techniques for user-session-based testing of web applications.
Technical Report 2005-09, Univ. of Delaware, April 2005.

[30] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur. Ef-
fect of test set minimization on fault detection effectiveness.
International Conference on Software Engineering, 1995.

