An Empirical Study of Static Program
Slice Size

DAVID BINKLEY

Loyola College Maryland

and

NICOLAS GOLD and MARK HARMAN
King’s College London

This article presents results from a study of all slices from 43 programs, ranging up to 136,000 lines
of code in size. The study investigates the effect of five aspects that affect slice size. Three slicing
algorithms are used to study two algorithmic aspects: calling-context treatment and slice granular-
ity. The remaining three aspects affect the upstream dependencies considered by the slicer. These
include collapsing structure fields, removal of dead code, and the influence of points-to analysis.

The results show that for the most precise slicer, the average slice contains just under one-third
of the program. Furthermore, ignoring calling context causes a 50% increase in slice size, and while
(coarse-grained) function-level slices are 33% larger than corresponding statement-level slices, they
may be useful predictors of the (finer-grained) statement-level slice size. Finally, upstream analyses
have an order of magnitude less influence on slice size.

Categories and Subject Descriptors: D.2.7 [Distribution, Maintenance, and Enhancement]:
Restructuring, Reverse Engineering, and Re-engineering; D.2.5 [Testing and Debugging]; D.2.8
[Metrics]: Product Metrics

General Terms: Algorithms, Measurement
Additional Key Words and Phrases: Program slicing, slice size

ACM Reference Format:

Binkley, D., Gold, N., and Harman, M. 2007. An empirical study of static program slice size. ACM
Trans. Softw. Eng. Methodol. 16, 2, Article 8 (Apr. 2007), 32 pages. DOI = 10.1145/1217295.1217297
http://doi.acm.org/10.1145/1217295.1217297

A preliminary version of this article appeared in Proceedings of the 19th IEEE Conference on
Software Maintenance (ICSM 2003) [Binkley and Harman 2003a]. This research was supported by
National Science Foundation Grant CCR-0305330 and Engineering and Physical Sciences Research
Council Grants GR/R98938, GR/M58719, and GR/R71733. GrammaTech provided CodeSurfer upon
which the implementation was based.

Authors’ addresses: D. Binkley, Loyola College in Maryland, 4501 North Charles St., Baltimore, MD
21210; email: binkley@cs.loyola.edu; N. Gold, M. Harman, Kings College London, Strand, London
WC2R 2LS, UK; email: {nicolas.gold,mark. harman}@kcl.ac.uk.

Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
© 2007 ACM 1049-331X/2007/04-ART8 $5.00 DOI 10.1145/1217295.1217297 http://doi.acm.org/
10.1145/1217295.1217297

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



2 . D. Binkley et al.

1. INTRODUCTION

A static program slice is a semantically meaningful portion of a program that
captures a subset of the program’s computation [Weiser 1984]. A slice is com-
puted from a “slicing criterion” (a program point and variable of interest). Two
kinds of slice are considered in this study: backward slices, which contain those
parts of the program that potentially affect the slicing criterion, and forward
slices, which contain those parts of the program potentially affected by the
slicing criterion.

Slicing is a widely-applied technique because it allows a program to be sim-
plified and thus allows attention to be focused on a subcomputation based on a
user-selected criterion. Slicing has been applied to reverse engineering [Canfora
et al. 1994b; Simpson et al. 1993], program comprehension [De Lucia et al. 1996;
Harman et al. 2001], software maintenance [Canfora et al. 1994a; Cimitile
et al. 1996; Gallagher 1992; Gallagher and Lyle 1991], debugging [Agrawal
et al. 1993; Kamkar 1993; Lyle and Weiser 1987; Weiser and Lyle 1985], test-
ing [Binkley 1997, 1998; Gupta et al. 1992; Harman and Danicic 1995; Hierons
et al. 1999, 2002], component reuse [Beck and Eichmann 1993; Cimitile et al.
1995a], program integration [Binkley et al. 1995; Horwitz et al. 1989], and soft-
ware metrics [Bieman and Ott 1994; Lakhotia 1993; Ott and Thuss 1993]. There
are several surveys of slicing techniques, applications and variations [Binkley
and Gallagher 1996; Binkley and Harman 2004; De Lucia et al. 2001; Harman
and Hierons 2001; Tip 1995].

In all applications of slicing, the size of a slice is crucial: The more statements
that can be determined to have no impact upon the slicing criterion, the better.
The value of many slicing techniques depends directly on slice size. This leads
to a natural question: Just how big is a typical program slice? This article seeks
to answer this question for the C programming language. In order to provide a
definitive answer, a large code base containing a variety of programs is studied.
Five factors that influence slice size are also studied: the expansion of structure
fields, inclusion of calling context, level of granularity of the slice, presence of
dead code, and choice of points-to analysis.

The question of typical slice size is deceptively subtle. What constitutes a
“typical” slicing criterion? This is rather subjective and thus hard to identify.
In order to overcome the difficulties associated with (subjectively) choosing a
selection of criteria, the article considers all possible slicing criteria, thereby
guaranteeing to include all typical criteria. This is a time-consuming and de-
manding goal for an empirical study, only made possible by recent developments
in slicing technology and a set of slice construction optimizations described else-
where [Binkley and Harman 2003b]. Owing to the large size of the subject set
and the fact that slices were constructed for every point in every program, the
data can be used as a benchmark of static slice size, against which average slice
size for different definitions of typical slicing criteria can be compared.

The results of the empirical study reported here make the following
contributions:

— Determination and evaluation of average slice size. Results are presented con-
cerning slice size for backward and forward slices over a large set of programs

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 3

ranging in scale from several hundred lines of code to over 136,000 noncom-
ment, nonblank lines of code. The slice on every executable statement was
taken. Most previous studies concern subject programs of at least one order
of magnitude smaller than those considered herein. Furthermore, all such
studies take several orders of magnitude fewer slices. Thus, the present ar-
ticle presents the largest study of program slice size to date.

— Evaluation of the impact of calling context on slice size. Results are presented
that evaluate the impact of calling context sensitivity upon slice computation
time and size. Formally, the calling-context problem can be summarized as
ensuring that after processing a call from call-site ¢, results are propagated
to ¢ and not to other call sites. Call strings have been used to track calling
context [Horwitz et al. 1998]. In essence, these strings are built by labeling
the call and return for call-site ¢; with unique terminal symbols (e.g., “(;”
and “);”) and then ensuring that the string of symbols produced by a graph
traversal belongs to a specified context-free language [Reps et al. 1994; Reps
1998; Horwitz et al. 1998] (e.g., each “(;” is matched with “);”). Few previous
studies have addressed this question, and those which have, have produced
contradictory results. The advent of slicing tools which, for pragmatic rea-
sons, cannot fully account for calling context [Atkinson and Griswold 1998;
Mock et al. 2002] makes this evaluation very timely. The findings suggest
that slicing tools which fail to fully account for calling context have to be
used with care.

—Evaluation of the impact of slice granularity on slice size. Results are pre-
sented concerning slices constructed at statement and function granularity.
These findings suggest that function slices are typically one-third as large
as their corresponding statement slices. In cases where a large program is to
be sliced, this reduction in precision may be worthwhile because of the enor-
mous decrease in slice construction time. Furthermore, statistical analysis
reveals a strong linear correlation between function slice size and statement
slice size. This suggests that function slices might be inexpensive predictors
of statement slice size.

—Evaluation of the impact of structure field expansion on slice size. Results
concerning the impact of collapsing structure fields on slice size suggest that
for certain programs, this makes an important difference. Such programs
contain structures with function pointers. This finding replicates those by
Bent et al. [2000]. Overall, they lead to a 6-7% change in slice size.

—Evaluation of the effect of points-to analysis. A smaller-scale study is included
that considers the difference between two possible choices for points-to anal-
ysis. Overall, points-to analysis precision had a relatively small effect on slice
size, namely, of 1.1%.

—Evaluation of the impact of dead code. Finally, results are presented that
indicate that dead code has little effect on average slice size. Over all 43
programs, removal of dead code reduced average slice size by about 2%.

The remainder of the article is organized as follows: Section 2 describe back-
ground information. Section 3 describes the four slicers used to generate the

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



4 . D. Binkley et al.

empirical data studied in Section 4, while Sections 5 and 6 describe threats to
validity of the results and implications of the results for future slicing work and
applications. Section 7 presents an account of related work and how it compares
with the results reported here. Finally, Section 8 concludes.

2. BACKGROUND

This section presents a brief summary of program slicing, the subject programs
studied, and the environment in which the study was conducted, including
threats to the validity of the experiment.

2.1 Program Slicing

To compute the large number of slices required in this study, Grammatech’s
deep structure analysis tool CodeSurfer [Grammatech 2002] was used. Three
other general-purpose program slicing tools exist: Blair and Associates, Inc.
commercialized version of the NIST slicer, Unravel [Lyle et al. 1995] and Mock
et al.’s Sprite tool [2002], both of which slice by solving (anew) data-flow equa-
tions for each slice, and Jayaraman et al.’s Java slicer [2005].

CodeSurfer builds an intermediate representation called the system depen-
dence graph (SDG) [Horwitz et al. 1998]. The program slices studied in Section 4
are computed using graph reachability over the SDG. CodeSurfer’s output goes
through two preprocessing steps before slicing begins. The first identifies in-
traprocedural strongly connected components (SCCs) and replaces them with
a single representative vertex. The key observation here is that any slice that
includes a vertex from an SCC will include all the vertices from that SCC;
thus, there is a great potential for saving effort by avoiding redundant work
[Binkley and Harman 2003b]. Once discovered, SCC formation is done by mov-
ing all edges of represented vertices to the representative. The edgeless ver-
tices are retained to maintain the mapping back to the source. While slicing,
the slicer need never encounter them. The second preprocessing step reorders
the vertices of each procedure into topological order. This is possible because
cycles have been removed by the SCC formation. Topological sorting improves
memory performance—in particular, cache performance [Binkley and Harman
2003b].

After preprocessing, two kinds of slices are computed [Horwitz et al. 1998]:
backward and forward interprocedural slicing. Taken with respect to vertex v, a
backward slice includes the vertices representing computations that potentially
affect the computation represented at v. A forward slice is the dual of a backward
slice. For statement s represented by vertex v, the forward slice on v includes
those program elements potentially affected by the computation at s. In both
cases the variables of interest are assumed to be those used by the vertex.

2.2 Subjects

The study considers just over one million lines of C code from 43 subject pro-
grams that range in size from 600 LoC (lines of code) to almost 180 KLoC.
Figure 1 shows the 43 subject programs along with some statistics related
to the programs and their SDGs. These statistics include four measures of

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 5

Size (Loc) Number Number | Number | Pace (KloC/sec)
Program we sloc | of Vertices | of Edges of Slices we sloc
a2ps 63,600 | 40,222 707,623 | 1,488,328 58,281 546 345
acct-6.3 10,182 6,764 21,365 41,795 7,250 7,243 4811
barcode 5,926 3,975 13,424 35,919 3,909 | 5,663 3799
be 16,763 | 11,173 20,917 65,084 5,133 | 7,078 4718
byacc 6,626 5,501 41,075 80,410 10,151 | 1,148 953
cadp 12,930 | 10,620 45,495 122,792 15,672 | 1,695 1392
compress 1,937 1,431 5,561 13,311 1,085 4,403 3253
copia 1,170 1,112 43,975 128,116 4,686 74 71
csurf-pkgs 66,109 | 38,507 564,677 | 1,821,811 43,044 472 275
ctags 18,663 | 14,298 188,856 405,383 20,578 640 490
cvs 101,306 | 67,828 | 8,949,186 | 28,033,287 103,265 29 19
diffutils 19,811 12,705 52,132 104,252 17,092 3,021 1938
ed 13,579 9,046 69,791 108,470 16,533 | 1,807 1204
empire 58,539 48,800 1,071,321 2,122,627 120,246 549 458
EPWIC-1 9,597 5,719 26,734 56,068 12,492 | 5,856 3490
espresso 22,050 | 21,780 157,828 420,576 29,362 793 783
findutils 18,558 11,843 38,033 174,162 14,445 3,532 2254
flex2-4-7 15,813 | 10,654 49,580 105,954 11,104 | 1,833 1235
flex2-5-4 21,543 15,283 55,161 234,024 14,114 1,178 836
ftpd 19,470 | 15,361 72,906 138,630 25,018 | 1,499 1183
gee.cpp 6,399 5,731 26,886 96,316 7,460 | 1,995 1787
gnubg-0.0 10,316 6,988 36,023 104,711 9,556 | 1,768 1197
gnuchess 17,775 | 14,584 56,265 165,933 15,069 | 1,815 1489
gnugo 81,652 | 68,301 396,010 | 1,087,038 68,298 790 661
go 29,246 | 25,665 144,299 321,015 35,863 | 1,097 963
ijpeg 30,505 | 18,585 289,758 822,198 24,029 | 1,708 1041
indent 6,724 4,834 23,558 107,446 6,748 1,666 1197
li 7,597 4,888 1,031,873 3,290,889 13,691 15 10
named 89,271 61,533 1,853,231 8,334,948 106,828 69 48
ntpd 47,936 30,773 285,464 1,160,625 40,199 630 405
oracolo2 14,864 8,333 27,494 76,085 11,812 3,454 1936
prepro 14,814 | 8,334 27,415 75,901 11,745 | 3,580 | 2019
replace 563 512 1,406 2,177 867 9,417 8564
sendmail 46,873 | 31,491 | 1,398,832 | 10,148,436 47,344 30 20
space 9564 | 6,200 26,841 74,690 11,277 | 2,347 1522
spice 179,623 | 136,182 | 1,713,251 | 6,070,256 | 212,621 43 33
termutils 7,006 | 4,908 10,382 23,866 3,113 | 12,997 9105
tile-forth-2.1 4510 | 2,986 90,135 365,467 12,076 191 126
time-1.7 6,965 | 4,185 4,043 12,315 1,044 | 17,228 | 10351
userv-0.95.0 8,009 6,132 71,856 192,649 12,517 302 232
wdiff.0.5 6,256 | 4,112 8,201 17,095 2,421 | 13,562 8914
which 5407 | 3,618 5,247 12,015 1,163 | 18,101 | 12112
wpst 20,499 | 13,438 140,084 382,603 20,889 | 1,557 1021
sum 1,156,546 | 824,935 | 19,865,184 | 68,645,673 | 1,210,090
average 26,896 | 19,185 461,981 | 1,596,411 28,142 | 3,336 2,285

Fig. 1. The subject programs studied.

program size: first, column two gives the size of each program as reported by
the Unix word-count utility wc. Line counts, especially using the word count,
provide a rather crude method. The data is included to provide a consistent
measure of program size that facilitates comparison with prior studies. To pro-
vide a better estimate of program size, the next column reports the number of

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



6 . D. Binkley et al.

nonblank noncomment lines of code as reported by sloc_count [Wheeler 2005].
The next two columns provide a measure of the dependence complexity in the
program by reporting the number of vertices and edges, respectively, in each
SDG.

In the SDG, global variables are modeled as value-result parameters; thus,
corresponding vertices are added at call sites and procedure entry. Each such
“global pseudoparameter” counts as a node in the SDG. This is why it is impor-
tant to measure size in LoC and SLoC and not in SDG nodes. As can be seen
in Figure 1, the number of nodes per line of code can vary dramatically. For
example, consider the two programs compress and copia. The large number of
nodes per line of code for copia (compared to compress) comes from the fact
that it has twice as many globals, 20 times the number of calls, and 10 times
the number of functions.

The sixth column of Figure 1 reports the number of backward slices taken
(the same number of forward slices was taken) for each subject program. At first
glance, we might expect the number of slices to equal the number of nonblank
noncomment source lines. The two do not match because a slice was computed
for each vertex that represented executable code. It turns out that one “line of
code” may be represented by multiple vertices. For example, the line “for (i=0;
i<10; i++)” generates three vertices, representing initialization, test, and in-
crement of i. In general, each SDG vertex contains, at most, one side-effect, and
call parameters are separated in different nodes [Horwitz et al. 1998]. For ex-
ample, the dependence subgraph for the function “f (int *a)” includes an entry
vertex labeled “f” and three parameter vertices. Two represent the incoming
value of “a” and “xa” and one represents the result value of “xa”.

The subject programs cover a wide range of programming styles. For exam-
ple, the program prepro is Fortranesque in its use of arrays. In contrast, several
other programs make heavy use of function pointers. The program ed is rather
“single-minded,” while the program acct contains many different (although
related) computations. Studying 43 different programs provides sufficient di-
versity to draw general conclusions about the effectiveness of program slicing
from the results of this study.

2.3 Study Construction Environment

The experimental process was fairly straightforward. Data was collected by
slicing on every vertex that represents source code using each of four slicer
configurations. The data was collected on a dual processor computer running
Red Hat Linux 7.1 and kernel version 2.4.2-2. Each processor was a 1000MHz
Pentium III and had a 256KB cache. The processors share 4GB of main mem-
ory. Memory contention between the two processors on the shared memory
bus slowed each processor down by 15.5% relative to a single processor in an
identical environment; thus, the effective single CPU speed was 845MHz. CPU
utilization was 991 % for all runs of the slicer. The slicer was built using the GNU
gcc compiler version 2.96, using the -03 optimization flag.

The times reported in this article are for slicing only. The construction of
the SDG and the preprocessing done by the slicer are excluded. Slice times

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 7

reported represent the time taken to compute all forward and backward slices.
This is a considerable number of slices and much work went into optimizing
the slicing algorithm to speed up the computation of numerous slices from a
single program. This work is reported elsewhere [Binkley and Harman 2003b].

Though slicer pace is not the primary focus of this article, for the reader’s
information, the final two columns of Figure 1 present the pace of the slicing
computation, which is computed by dividing the number of vertices processed
per second by the average 14.1 vertices per line of code. The pace is given for
both line-count measures.

It is interesting to note that there is a rather large variation in slice pace,
which ranges from 10 KLoC to over 12 MLoC per second. There are two coupled
causes for this variation: The SDG includes vertices that represent global vari-
ables as additional function parameters. Thus, programs with large numbers
of both globals and function calls include a high proportion of such vertices.
The processing time for an edge is a near-constant 60 nanoseconds; however,
programs with large numbers of globals and functions (which is correlated with
a large number of function calls) have a considerably higher number of edges
per vertex. As the addition of a single global variable (i.e., a single line of code)
can introduce many new vertices, LoC does not make a good predictor of slice
pace.

Slice size could have been reported as a percentage of the vertices in the SDG
(effectively the same vertex set as in a CFG, with the addition of pseudover-
tices for representation of global variables entering and leaving a procedure).
The problem with doing this is that it makes the results hard to compare with
other studies of slicers that use a different or no underlying graph. Even with
SDG-based slicing, there is variation in the number of vertices that a program’s
SDG has. For example, the process of collapsing structure fields changes the
number of vertices in the graph (but not the number of lines of code in the pro-
gram). Similarly, a recent enhancement to CodeSurfer added a linear number
of vertices in exchange for removing a quadratic number of edges. Such changes
make the “percentage of vertices in a graph” a moving and poorly-defined tar-
get. Finally, line count was also chosen for a pragmatic reason: Ultimately, a
tool user is going to want to know which source lines are relevant to a query.
Thus, it is the percentage of these lines that is relevant to a software engineer.

3. EXPERIMENTAL SETUP

Experiments were conducted to explore the effects of five factors that may have
an influence upon slice size. The aim of the work is to provide benchmark data
on slice size and to explore these influencing factors. The five factors studied
were:

(1) the treatment of calling context,

(2) the level of granularity,

(3) the treatment of structure fields,
(4) the choice of points-to analysis, and
(5) the effect of dead code on slice size.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



8 . D. Binkley et al.

These aspects form a set of options available to a slicer. Some of them, notably
points-to analysis and calling context, have been widely-studied in previous
empirical work on factors that influence slice size [Binkley and Harman 2004].
The first two aspects represent changes to the actual slicing algorithm. Thus,
the three slicers described in the following table are used for the experiments.

Slicer Calling Context Granularity

S1 respected statement level
So ignored statement level
S3 respected function level

Slicer s; is expected to be the most precise, with sy allowing the impact of
calling context to be researched and s3 allowing the granularity of a slice to be
studied. The remaining three aspects affect the construction of the underlying
SDG to be sliced. Slicer s; is used to explore the effect on slice size of the
impact, or collapsing structure fields, of pointer analysis precision and dead
code removal. Thus five empirical comparisons are reported in the next section.
This section first describes each comparison in greater detail.

3.1 Calling Context: Respected or Ignored

Slicers s; and sg allow the treatment of calling context to be studied. When
slicing, “respecting calling context” refers to the task of tracking call sites to
determine the point at which to resume slicing after a called procedure has been
sliced. A slicer that ignores calling context treats the calls to a given procedure
as indistinguishable, so that a call from one call site is treated as a potential
call from all the others. Though safe, this has the potential to dramatically
increase slice size. Respecting calling context requires matching an appropriate
call site with a return, for example, using a stack. However, the stack approach
is somewhat inefficient. The “summary edges” approach of the SDG allows the
two-pass algorithm to efficiently track calling context [Horwitz et al. 1998; Reps
et al. 1994].

3.2 Granularity: Statement or Function Level

Slicers s; and s3 allow the effect of “slice granularity” to be studied. Tradition-
ally, slicing operates at the statement level of granularity: A slice may include
or exclude individual statements. However, as an engineer will typically either
consider or not consider the code from a procedure (especially when procedure
size is not excessive), an alternative to slicing at the statement level is to slice
at the function level, where entire functions are either included or excluded.

Function-level slicing is expected to be much quicker and easier to perform
than statement-level slicing, which makes it a good (and perhaps sufficient) first
approximation. There are interesting questions as to how much is given up in
terms of precision and how much of an impact this has on a programmer. The
precision question is addressed in the next section, while the impact question
is a topic for future investigation.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 9

Collapsed Expanded Decrease
(sec) (sec) (percent)
backward slice
total 885,328 520,052 41%
per slice 7,607 5,664 26%
forward slice
total 743,542 557,758 25%
per slice 6,654 5,989 10%

Fig. 2. Total analysis time for slicer s;. The values given per slice are averaged from the total
values. The average per-slice reduction is thus the average reduction on the average slice.

3.3 Structure Fields: Expanded or Contracted

Slicer s; is used to study the effect of collapsing structure fields [Yong et al.
1999]. This is best understood by way of example. Consider the following code:

struct file_ops
{
int (*write_fn) ();
int (*read_fn) ();
} filel;

Assume that write_fn potentially points to the two functions write_ext2
and write_nfs, and read_fn potentially points to the functions read_ext2
and readnfs. With structure fields expanded, the function call
(*filel.readfn) (---) potentially calls read_ext2 and read _nfs. With structure
fields collapsed, all structure fields are treated as a single variable. Collapsing
write_fn and read_fn means that the call (xfilel.readfn)(---) appears to
call write_ext2 and write_nfs in addition to read_ext2 and read_nfs.

For programs with structures that contain pointers, especially function point-
ers, this collapse has the potential for a significant impact on slice size. Thus,
in the study each SDG was built twice, once with structure fields collapsed and
once with them expanded.

The effect of collapsing structure fields can also be seen on the underlying
SDGs. For example, the data in Figure 1 is for expanded-field SDGs. Here, the
sum of the number of vertices and edges in all graphs are 19 and 68 million,
respectively. The corresponding sums when structure fields are collapsed are
14 and 140 million. The following table summarizes the effect on computation
time of this mild decrease in vertices, but rather dramatic increase in edges.
By collapsing fields, nodes become merged. This reduces the number of nodes
in the graphs (from 19 to 14 million). However, by merging nodes, additional
(spurious) dependencies are created. This is reflected by additional edges in
the SDGs (the edges rise from 68 to 140 million). This extra dependence means
that the slices will be larger (will include more statements).

3.4 Points-To Analysis

Points-to algorithms (e.g., Andersen [1994], Fahndrich et al. [1998], and
Heintze and Tardieu [2001]) can be flow- and context-sensitive or insensitive

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



10 . D. Binkley et al.

[Anderson et al. 2001; Shapiro and Horwitz 1997]. Presently, neither context
[Callahan 1998; Ruf 1995; Wilson and Lam 1995] nor flow-sensitive analy-
ses [Choi et al. 1993; Emami et al. 1994; Landi and Ryder 1992] scale to the size
of the programs considered herein. In the other direction, very imprecise points-
to information negatively affects most data-flow analyses, including program
slicing. For example, in the extreme case, all pointers are assumed to point to all
variables.

Between these extremes lies the spectrum [Shapiro and Horwitz 1997] of
context- and flow-insensitive pointer analyses [Andersen 1994; Burke et al.
1995; Steensgaard 1996; Zhang et al. 1996]. At one end of this spectrum,
Steensgaard’s algorithm [1996], for example, merges all the nodes pointed to
by a given pointer. In contrast, Andersen’s algorithm [1994] leaves these nodes
expanded. The loss of precision present in Steensgaard’s algorithm causes a cor-
responding increase in slice size. For example, with the program ijpeg, the use
of Steensgaard’s pointer analysis led to an average slice size of 2.5 times that
computed using Andersen’s algorithm. Foster et al. [2000] proposed a context-
sensitive (polymorphic) version of Andersen’s algorithm, but found that it did
not significantly improve on the monomorphic version.

Slicer s; is used to consider the impact of points-to analysis precision. The
original dependence graphs were configured and constructed using Andersen’s
context- and flow-insensitive points-to algorithm [1994], which scales to the size
of the programs considered in the study. Section 4.4 provides a smaller-scale
study that compares the use of Andersen’s algorithm with slices of SDG built
using Steensgaard’s [1996] algorithm.

3.5 Dead Code

Programs can contain dead code (code which is not executed for any possible
initial state). Such dead code may be removed from the construction of any
slice. If a program were to contain a large amount of dead code then the slices
of the program would necessarily be (somewhat artificially) small. This might
produce surprising results and impede the goal of providing benchmark data
on slice size for a large set of programs. Programs can contain dead code for a
variety of reasons. For example, it is possible that the code is switched on by a
flag in order to debug the behavior of the program. Rather than removing the
debugging code before release, the debug flag is simply set to false, making
parts of the program inaccessible.

Without a study of the specific question of the level of dead code in the pro-
grams researched, it is not possible to assess its impact upon the findings. Of
course, the problem of whether a statement is dead (unreachable) is not de-
cidable [Weyuker 1977]. Fortunately, the dead code in a program can be safely
approximated by slicing forward from the start node of the main function. Any
nodes not included are considered dead code. Any node not included in this way
will not be in any slice. Therefore, it makes sense to check whether there is a
large number of these dead code nodes, as this would artificially reduce the size
of all slices. In the next section, the impact of this kind of dead code is studied
as a separate question in its own right.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 11

4. RESULTS

This section presents data comparing slices from the three slicers along with
an investigation of the effect of structure field collapse, points-to analysis, and
dead code removal. To begin with, the baseline data for Slicer s; is provided
in Figure 3. For each program, the figure presents the size of the program
and the average slice size for backward and forward slicing. Averages were
computed from all slices taken with respect to vertices representing exe-
cutable code (the number of slices computed for each program are presented in
Figure 1).

As seen in the last row of the table, for Slicer s; over all 43 programs, the
average backward slice contained 28.1% of the program and the average forward
slice contained 26.1% of the program. One way to appreciate the assistance
that program slicing provides is to take a look at raw code sizes. Consider a
program whose average size is near in average size for the entire collection. For
example, ijpeg contains about 20 KLoC and has an average slice size of 31%,
or 5,761 LoC. Clearly, the complexity of comprehending, testing, debugging, or
maintaining 5,761 LoC is lower than that of comprehending, testing, debugging,
or maintaining 20 KLoC.

Each average is given in terms of lines of code and as a percentage of lines of
code from the original program. To get a better understanding of the variation
in slice size, the averages are followed by standard deviations in slice sizes
(expressed as percentages). These standard deviations indicate the variation
in individual slice sizes for each program. There is also a notable variation in
the level of variation of slice sizes.

The range of the average slice size is striking. For example, the low for back-
ward slicing is 7.4% (for program acct-6.3) and its high is 61.7% (for program
go). Taken together with the standard deviations, these results suggest two
things:

(1) Although this article presents results on average slice size that are rela-
tively “stable” as a benchmark (due to the large number of programs stud-
ied), they can be no more than a benchmark against which other slicing
results can be compared. For example, they allow us to say that a program
has “an unusually large (respectively, small) set of slice sizes” or that a
particular program slice is “unusually large (respectively, small).”

(2) The variation in average slice size between programs and within the set
of slices for a given program, together with the variation in standard de-
viations for the set of slices of a given program, suggest that a number of
slice-based measurements may be worth considering. For example, the au-
thors have argued that the phenomenon of programs with large numbers
of slices of identical size can be an indication of “dependence pollution,”
that is, avoidable clusters of dependence, consisting of a large set of mutu-
ally interdependent nodes. This has been studied in more detail elsewhere
[Binkley and Harman 2005], where slicing is used to identify dependence
pollution and refactoring is used to remove it. In addition, slicing has previ-
ously been used as the basis for a definition of analytical code-level software
metrics [Bieman and Ott 1994; Harman et al. 1997; Ott and Thuss 1989;

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



12 . D. Binkley et al.

Backward Slices Forward Slices

Average Size Standard Average Size Standard
Program LoC Percent Deviation LoC Percent Deviation
a2ps 12,348 30.7% 15.8% 11,624 28.9% 23.8%
acct-6.3 501 7.4% 7.7% 487 7.2% 9.6%
barcode 1,212 30.5% 19.9% 1,141 28.7% 21.5%
be 5,452 | 48.8% 12.4% 5173 | 46.3% 23.5%
byacc 996 18.1% 13.3% 902 16.4% 20.6%
cadp 828 7.8% 8.7% 765 7.2% 10.3%
compress 356 | 24.9% 26.0% 323 | 22.6% 18.0%
copia 252 22.7% 3.6% 182 16.4% 17.5%
csurf-packages 6,007 15.6% 14.0% 5,738 14.9% 14.1%
ctags 5,948 41.6% 17.5% 5,619 39.3% 24.9%
cvs 31,404 46.3% 11.8% 29,912 441% 23.4%
diffutils 2,871 22.6% 20.0% 2,668 21.0% 18.5%
ed 4,822 53.3% 15.1% 4,333 | 47.9% 29.9%
empire 16,104 33.0% 15.9% 13,762 28.2% 24.1%
EPWIC-1 646 11.3% 12.0% 618 10.8% 12.1%
espresso 6,708 30.8% 17.0% 6,512 29.9% 26.3%
findutils 3,257 | 27.5% 17.2% 2,949 24.9% 22.1%
flex2-4-7 2,642 24.8% 18.7% 2,365 22.2% 19.8%
flex2-5-4 3,194 | 20.9% 14.2% 2,797 | 18.3% 21.5%
ftpd 5,361 34.9% 16.9% 4,808 31.3% 24.3%
gee.cpp 2,625 | 45.8% 18.2% 2424 | 42.3% 28.0%
gnubg-0.0 1,558 22.3% 16.1% 1,761 25.2% 18.9%
gnuchess 6,271 43.0% 21.7% 5,877 | 40.3% 28.0%
gnugo 23,769 34.8% 20.7% 19,329 28.3% 20.1%
go 15,835 61.7% 19.8% 15,245 59.4% 21.2%
ijpeg 5,761 31.0% 21.5% 5,576 30.0% 24.4%
indent-1.10.0 2,117 | 43.8% 25.9% 1,938 | 40.1% 24.5%
li 1,872 38.3% 19.2% 1,823 37.3% 21.0%
named 23,075 37.5% 15.2% 21,352 34.7% 25.2%
ntpd 8,278 26.9% 17.9% 8,278 26.9% 20.0%
oracolo2 983 11.8% 9.0% 1,017 12.2% 18.3%
prepro 967 11.6% 8.9% 1,000 12.0% 18.1%
replace 111 21.6% 14.0% 111 21.7% 17.8%
sendmail 10,487 | 33.3% 16.5% 9,542 30.3% 24.2%
space 800 12.9% 9.3% 818 13.2% 19.2%
spice 29,688 21.8% 17.2% 29,007 | 21.3% 19.8%
termutils 1,232 25.1% 17.7% 1,134 23.1% 17.7%
tile-forth-2.1 1,550 51.9% 35.6% 1,424 | 47.7% 23.0%
time-1.7 347 8.3% 8.7% 268 6.4% 9.0%
userv-0.95.0 1,190 19.4% 16.6% 1,079 17.6% 17.9%
wdiff.0.5 419 10.2% 9.8% 395 9.6% 10.3%
which 1,075 29.7% 23.2% 980 27.1% 18.6%
wpst 1,478 11.0% 12.6% 1,424 10.6% 13.0%
sum 252,398 234,481
min 111 7.4% 3.6% 111 6.4% 9.0%
max 31,404 61.7% 35.6% 29,912 59.4% 29.9%
average 5,870 | 28.1% 16.1% 5453 | 26.1% 20.1%

Fig. 3. Slice size averages and standard deviations for backward and forward interprocedural
slices, computed using Slicer s;.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 13

Meyers and Binkley 2004]. These forms of observation about slice size and
variations in slice size might lead to improved slice-based metrics.

4.1 The Effect of Calling Context

Slicer so differs from Slicer s; in that it ignores calling context. Several other
studies have reported on the impact of calling context on slice size [Agrawal
and Guo 2001; Atkinson and Griswold 1998; Krinke 2002]. However, the data
presented herein represents by far the largest, most general such study to-date.
This data is compared with previous studies in the Related Work section.

In short, ignoring calling context saves the time required to set-up Pass 2 of
the two-pass slicing algorithm. However, it produces larger slices (the slices can
be no smaller, and thus there is never a reduction in the number of statements
encountered). Furthermore, increasing slice size brings an increase in work and
thus takes proportionately more time to discover the statements of the slice.

Figure 4 shows this comparison for each program. Over all programs, the
average slice size increase is 50% and ranges from 0.17% for copia (rounded
to 0% in the figure) to 330% for acct. The weighted average is smaller: 21%
for backward and 28% for forward slicing. For most programs, the size increase
is the dominant effect, and slicing time increases. The most dramatic exam-
ple of this is acct, whose average slice size more than quadruples and whose
backward slicing time more than quintuples. This is due to the fact that acct
contains a lot of separate functionality using some common code, but with little
overlap otherwise. Consequently, context-insensitive slicing includes multiple
functionalities, but these are separated when context is respected.

However, with a few of the programs, the overhead of tracking calling context
dominates and the slicing time actually decreases, even though the resulting
slices are larger (these programs have negative time “increases” in Figure 4). In
the worst case, Pass 2 must revisit every vertex (statement), effectively doubling
the work. In practice, 1i shows the most dramatic change: a 29% reduction
in computation time. An examination of the code shows that 1i contains a
large number of small functions. This serves to increase the time spent on the
interface between Pass 1 and Pass 2 because the interface relates to procedure
boundaries. A closer examination, using multiple runs with a profiler, shows an
average of 16% reduction in computation time. Three main factors account for
this. First, the test to see if a particular edge is traversed in a given pass, which
is unneeded when calling context is ignored, is executed over 4 billion times
when processing 1i. This accounts for half of the time increase. The other half
comes from the interface between Pass 1 and Pass 2, with the simple linked list
code that the slicer uses between passes accounting for 20% of the overall time
difference.

4.2 Effect of Level of Granularity

To assess the level of correlation between statement- and function-level slice
size, two statistical tests, Spearman and Pearson correlations, were used.
Pearson’s linear correlation attempts to construct quantitative linear models
from sets of data. The output of a Pearson correlation is a correlation coefficient,

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



14 . D. Binkley et al.

Average Backward Slice Size Average Forward Slice Size Time Increase

s1: Respect  so: Ignore  Incr | s;: Respect so: Ignore  Incr | Backward Forward
Program CC CC ease CC CcC ease Slicing Slicing
a2ps 12,348 15,925  29% 11,624 15,330  32% 69% 51%
acct 501 2,151 330% 487 1,896  289% 418% 301%
barcode 1,212 1,647  36% 1,141 1,620  42% 21% 19%
be 5,452 5,499 1% 5,173 5,193 0% 8% -4%
byacc 996 1,590  60% 902 1,823 102% 132% 160%
cadp 828 2,087  152% 765 1,967  157% 248% 231%
compress 356 379 6% 323 329 2% -25% 0%
copia 252 253 0% 182 183 0% -5% 6%
csurf-pkgs 6,007 9,492  58% 5,738 8,821  54% 76% 59%
ctags 5,948 7,176 21% 5,619 6,072 8% 116% 85%
cvs 31,404 34,920 11% 29,912 31,199 4% 23% -13%
diffutils 2,871 6,125 113% 2,668 5204  95% 194% 141%
ed 4,822 4,865 1% 4,333 4,392 1% 19% 15%
empire 16,104 18,803  17% 13,762 15,110  10% 101% 52%
EPWIC-1 646 1,892 193% 618 1,833 197% 258% 242%
espresso 6,708 10,493  56% 6,512 9,516  46% 124% 103%
findutils 3,257 6,100 87% 2,949 5237 8% 169% 118%
flex2-4-7 2,642 3,543 34% 2,365 3,374 43% 98% 68%
flex2-5-4 3,194 4434 39% 2,797 4,075  46% 81% 53%
ftpd 5,361 5872  10% 4,808 5,193 8% 59% 42%
gee.cpp 2,625 2910 11% 2,424 2,674  10% 6% -1%
gnubg-0.0 1,558 2,152 38% 1,761 2,257 28% 76% 58%
gnuchess 6,271 7,082  13% 5,877 6,400 9% 56% 49%
gnugo 23,769 25,998 9% 19,329 20,620 % 56% 55%
go 15,835 15,873 0% 15,245 15,352 1% 40% 37%
ijpeg 5,761 6,709  16% 5,576 6,627  19% 14% -6%
indent-1.10 2,117 2,566  21% 1,938 2,251 16% -T% 35%
li 1,872 1,875 0% 1,823 1,827 0% -29% -29%
named 23,075 24,559 6% 21,352 22,934 % -12% -T%
ntpd 8,278 9,743  18% 8,278 8,914 8% 60% 49%
oracolo2 983 1,715 74% 1,017 2,143 111% 120% 152%
prepro 967 1,694  75% 1,000 2,108 111% 123% 156%
replace 111 132 19% 111 133 20% 0% -50%
sendmail 10,487 11,142 6% 9,542 10,046 5% -28% -24%
space 800 1,408  76% 818 1,750  114% 120% 160%
spice 29,688 34,426 16% 29,007 31,600 9% 1% -9%
termutils 1,232 2,247 82% 1,134 1,950 2% 73% 38%
tile-forth 1,550 1,563 1% 1,424 1,444 1% -1% 3%
time-1.7 347 401 15% 268 320 20% 0% -67%
userv-0.95. 1,190 1,933  63% 1,079 1,656  53% 99% 96%
wdiff.0.5 419 1,030  146% 395 1,005 155% 100% 113%
which 1,075 1,503 40% 980 1,340  37% 0% -20%
wpst 1,478 3,537 139% 1,424 3,683  159% 274% 304%
sum 252,398 305,443 234,481 277,399 3327% 2823%
average 5,870 7,103 50% 5,453 6,451  51% % 66%
weighted ave 21% 18%

Fig. 4. Data for so shows the effect of ignoring calling context on slice size and computation time.

reported as the value R, and the coefficients of a linear model y = mx + b. The
statistical significance of the results, as captured by the reported R-value, can
be summarized as follows:

0.8-1.0 strong association
0.5-0.8 moderate association
0.0-0.5 weak or no association

A negative value indicates an inverse correlation.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 15

Dependent Independent Pearson Spearman
Variable Variable R m b R

SL average size | Statement count | 0.996 0.736 | -33690 0.965

SL average size | FL average size | 0.697 2110 | -237900 0.963

SL average size | Function count 0.529 1190 | -168000 0.875

FL average size | Statement count | 0.728 | 0.00018 182 0.956

FL average size | Function count 0.916 | 0.68070 -15.7 0.924

Fig. 5. Correlations between function and statement slice average sizes (SL denotes a statement-
level slice and FL a function-level slice).

The Spearman test does not attempt to construct a linear correlation between
the two variables, but merely gives a correlation coefficient indicating whether
increases in one variable are accompanied by increases in the other. The pres-
ence of a Pearson correlation is always accompanied by that of a Spearman
correlation. However, it is possible for data to have a strong Spearman correla-
tion without having a strong Pearson correlation. When this happens, it gives
some evidence that there may be a nonlinear increase in the dependent variable
corresponding to increases in the independent variable.

Various attempts were made to construct linear regression models to explain
the data. No statistically significant correlation was found between the impact
of calling context and several structural features of the code studied, includ-
ing number of global variables, number of functions, and number of calls per
function. The only models found to provide a strong correlation were those that
related the impact of calling context and the number of calls in the program.
Of course, this is a somewhat unsurprising correlation. The model is

additional Sloc per slice = 0.58 * calls + 467

with R = 0.75, R? = 0.54 (i.e., just over half of the increase in slice size when
ignoring context is explained by the number of calls). In the model, calls playsa
significant role, with a p value < 0.0001. However, this was the only correlation
found, and it is an unsurprising one.

The data for Slicer s3 is shown in Figure 7. Here an entire procedure is
collapsed into a single vertex. Obviously, collapsing the dependence graph for
a procedure to a single node greatly speeds-up the computation of slices. For
example, the program spice has approximately 2,500 functions and 1.75 million
vertices. However, at the function level of abstraction, the graph to be sliced has
one vertex per function, so slicing spice at this level of abstraction is a similar
problem to statement-level slicing of the very smallest of programs considered
in the study. As the data shows, this gain in speed is achieved at the expense
of precision.

Slice size can be measured in absolute terms using the number of statements
or functions in a slice. It can also be measured in relative terms as a proportion
of the statements (respectively, functions) in the slice. The correlation between
both these measures, as well as between them and the size of the program
(measured in statements and functions), is presented.

Figure 5 gives the correlations between statement and function slice sizes.
As may be expected, the size of a slice is linearly correlated to the number of

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



16 . D. Binkley et al.

Dependent Independent Pearson Spearman
Variable Variable R m b R

SL average size | Statement count | 0.449 0 0.4 0.694

SL average size | FL average size | 0.848 0.749 | 0.021 0.853

SL average size | Function count 0.440 | 0.00023 0.3 0.539

FL average size | Statement count | 0.364 | 0.00000 0.5 0.493

FL average size | Function count 0.245 | 0.00015 0.5 0.315

Fig. 6. Correlations between function and statement slice average proportions (SL denotes a
statement-level slice and FL a function-level slice).

statements in the program; bigger programs have bigger slices. The correlation
is stronger (R = 0.996 compared to R = 0.728) at the statement level of granu-
larity, though the rank correlation is equally strong for both levels. This can be
accounted for by the granularity “mismatch” embodied in attempting to predict
the size of a function slice in terms of statements. Observe that the strength of
linear correlation of the size of a function slice, as predicted by the number of
functions, is much greater (R = 0.916).

Figure 6 presents correlations between statement and function slice propor-
tions. For these data there is no evidence of a linear correlation, apart from
the correlation between the average percentage of statements in a slice and
average percentage of functions in a slice (Row 2 of the figure). The strong lin-
ear fit indicates that the trend is for the percentage of statements to be about
three-quarters of that of functions. This arises because of the coarseness of a
function-level slice.

Notice also that there is some evidence for a nonlinear trend in the growth of
the average proportion of statements in a statement slice against the number
of statements and the number of functions. For these, the best fit comes from an
exponential model, but it must be stressed that no fit gives a strong correlation
(including rank correlation).

In addition to measuring function-level slice size in terms of functions,
Figure 7 includes the size of function-level backward slices measured in non-
comment nonblank (LoC). Depending on whether a function-level slice includes
predominately small or large functions, measuring slice size at the statement
level can include a larger or smaller percentage of a program than measuring
at the function level. However, when averaged over all slices, these two effects
cancel each other: In half of the programs, slices favor smaller functions (i.e.,
counting lines of code produces a smaller percentage) and in the other half,
larger functions are favored.

This difference is not dramatic for most programs: For two of three pro-
grams the difference is less than 10%. The largest change in favor of small func-
tions (for ijpeg) is —16.1%. The largest change in favor of large functions (for
termutils)is 30.9%. This is indicative of a general pattern in which measuring
function-level slice size using SLoC reports smaller slices. This behavior occurs
with programs that include a few large functions which are not in most slices.

Function slices can be computed in almost negligible time. Since they are only
one-third larger than statement-level slices, they may be useful surrogates for
finer-grained (and more precise) statement-level slices (particularly for larger

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 17

backward forward
average percent | average percent || average percent | average percent
functions of sloc of functions of sloc of
program slices per slice  functions | per slice sloc per slice  functions | per slice sloc

a2ps 58,281 600.5 57.1% 27,209 67.6% 449.7 42.7% 18,972 47.2%
acct 7,250 20.2 19.4% 1,058 15.6% 13.8 13.2% 663 9.8%
barcode 3,909 41.8 63.4% 1,865 46.9% 27.4 41.6% 1,317 33.1%
be 5,133 90.7 82.5% 8,306 74.3% 82.4 74.9% 7,018 62.8%
byacc 10,151 80.2 35.8% 2,256 41.% 36.2 16.2% 765 13.9%
cadp 15,672 81.1 18.% 2,001 18.8% 48.7 10.8% 1,068 10.1%
compress 1,085 8.5 35.3% 280 19.6% 5.4 22.5% 173 12.1%
copia 4,686 235.5 96.9% 1,008 90.7% 112 46.1% 507 45.6%
csurf-packages 43,044 475.8 34.9% 13,909 36.1% 366.8 26.9% 10,238 26.6%
ctags 20,578 407 78.0% 11,165 78.1% 3354 64.3% 8,837 61.8%
cvs 103,265 1063.5 90.0% 60,603 89.3% 895.7 75.8% 49,973 73.7%
diffutils 17,092 88 32.5% 3,909 30.8% 71.5 26.4% 3,613 28.4%
ed 16,533 193.9 85.4% 7,569 83.7% 149.9 66.0% 5,878 65.0%
empire 120,246 635.8 76.0% 39,408 80.8% 459.1 54.8% 27,761 56.9%
epwic-1 12,492 304 16.0% 993 17.4% 23.3 12.3% 768 13.4%
espresso 29,362 328.9 61.4% 13,864 63.7% 240.8 44.9% 10,072 46.2%
findutils 14,445 147.9 49.6% 4,515 38.1% 112.7 37.8% 3,812 32.2%
flex2-4-7 11,104 75.1 49.4% 5,416 50.8% 64 42.1% 3,617 33.9%
flex2-5-4 14,114 81.7 36.3% 7,016 45.9% 72.8 32.3% 4,094 26.8%
ftpd 25,018 183 71.5% 11,725 76.3% 128.6 50.2% 8,426 54.9%
gee.cpp 7,460 66.1 66.8% 3,656 63.8% 57.5 58.1% 2,967 51.8%
gnubg-0.0 9,556 84.9 39.3% 3,053 43.7% 69.2 32.0% 2,431 34.8%
gnuchess 15,069 86.7 59.0% 9,237 63.3% 83.9 57.1% 7,189 49.3%
gnugo 68,298 537.2 73.4% 45,137 66.1% 494 67.5% 40,725 59.6%
go 35,863 336.1 90.4% 22,095 86.1% 318.9 85.7% 21,012 81.9%
ijpeg 24,029 194.8 40.5% 10,515 56.6% 180.9 37.6% 9,276 49.9%
indent-1.10.0 6,748 33 71.6% 2,647 54.8% 21 45.7% 1,961 40.6%
li 13,691 291.2 80.0% 3,443 70.4% 265.4 72.9% 3,154 64.5%
named 106,828 7778 58.6% 36,685 59.6% 777.8 58.6% 35,651 57.9%
ntpd 40,199 271 64.8% 16,140 52.4% 219.3 52.5% 12,894 41.9%
oracolo2 11,812 56.2 25.7% 3,122 37.5% 37.4 17.1% 1,508 18.1%
prepro 11,745 55.1 25.1% 3,089 37.1% 35.4 16.2% 1,482 17.8%
replace 867 10.5 49.8% 269 52.6% 7.1 33.7% 172 33.6%
sendmail-8.7.5 47,344 218.9 71.5% 24,422 77.6% 167.7 54.8% 18,045 57.3%
space 11,277 58 34.5% 2,467 39.8% 36.6 21.8% 1,179 19.0%
spice 212,621 665.5 40.9% 44,944 33.0% 590.1 36.2% 31,559 23.2%
termutils 3,113 31.1 471% 1,595 32.5% 29 43.9% 1,294 26.4%
tile-forth-2.1 12,076 198.2 66.3% 1,056 35.4% 238.8 79.9% 1,297 43.4%
time-1.7 1,044 5.3 37.8% 735 17.6% 2.1 14.7% 308 7.4%
userv-0.95.0 12,517 99.7 41.0% 2,579 42.1% 70.4 29.0% 1,780 29.0%
wdiff.0.5 2,421 8.7 20.3% 729 17.7% 6 14.0% 449 10.9%
which 1,163 7.3 48.5% 782 21.6% 7.6 50.6% 676 18.7%
wpst 20,889 140.1 22.5% 3,659 27.2% 104.7 16.8% 2,419 18.0%
sum 1,210,090 | 9,102.90 466,134 7,517.00 367,000
average 28,142 211.7 52.7% 10,840 50.1% 174.8 41.8% 8,535 37.4%

Fig. 7. Function level slice sizes. Slice slices are reported both in functions and SLoC.

programs). Furthermore, the strong linear correlation between statement- and
function-level slice size means that function-level slices be useful predictors
of statement-level slice sizes. In this way, a programmer may first construct
function-level slices from a large procedure and then choose from these a set of
interesting slices to examine at the statement level. The overall computation
cost of this process would be significantly reduced.

4.3 Effect of Structure Field Collapse

Figure 8 shows the slice size data gathered using Slicer s; with SDGs built with
structure fields both expanded and collapsed. The figure presents the size of

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



18 . D. Binkley et al.

Structure Fields Expanded Structure Fields Collapsed Percent
Average Backward Average Forward Average Backward Average Forward Increase
Slice Size Slice Size Slice Size Slice Size Backward
Program LoC Percent LoC Percent LoC Percent LoC Percent Forward
a2ps 12,348 30.7% | 11,624 28.9% || 12,791 31.8% | 11,946 297% || 3.6% | 2.8%
acct-6.3 501 7.4% 487 7.2% 507 7.5% 487 7.2% 1.4% 0.0%
barcode 1,212 30.5% 1,141 28.7% 1,260 31.7% 1,181 29.7% 3.9% 3.5%
be 5,452 48.8% 5,173 46.3% 5,486 49.1% 5,195 46.5% 0.6% 0.4%
byacc 996 18.1% 902 16.4% 996 18.1% 902 16.4% 0.0% 0.0%
cadp 828 7.8% 765 7.2% 881 8.3% 765 7.2% 6.4% 0.0%
compress 356 24.9% 323 22.6% 356 24.9% 323 22.6% 0.0% 0.0%
copia 252 22.7% 182 16.4% 252 22.7% 182 16.4% || 0.0% | 0.0%
csurf-packages 6,007 15.6% 5,738 14.9% 6,046 15.7% 5,776 15.0% 0.6% 0.7%
ctags 5,948 41.6% 5,619 39.3% 6,248 43.7% 5,891 41.2% 5.0% 4.8%
cvs 31,404 46.3% 29,912 44.1% 31,472 46.4% 30,014 44.3% 0.2% 0.3%
diffutils 2,871 22.6% 2,668 21.0% 3,011 23.7% 2,782 21.9% 4.9% 4.3%
ed 4,822 53.3% 4,333 47.9% 4,894 54.1% 4,387 48.5% 1.5% 1.3%
empire 16,104 33.0% 13,762 28.2% 20,398 41.8% 17,178 35.2% || 26.7% | 24.8%
EPWIC-1 646 11.3% 618 10.8% 669 11.7% 641 11.2% 3.5% 3.7%
espresso 6,708 30.8% 6,512 29.9% 6,926 31.8% 6,730 30.9% 3.2% 3.3%
findutils 3,257 27.5% 2,949 24.9% 3,340 28.2% 3,020 25.5% 2.5% 2.4%
flex2-4-7 2,642 24.8% 2,365 22.2% 2,642 24.8% 2,376 22.3% 0.0% 0.5%
flex2-5-4 3,194 20.9% 2,797 18.3% 3,592 23.5% 3,286 21.5% || 12.4% | 17.5%
ftpd 5,361 34.9% 4,808 31.3% 5,438 35.4% 4,885 31.8% 1.4% 1.6%
gce.cpp 2,625 45.8% 2,424 42.3% 2,722 47.5% 2,510 43.8% | 3.7% | 3.5%
gnubg-0.0 1,558 22.3% 1,761 25.2% 2,013 28.8% 1,915 27.4% 29.1% 8.7%
gnuchess 6,271 43.0% 5,877 40.3% 6,329 43.4% 5,936 40.7% 0.9% 1.0%
gnugo 23,769 34.8% 19,329 28.3% 26,911 39.4% 24,247 35.5% 13.2% | 25.4%
go 15,835 61.7% 15,245 59.4% 15,964 62.2% 15,425 60.1% 0.8% 1.2%
ijpeg 5,761 31.0% 5,576 30.0% 5,817 31.3% 5,631 30.3% 1.0% 1.0%
indent-1.10.0 2,117 43.8% 1,938 40.1% 2,243 46.4% 2,045 42.3% 5.9% 5.5%
li 1,872 38.3% 1,823 37.3% 1,901 38.9% 1,843 37.7% 1.6% | 1.1%
named 23,075 37.5% 21,352 34.7% 23,813 38.7% 21,906 35.6% 3.2% 2.6%
ntpd 8,278 26.9% 8,278 26.9% 13,725 44.6% 12,555 40.8% 65.8% | 51.7%
oracolo2 983 11.8% 1,017 12.2% 1,642 19.7% 1,642 19.7% 66.9% | 61.5%
prepro 967 11.6% 1,000 12.0% 1,617 19.4% 1,608 19.3% || 67.2% | 60.8%
replace 111 21.6% 111 21.7% 111 21.6% 111 21.7% 0.0% 0.0%
sendmail 10,487 33.3% 9,542 30.3% 10,612 33.7% 9,668 30.7% 1.2% | 1.3%
space 800 12.9% 818 13.2% 1,314 21.2% 1,321 21.3% 64.3% | 61.4%
spice 29,688 21.8% 29,007 21.3% 37,722 27.7% 35,680 26.2% 27.1% | 23.0%
termutils 1,232 25.1% 1,134 23.1% 1,242 25.3% 1,144 23.3% 0.8% 0.9%
tile-forth-2.1 1,550 51.9% 1,424 47.7% 1,574 52.7% 1,442 48.3% 1.5% 1.3%
time-1.7 347 8.3% 268 6.4% 360 8.6% 272 6.5% 3.6% 1.6%
userv-0.95.0 1,190 19.4% 1,079 17.6% 1,269 20.7% 1,147 18.7% 6.7% 6.3%
wdiff.0.5 419 10.2% 395 9.6% 419 10.2% 395 9.6% 0.0% 0.0%
which 1,075 29.7% 980 27.1% 1,085 30.0% 991 27.4% 1.0% 1.1%
wpst 1,478 11.0% 1,424 10.6% 1,492 11.1% 1,424 10.6% 0.9% 0.0%
sum 252,398 | 1207.2% | 234,481 | 1123.8% || 279,103 | 1298.0% | 258,498 | 1202.0% na na
average 5,870 28.1% 5,453 26.1% 6,491 30.2% 6,012 28.0% || 10.3% 9.1%

Fig. 8. Sizes for backward and forward interprocedural slices for s; with structure fields collapsed
and expanded.

each program, as well as its average slice size for backward slicing with fields
expanded, forward slicing with fields expanded, backward slicing with fields
collapsed, and forward slicing with fields collapsed. Each average is given both
in terms of lines of code and as a percentage of lines of code from the original
program. As seen in the last row of the table, over all 43 programs, the average
backward slice increased in size from 28.1% of the program to 30.2% and the
average forward slice increased from 26.1% to 28.0%.

The first five columns of Figure 8 repeat data from Figure 3. Columns 6 to
9 show the slice sizes when structure fields are collapsed. Collapsing structure
fields have the smallest influence of the three variants on slice size. These values
are only a few percentage points above those obtained with expanded structure
fields. The only significant increase that accompanies the collapse of structure
fields occurs with programs where structures contain multiple pointers and, in

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 19

Model

Program S a

barcode 1,260 1,260
be 5,497 5,486
copia 252 252
ctags 6,248 6,248
ed 4,894 4,894
EPWIC-1 696 669
flex-2-5-4 3,831 3,592
indent 2,243 2,243
replace 117 111
space 1,314 1,314
average 2,635 2,607
improvement 1.1%

Fig. 9. Pointer analysis model comparison. Figures are average slice size in SLoC.

particular, pointers to functions. For example, the most extreme case of this is
the program prepro. This effect has also been observed and studied by Mock
et al. [2002]. The final two columns report the percent increase in slice size
caused by collapsing structure fields.

4.4 Steensgaard versus Andersen

In general, the choice of points-to analysis can affect the results of “downstream”
analyses such as slicing. In practice, greater precision in points-to analysis does
not tend to yield greater precision in slicing, as this precision is masked by other
dependences in the program [Mock et al. 2002]. This section presents results for
a subset of the programs studied. It explores the effect of using Steensgaard’s al-
gorithm in place of (the more precise) Andersen’s algorithm. The imprecision in
Steensgaard’s algorithm makes it impossible to construct the SDG for the entire
collection of subject programs. In other words, the imprecision of Steensgaard
pointer analysis leads to a dramatic increase in the number of edges on the
SDG, making computation of the SDG for larger programs infeasible.

Figure 9 shows the results of using Steensgaard’s and Andersen’s algorithms.
As can be seen, there is a small overall reduction in the average slice size that
can be achieved using Andersen’s algorithm, as opposed to than Steensgaard’s.

4.5 Effect of Dead Code

The data presented in this subsection measures the effect of restricting Slicer
s1 to ignore vertices representing dead code. A statement (vertex) is consid-
ered dead if there is no context-sensitive dependence path from the entry of
the main procedure to the statement. This is a safe approximation to the set of
statements that can not be executed on any input. As explained in Section 3,
such code is identified by slicing forward on the entry vertex of function
main.

Figure 10 shows the resulting data. In addition to each program and its
size (in SLoC), the figure includes the percentage of live code in each program.
This varies significantly from 61% to 99.9%. However, the distribution is highly

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



20 . D. Binkley et al.
slices
sloc live code all code (repeated) live code only percent

program count sloc percent sloc \ percent sloc \ percent | reduction
a2ps 40,222 | 39,497  98.2% | 12,348 30.7% 12,339 30.7% 0.07%
acct-6.3 6,764 5,536  81.9% 501 7.4% 410 6.1% 18.12%
barcode 3,975 3,784 95.2% 1,212 30.5% 1,192 30.0% 1.66%
be 11,173 | 11,026  98.7% 5,452 48.8% 5,443 48.7% 0.17%
byacc 5,501 5,395 98.1% 996 18.1% 995 18.1% 0.06%
cadp 10,620 6,478  61.0% 828 7.8% 750 7.1% 9.42%
compress 1,431 1,310  91.5% 356 24.9% 351 24.5% 1.52%
copia 1,112 1,111 99.9% 252 22.7% 252 22.7% 0.00%
csurf-pkgs 38,507 | 34,904 90.6% 6,007 15.6% 5,788 15.0% 3.65%
ctags 14,298 | 14,084  98.5% 5,948 41.6% 5,930 41.5% 0.30%
cvs 67,828 | 67,766  99.9% | 31,404 46.3% 31,380 46.3% 0.08%
diffutils 12,705 | 12,187  95.9% 2,871 22.6% 2,864  22.5% 0.25%
ed 9,046 8,871 98.1% 4,822 53.3% 4814  53.2% 0.16%
empire 48,800 | 47,313 97.0% | 16,104 33.0% 16,097  33.0% 0.04%
EPWIC-1 5,719 4,067 71.1% 646 11.3% 591 10.3% 8.50%
espresso 21,780 | 21,249  97.6% 6,708 30.8% 6,703 30.8% 0.07%
findutils 11,843 | 11,097  93.7% 3,257 27.5% 3,233 27.3% 0.72%
flex2-4-7 10,654 | 10,249  96.2% 2,642 24.8% 2,634 24.7% 0.29%
flex2-5-4 15,283 | 14,054  92.0% 3,194 20.9% 3,171 20.7% 0.73%
ftpd 15,361 | 14,984  97.5% 5,361 34.9% 5,335 34.7% 0.49%
gce.cpp 5,731 5,596  97.6% 2,625 45.8% 2,613 45.6% 0.46%
gnubg-0.0 6,988 6,352 90.9% 1,558 22.3% 1,555 22.3% 0.22%
gnuchess 14,584 | 13,823  94.8% 6,271 43.0% 6,245 42.8% 0.42%
gnugo 68,301 | 65,211 95.5% | 23,769 34.8% 22,726 33.3% 4.39%
go 25,665 | 25,159 98.0% | 15,835 61.7% 15,810 61.6% 0.16%
ijpeg 18,585 | 17,949  96.6% 5,761 31.0% 5,758 31.0% 0.05%
indent 4,834 4,558  94.3% 2,117 43.8% 2,085 43.1% 1.54%
li 4,888 4876  99.8% 1,872 38.3% 1,872 38.3% 0.01%
named 61,533 | 60,251 97.9% | 23,075 37.5% 22,825 37.1% 1.08%
ntpd 30,773 | 29,485 95.8% 8,278 26.9% 8,258 26.8% 0.24%
oracolo2 8,333 7,851 94.2% 983 11.8% 982 11.8% 0.17%
prepro 8,334 7,830  93.9% 967 11.6% 965 11.6% 0.18%
replace 512 508  99.3% 111 21.6% 111 21.6% 0.00%
sendmail 31,491 | 31,265 99.3% | 10,487 33.3% 10,484  33.3% 0.02%
space 6,200 5953  96.0% 800 12.9% 798 12.9% 0.18%
spice 136,182 | 90,645 66.6% | 29,688 21.8% 24,197 17.8% 18.49%
termutils 4,908 4,781 97.4% 1,232 25.1% 1,229 25.0% 0.25%
tile-forth-2.1 2,986 2,842 95.2% 1,550 51.9% 1,483 49.7% 4.32%
time-1.7 4,185 3,854  92.1% 347 8.3% 342 8.2% 1.53%
userv-0.95.0 6,132 6,028  98.3% 1,190 19.4% 1,189 19.4% 0.04%
wdiff.0.5 4,112 3,870  94.1% 419 10.2% 418 10.2% 0.41%
which 3,618 3,493  96.5% 1,075 29.7% 1,064 29.1% 1.95%
wpst 13,438 | 11,596  86.3% 1,478 11.0% 1,450 10.8% 1.92%
sum 824,935 | 748,736 252,398 244,722
average 19,185 | 17,948 93.6% 5,870 28.1% 5,691 27.7% 1.98%

Fig. 10. Live code experiment.

skewed towards the 90’s: Two-thirds of the programs are 95% or more live code
and nine in ten are 90% or more.

The final five columns of Figure 10 illustrate the effect on slice size. They in-
clude the average slice size, repeated for comparison from Figure 3, the average
slice size counting only live code, and finally, the change in slice size obtained

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 21

by considering only live code. For most programs the amount of dead code is
minimal; thus, its effect on slice size is minimal: Two-thirds of the programs
show less than 1% difference and all but four show less than 5% difference in
average slice size. Pearson correlations between the percentage of live code and
the percentage of reduction in average slice size show a statistically signifi-
cant (p < 0.00001) correlation with R = —0.80 (a rise in live code produces a
decrease in slice size reduction). The impact on forward slicing (not shown in
Figure 10) is similar, but slightly muted. For example, while acct shows an 18%
change for backward slicing, it shows only a 13% change for forward slicing.

5. THREATS TO VALIDITY

In any empirical study, it is important to consider threats to validity. In the ab-
sence of human subjects, only two potential threats need be considered. These
are threats to external and internal validity. External validity, sometimes re-
ferred to as selection validity, is the degree to which the findings can be gener-
alized. Internal validity is the degree to which conclusions can be drawn about
the causal effect of the independent variable on the dependent variable.

In the following discussion, a distinction is made between algorithm selec-
tion (which may threaten external validity) and implementation detail (which
may threaten internal validity). Here different algorithms have different input-
output relationships, while the details of implementation affect the perfor-
mance (execution timing and memory footprint) of an algorithm, but not its
semantics.

Three selections were made in the experiment: the programs analyzed, slic-
ing criterion, and SDG construction options. Regarding the first, it is possible
that the selected programs are not representative of programs in general and
thus results from the experiment do not apply to “typical” programs. Consid-
ering 43 subject programs helps to mitigate this concern. As described previ-
ously, these programs include diverse programming styles and domains. This
diversity makes it more likely that the conclusions made about the techniques
generalize. However, it remains possible that programs written in styles not
considered herein (e.g., real-time, embedded, and event-driven systems), or
nonopen source programs will exhibit significantly different behaviors.

The second form of external validity comes from slice selection bias: the de-
gree to which results depend on the particular slices chosen for study. As dis-
cussed in the Related Work section, previous empirical work has focused on de-
tailed examination of a limited number of slices. These slices were chosen either
by experienced programmers [Bent et al. 2000] or by selecting particular vertex
types [Agrawal and Guo 2001; Krinke 2002]. This selection introduces bias to
the results: It is not known whether a favorable result was caused by fortunate
slice selection. To mitigate this concern, the slice with respect to every exe-
cutable line of code (every vertex that represents executable code) was taken.!

1As an interesting aside, slicing on all vertices (not just those representing executable code) does
not change the results other than taking proportionally longer to process each program. The most
common source of these vertices is the passing of global variables between procedures, as globals
are modeled as additional procedure parameters.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



22 . D. Binkley et al.

Slicing on all executable lines of code allows the experiment to investigate the
question of what a typical slice size might be for a slice chosen “at random.”
It is, however, possible that the results for only those slices of interest to an
engineer are statistically different from all slices. It is encouraging to note that
related work indicates that this is not the case [Bent et al. 2000].

The final form of external validity deals with the extent to which results can
be generalized to alternate “upstream” SDG constructions. It is conceivable that
there may be some algorithm alternatives or future improvements that affect
SDG construction, resulting in a dramatic effect on slice size. For example,
improved points-to analysis precision might reduce slice size. However, existing
empirical evidence for slicing “in the small” suggests that this is not the case
[Landi and Ryder 1992; Mock et al. 2002; Liang and Harrold 1999a, 1999b].

The second threat to validity is internal: the degree to which conclusions can
be drawn about the causal effect of the independent variable on the dependent
variable. In this experiment, the only serious threat comes from the potential
for faults in the slicers. Other common forms of internal validity, for example,
construct validity (the degree to which the variables used in the study accu-
rately measure the concepts they purport to measure), are not an issue, as the
variable measured (slice size) can be measured with high precision. Thus, the
only serious internal validity concern comes from the assumption that tools
correctly implement each slicing algorithm. In practice, the slicing tools might
contain errors, or employ imprecise analyses (e.g., imprecise data-flow analysis
or points-to analysis). To mitigate this concern, mature slicing tools were used
and thoroughly tested. This reduces the impact that implementation faults may
have on the conclusions reached regarding dependence analysis.

6. IMPLICATIONS OF THE FINDINGS

Weiser’s original motivation for slicing was that it would be a technique to
support debugging [1979]. The argument was elegant, simple, and compelling:

Why should programmers waste time in debugging activity that considers parts
of the program that cannot possibly have an effect upon the point at which an
error was noticed, when automated tool support could reveal this?

One of the original motivations for the study of dynamic slicing [Korel and
Laski 1988] was to improve the applicability of slicing to debugging. Initial
anecdotal evidence from small-scale static slicing prototype tools was that static
slices were disappointingly large and therefore of less help to debugging than
had been hoped.

However, many authors continued to develop new application areas for static
slicing, such as reverse engineering [Canfora et al. 1994b; Simpson et al. 1993],
program comprehension [De Lucia et al. 1996; Harman et al. 2001], testing
[Binkley 1998; Gupta et al. 1992; Harman and Danicic 1995; Hierons et al.
2002, 1999], and software metrics [Bieman and Ott 1994; Lakhotia 1993; Ott
and Thuss 1993]. Following Weiser’s initial work, many authors also developed
techniques for slicing, but not until comparatively recently have sufficiently
mature program slicing tools been able to handle large programs written using

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 23

the entirety (rather than merely a subset) of a popular programming language.
The advent of these tools has made large-scale empirical study of slice size
possible so that we may address the fundamental question: “How large can we
expect a typical static slice to be?”

The answers to this question provided herein have important implications
for the many applications for slicing that have been proposed and studied since
Weiser’s original work [1979]. For example, the fact that slices tend to consist of
about one-third of the programs from which they are constructed is an optimistic
result for all applications, since size of slice is crucial in all cases.

Bieman and Ott [1994] use static slicing as a basis for the measurement
of functional cohesion. The essential idea is that the larger degree of overlap
existing among a set of a function’s slices, the more cohesive the function must
be, since it contains a larger proportion of its “shared” computation. However,
the presence of dead code will tend to depress the value of the metric because
dead code will not appear in any slice and so will not be in the intersection. The
presence of large amounts of dead code would tend to suggest caution in the
measurement of cohesion using the approach of Bieman and Ott.

Fortunately, as the results presented in Section 4.5 show, the impact of dead
code on slice size is generally low. However, the simple forward slicing technique
used for eliminating code which is dead to the slicer might be used as prudent
augmentation to the Bieman and Ott [1994] cohesion metric. In other words, in
assessing functional cohesion, it would be advisable to remove code not in the
forward slice on the entry vertex from all computations.

In work on reverse engineering, the finding that slice sizes tend to be about a
third of the program means that slicing can be a useful technique for supporting
extraction of program fragments for reengineering. Furthermore, the variation
in slice size noted in Section 4 is very important for work on reengineering. It
suggests, as might be expected, that amenability to a slice-based approach to re-
engineering will vary dramatically from one program to another. This suggests
that some prior analysis of slice sizes could form the basis of an assessment of
suitability for slice-based approaches to reengineering.

In work on software testing, slicing has been proposed as a technique for
reducing testing effort. For example, when attempting to generate test data
to execute a particular branch or statement (for coverage adequacy purposes
[Beizer 1990]), there will be no point in executing statements that cannot affect
the node or predicate to be covered. In automated test data generation using
heuristic techniques, such as the chaining method [Ferguson and Korel 1996]
and evolutionary testing [Wegener et al. 2001], the program under test may
need to be executed many tens of thousands of times in order to generate test
data to cover some hard-to-reach statement or branch. In such cases it makes
sense to first slice the program to make a smaller version (the slice) tailored to
the testing objective at hand. The observation that slices are, on average, about
one-third of the program from which they are constructed suggests that this is
worthwhile.

In other approaches to software test data generation, such as symbolic exe-
cution [Clarke 1976], the complexity of the symbolic execution mechanism is a

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



24 . D. Binkley et al.

crucial factor in applicability. Here, once again, the ability to (on average) slice
away about two-thirds of the program may have significant benefits.

For program comprehension the findings are also important. As the results
show, there are many programs that have sets of very small slices, making
these programs highly amenable to slice-based approaches to comprehension.
Even for programs with larger slices, any reduction in code size is going to
be beneficial to comprehension, since it avoids the human wasting time on
code not relevant to the comprehension question at hand. The fact that the
study found very few extremely large slices indicates that optimism is not
misplaced.

Furthermore, the ability to quickly produce slices at the function level of
granularity may be beneficial in work on slice-based comprehension. Strong
statistical correlations between statement- and function-level slicing indicate
that the function-level slice could be used as predictor of statement-level slice
size. This would provide a mechanism for quickly identifying parts of the pro-
gram for which slice-based comprehension may have the biggest impact.

7. RELATED WORK

There has been considerable previous work concerning the tradeoffs between
algorithmic precision and slice size [Agrawal and Guo 2001; Atkinson and
Griswold 1998; Beszédes and Gyiméthy 2002; Binkley and Harman 2003b;
Harrold and Ci 1998; Krinke 2002; Liao et al. 1999; Liang and Harrold 1999a;
Mock et al. 2002; Orso et al. 2001b; Reps et al. 1994; Sinha et al. 1999; Lyle
et al. 1995; Venkatesh 1995; Zhang et al. 2003]. Although this work touches
upon the issue of slice size, much of it has been concerned with the develop-
ment of slicing algorithms. Consequently, such work uses changes in slice size
that arise from differing algorithmic choices to provide empirical evidence to
support a particular choice of algorithm, rather than addressing the question
of typical slice size per se.

The results of experiments reported in the present article on the impact of the
choice of points-to analysis on slice size tend to bear out the findings of previous
authors, who find that increasing points-to precision for slices of C programs
does not appear to yield significant additional gains, once a certain level of
precision is reached. Mock et al. [2002] attribute this to the fact that increasing
points-to precision may reduce the number of edges in the SDG, but this does
not necessarily increase the average slice size. In other words, while increasing
edges creates more transitive dependence paths in the SDG, in order for some
node ¢ to be in the slice, all that is required is a single transitive dependence
path from a node s which is in the slice to node ¢.

Liang and Harrold [1999b] compare slice size using four points-to analyses,
namely, Steensgaard’s [1996], Andersen’s [1994], Landi and Ryder’s (a flow-
and context-sensitive analysis) [1992], and their own flow-insensitive, context-
sensitive points-to analysis [Liang and Harrold 1999al. In this experiment,
slices are taken of the programs, which range in size from 1,132 to 17,263 LoC.
For all but one program, which shows a 14% difference, the difference in slice
size is less than 2%. Relevant to this discussion, it was only possible to run

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 25

Slices Percent of

Cluster in Cluster Total Slices
Size <= 1% 155 37%
1% < Size <= 25% 135 32%
25% < Size <= 50% 129 31%
50% < Size 0 0%
Sum 419 100%

Fig. 11. Unravel slice size analysis.

Landi and Ryder’s points-to analysis on smaller programs, that is, those with
fewer than 5,000 LoC.

Mock et al. [2002] show that using precise dynamic pointer information yields
only small improvement in slice size. This is because removing a dependence
that connects two statements does not change the slice when there exists an-
other (possibly transitive) dependence connecting the two statements.

The rest of this section considers other previous empirical work on program
slices. In particular, research dealing with empirical studies of program slicers is
not considered. To begin with, the Unravel project report considered all slices
of a single program [Lyle et al. 1995]. Figure 11 presents a summary of the
results from this study.

The work of Orso et al. [2001a, 2001b], Sinha et al. [1999], and Liang and
Harrold [1999a] also considered slice size (though this was not the primary
focus of their work). Like the study reported herein, these authors considered
all statement-level slicing criteria, but the studies concerned a smaller set of
smaller programs. For programs on the order of thousands of lines of code, Orso
et al. [2001a, 2001b] were able to slice on all statement-level criteria. For those
on the order of tens of thousands of lines of code, the results reported were based
on a single slice. The study reported herein therefore continues the style of these
approaches, but is considerably larger in scale, both with regard to the size and
number of programs considered. The authors believe that the work reported
herein is at least one order of magnitude larger than any previous related study.

Beszédes and Gyiméthy [2002] describe the approximation of static slices
using the union of dynamic slices. They consider three programs ranging from
5,592 to 37,539 lines of code and report an average reduction (portion of the
code removed by slicing) of 18%. This stands in contrast to the over 70% aver-
age removal reported in Section 4. It is not clear what the difference should be
attributed to. However, note that the slicing algorithm used by Beszédes and
Gyiméthy [2002] is based upon unioning dynamic slices and so it is markedly
different from that used herein. A more direct comparison might prove inter-
esting because, in theory, the union of dynamic slices could never exceed the
size of a static slice.

Liao et al. describe the SUIF tool [1999], with which slices were used to
reduce the number of lines of loop code examined by a programmer. While not
the focus of their work, some slice size statistics are given. An average reduction
of 78% was reported. The loops studied were small (the largest is 268 lines of
code). However, it is interesting to note that a similar reduction was found for
the much larger dataset studied herein.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



26 . D. Binkley et al.

Bent et al. [2000] present 18 slices computed for six different programs rang-
ing in size from 842 to 14,554 lines of code. They report an average slice size
(measured in nonblank noncomment lines of code) of 12%, with the largest slice
size being 35%. Two of the programs they studied also appear in the present
article in Figure 3 (although they may be different versions): For compress the
three slices included 1.5%, 14%, and 41% of the program (compared to the 25%
shown in Figure 3), and for ed the three slices included 16%, 4.2%, and 14%
of the program (compared to the 54% shown in Figure 3). In contrast to the
work reported herein, Bent et al. reported considerably smaller slices. This is
encouraging, as the slicing criteria in their study were picked by “experts” to
be “representative.” However, their sample size is small (18 versus 1,176,158
backward slices).

Two other studies by Atkinson and Griswold also include some slice size data.
In the first [2001], six slices (one from each of six programs, measuring 2,692
to 189,043 nonblank lines of code) were found to include 16%, 27%, 6.7%, 31%,
31%, and 30% of the program. The average of these is 24%, which is close to, but
below, the average given in Figure 3. Care is required in drawing conclusions
from this comparison, as the number of slices actually taken is so small. Also,
the slices were constructed without regard for calling context. As the study
reported herein indicates, this can lead to a marked decrease in precision. In
their second study [Atkinson and Griswold 1998], slice size (not the focus of
the work) is given in terms of the number of “three address statements in the
slice”. As the initial number of three address statements for each program is
not given, a percentage of the reduction computation is impossible.

Krinke undertook an empirical evaluation of slicing (and chopping) [2002].
His study concentrates on the effects of £-limiting call strings, where context
information is only kept to depth k. His work summarizes data from 39,043
slices of 14 programs (slices were computed from all formal-in vertices in each
program’s SDG). The average slice size ranged from 17.3% to 51.0% of the
program with an overall average of 39.5%.

Agrawal and Guo studied the tradeoff between context sensitivity and com-
putation time for a collection of Java programs, ranging up to about 3,000 LoC
[2001]. The focus of their work was on the effect of different techniques for
dealing calling context.

They found that ignoring context caused an 86% increase in slice size while
speeding-up slicing by a factor of 1.72 [2001]. Their approach to handling con-
text was expensive. The authors noted that “in the worst case, the number of
times a vertex is added to the work list is exponential in the number of methods
in the program.” In contrast, the slicing algorithm studied in Section 4 is linear
in size of the SDG and handles calling context with no added space overhead.
In fact, the data from Section 4 actually shows an increase in slicing time when
calling context is ignored (due to the increased number of vertices that must be
processed). The discrepancy between the runtimes is most likely due to ineffi-
cient context handling in the Agrawal and Guo slicer, which, it turns out, was
found to be incorrect by Krinke [2002]. Krinke reports that ignoring context
caused a 68% increase in slice size and a 40% increase in slice time. The size
increased by more than the 50% increase reported in Figure 4, whereas the

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 27

40% time increase is less than the 77% increase from Figure 4. The difference
may be accounted for by slicing-criterion selection bias.

All of the aforementioned studies considered slice size for C programs, but
more recently, there has been initial work on slicing for Java, where sim-
ilar tradeoffs between calling context and slice size have been investigated
[Hammer and Snelting 2004]. It is evident from the related work that there is
a need for standardization in reporting statistics related to slice sizes. This has
caused some authors to move away from measurement based on code so as to
consider function points [Jones 1991]. For example, the research described ear-
lier uses “nonblank noncomment” lines of code, “nonblank” lines of code, “three
address statements,” and “LoC as reported by word count” to measure program
and slice size. While “LoC as reported by word count” is a rather crude metric,
it does at least provide a common baseline to which results can be compared.
As the present study has included data for a large number of slices and reports
both total LoC and NC-NB LoC, it is hoped that future studies will do the same
to help facilitate comparison.

Unlike the work reported here, many large-scale studies avoid slicing on all
statement-level slicing criteria (for practical reasons). Agrawal and Guo [2001]
comment that “considering all possible slicing criteria from every program in
our benchmark set would have resulted in a very large total number of [slices],
which would not have been feasible to experiment with.” Krinke comments
that some slice constructions took over 300MB of memory or failed to finish in
eight hours. Using the SDGs that CodeSurfer produces, augmented by collaps-
ing SCCs and topologically sorting the vertices, it is possible to slice on every
vertex that represents executable code and to do so for larger programs than
were considered by either Agrawal and Guo or Krinke. In part, the ability to
slice large programs on every slicing criterion was made possible by a set of
optimizations to the SDG analysis reported elsewhere [Binkley and Harman
2003b].

The ability to slice on every possible slicing criterion is important: It avoids
the potential selection bias that may be present in the studies of Bent et al.
[2000], Agrawal and Guo [2001], and Krinke [2002]. However, it may mean
that the slices studied here could not be called “typical” in the sense that they
would be representative of the subset selected in some particular application
of program slicing. Of course, deciding upon what constitutes a typical slicing
criterion (and therefore a typical slice) is an inherently subjective, qualitative,
and application-dependent judgment. Therefore, the results reported herein
form a general baseline against which to compare future work that considers
typical slices for a given domain.

8. SUMMARY

In all applications of program slicing, the issue of slice size is important. The
smaller the slice, the better. This article reports results from the largest study
of static program slice size conducted to date. The results give a benchmark
size of a static slice (either forward or backward) of just under one-third of the
program (28.1% for backward and 26.1% for forward slices). While one-third of

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



28 . D. Binkley et al.

a million lines is still a substantial quantity of code to analyze, slicing a 100
line procedure to produce a 33 line subprocedure can be highly useful and is,
indeed, used in many applications of slicing, including measurement [Bieman
and Ott 1994; Longworth et al. 1986; Ott and Thuss 1989], testing [Harman
and Danicic 1995], and comprehension [Cimitile et al. 1995a, 1995b].

The article considers the impact of calling context, which is a somewhat
unresolved issue, since some previous authors (e.g., Krinke [2002]) suggest that
calling context is important, while others (e.g., Mock et al. [2002]) suggest it is
not. The results presented here go a long way towards settling the issue, due to
the size of the study. The results appear to replicate those presented by Krinke
[2002] indicating that ignoring calling context causes an increase in both slice
size and computation time.

The article investigated the slices constructed at larger, function-level gran-
ularity. At this function level, slices proved to be larger (due to the imprecision
of larger granularity), but not impractically so. A function slice is around 50%
larger than a corresponding statement slice, but can be computed in negligible
time. This linear trend in price of the imprecision paid for the speedup was
found to be strongly statistically significant.

Finally, the article considers the impact on slice size of three upstream anal-
ysis and manipulation phases: structure field collapse, points-to analysis, and
dead code removal. Collapsing structure fields increases average slice size by
only a few percentage points. For some programs (those which made use of
function pointers in structure fields), the impact of structure field expansion
was found to be much greater, replicating the results of Bent et al. [2000]. The
choice of points-to analysis and the removal of dead code were found to have
little effect on average slice size.

Future investigation in this area could fruitfully address the correlation be-
tween call-tree depth and slice size. Continued investigation of the program-
ming styles, techniques, and use of function pointers in programs would also
be helpful in characterizing the types of slice arising from them.

ACKNOWLEDGMENTS

The anonymous referees provided many detailed and insightful suggestions
which prompted several of the experiments, the results of which are reported
here. GrammaTech provided CodeSurfer'™ upon which the implementation is
based. Alberto Pasquini provided the programs oracolo2, prepro, and copia.
Gregg Rothermel provided the program empire and Erin Ptah assisted with the
presentation.

REFERENCES

AcrawarL, G., AND Guo, L. 2001. Evaluating explicitly context-sensitive program slicing. In Pro-
ceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (Snowbird, UT, Jun. 18-19). ACM Press, New York. 6-12.

AcrawaL, H., DEMiLLo, R. A., AND SparrorD, E. H. 1993. Debugging with dynamic slicing and
backtracking. Softw. Pract. Exper. 23, 6 (Jun.), 589-616.

ANDERSEN, L. O. 1994. Program analysis and specialization for the C programming language.
Ph.D. thesis, DIKU Rep. 94/19, University of Copenhagen, May.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 29

ANDERSEN, P., BINKLEY, D., Rosay, G., anp TerteLBAUM, T. 2001. Flow insensitive points-to sets. In
Proceedings of the 1st IEEE Workshop on Source Code Analysis and Manipulation (Nov.). IEEE
Computer Society Press, Los Alimitos, CA. 79-89.

AtkinsoN, D. C. anp Grisworp, W. G. 2001. Implementation techniques for efficient data-flow
analysis of large programs. In IEEE International Conference on Software Maintenance (Nov.).
IEEE Computer Society Press, Los Alamitos, CA. 52-61.

ATtrinson, D. C. anp GriswoLp, W. G.  1998. Effective whole-program analysis in the presence of
pointers. In Proceedings of the ACM SIGSOFT 6th International Symposium on the Foundations
of Software Engineering (New York, Nov. 3-5). Softw. Eng. Not. 23, 6, 46-55.

Beck, J. anp EicaMany, D. 1993. Program and interface slicing for reverse engineering. In
IEEE /ACM 15th Conference on Software Engineering. IEEE Computer Society Press, Los
Alamitos, CA. 509-518.

Brizer, B. 1990. Software Testing Techniques. Van Nostrand Reinhold, New York.

BenT, L., ATKINSON, D., AND GriswoLD, W. 2000. A qualitative study of two whole-program slicers
for C. Tech. Rep. CS20000643, University of California at San Diego. A preliminary version
appeared at the 2000 ACM SIGSOFT International Symposium on the Foundations of Software
Engineering.

BEeszeEDES, A. AND GyiMoTHY, T. 2002. Union slices for the approximation of the precise slice. In Pro-
ceedings of the IEEE International Conference on Software Maintenance (Oct.). IEEE Computer
Society Press, Los Alamitos, CA. 12—-20.

Bieman, J. M. anp Ort, L. M.  1994. Measuring functional cohesion. IEEE Trans. Softw. Eng. 20,
8 (Aug.), 644-657.

Bmwvkiey, D. W. 1998. The application of program slicing to regression testing. Inf. Softw. Technol.
40, 11-12, 583-594.

Bmwvkiey, D. W. 1997. Semantics guided regression test cost reduction. IEEE Trans. Softw. Eng.
23, 8 (Aug.), 498-516.

BmvkLey, D. W. aND HarMAN, M.  2005. Locating dependence clusters and dependence pollution. In
Proceedings of the 21st IEEE International Conference on Software Maintenance. IEEE Computer
Society Press, Los Alamitos, CA. 177-186.

BiNnkLEY, D. W. AND GALLAGHER, K. B. 1996. Program slicing. In Advances in Computing, vol. 43,
M. Zelkowitz, Ed. Academic Press. 1-50.

BmnkiEy, D. W. AND HarRMAN, M. 2004. A survey of empirical results on program slicing. Adv.
Comput. 62, 105-178.

Bmnkiey, D. W. anpD Harman, M. 2003a. A large-scale empirical study of forward and back-
ward static slice size and context sensitivity. In Proceedings of the IEEE International Con-
ference on Software Maintenance (Sept.). IEEE Computer Society Press, Los Alamitos, CA. 44—
53.

BinkLEY, D. W. AND HARMAN, M.  2003b. Results from a large-scale study of performance optimiza-
tion techniques for source code analyses based on graph reachability algorithms. In Proceedings
of the IEEE International Workshop on Source Code Analysis and Manipulation (Sept.). IEEE
Computer Society Press, Los Alamitos, CA. 203—212.

BmnkLEY, D. W., HorwiTz, S., AND REPS, T. 1995. Program integration for languages with procedure
calls. ACM Trans. Softw. Eng. Methodol. 4, 1, 3-35.

Burke, M., Carmng, P, CHor, J.-D., anp Hinp, M. 1995.  Flow-Insensitive interprocedural alias anal-
ysis in the presence of pointers. In Proceedings of the 7th International Workshop on Languages
and Compilers for Parallel Computing. Lecture Notes in Computer Science, vol. 892. Springer
Verlag.

CaLLagan, D. 1988. The program summary graph and flow-sensitive interprocedural data flow
analysis. ACM SIGPLAN Not. 23, 7 (Jul.), 47-56.

CaNFORA, G., CiMITILE, A., DE Lucia, A, aND Lucca, G. A. D. 1994a. Software salvaging based
on conditions. In Proceedings of the International Conference on Software Maintenance (Sept.).
IEEE Computer Society Press, Los Alamitos, CA. 424-433.

CaNFORA, G., CiMITILE, A., AND MUNrRO, M. 1994b. RE : Reverse engineering and reuse re-
engineering. J. Softw. Maintenance: Res. Pract. 6, 2, 53-72.

CHor, J.-D., Burke, M., anp Carini, P. 1993. Efficient flow-sensitive interprocedural compu-
tation of pointer-induced aliases and side effects. In Conference Record of the 20th Annual

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



30 . D. Binkley et al.

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Charleston, SC,
Jan. 10-13). ACM Press, New York. 232-245.

CmvrTiLE, A., DE Lucia, A., anD Munro, M. 1996. A specification driven slicing process for identi-
fying reusable functions. Softw. Maintenance: Res. Pract. 8, 145-178.

CmvriTiLE, A., DE Lucia, A., anD Munro, M.  1995a. Identifying reusable functions using specifica-
tion driven program slicing: A case study. In Proceedings of the IEEE International Conference
on Software Maintenance. IEEE Computer Society Press, Los Alamitos, CA. 124-133.

CmviTiLE, A., DE Lucia, A., AND MuNro, M. 1996. Qualifying reusable functions using symbolic
execution. In Proceedings of the 2nd Working Conference on Reverse Engineering. IEEE Computer
Society Press, Los Alamitos, CA. 178-187.

CLARKE, L. A. 1976. A system to generate test data and symbolically execute programs. IEEE
Trans. Softw. Eng. 2, 3 (Sept.), 215-222.

DE Lucia, A. 2001. Program slicing: Methods and applications. In Proceedings of the 1st IEEE
International Workshop on Source Code Analysis and Manipulation. IEEE Computer Society
Press, Los Alamitos, CA. 142-149.

DE Lucia, A., FasoLiNo, A. R., aND Munro, M. 1996. Understanding function behaviours through
program slicing. In Proceedings of the 4th IEEE Workshop on Program Comprehension. IEEE
Computer Society Press, Los Alamitos, CA. 9-18.

Emawmr, M., Garva, R., AND HENDREN, L. J.  1994. Context-Sensitive interprocedural points-to anal-
ysis in the presence of function pointers. ACM SIGPLAN Not. 29, 6 (Jun.), 242—-256.

Fercuson, R. anp Korer, B.  1996. The chaining approach for software test data generation. ACM
Trans. Softw. Eng. Methodol. 5, 1 (Jan.), 63-86.

Foster, J. S., FaanpricH, M., aND AIKEN, A. 2000. Polymorphic versus monomorphic flow-
insensitive points-to analysis for C. In Static Analysis Symposium. 175-198.

FaunpricH, M., FosTER, J. S., Su, Z., AND AIKEN, A. 1998. Partial online cycle elimination in in-
clusion constraint graphs. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (Jun.). ACM Press, New York. 85-96.

GALLAGHER, K. B. 1992. Evaluating the surgeon’s assistant: Results of a pilot study. In Proceed-
ings of the International Conference on Software Maintenance. IEEE Computer Society Press,
Los Alamitos, CA. 236-244.

GALLAGHER, K. B. AND LyiEg, J. R. 1991. Using program slicing in software maintenance. IEEE
Trans. Softw. Eng. 17, 8 (Aug.), 751-761.

GrammaTECH Inc. 2002. The codesurfer slicing system. http:/www.grammatech.com/products/
codesurfer/ReleaseNotes.html.

GupTa, R., HARROLD, M. J., AND SoFFA, M. L. 1992. An approach to regression testing using slicing.
In Proceedings of the IEEE Conference on Software Maintenance. IEEE Computer Society Press,
Los Alamitos, CA. 299-308.

HamMER, C. AND SNELTING, G. 2004. An improved sliver for Java. In Proceedings of the ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering. ACM
Press, New York. 17-22.

Harman, M. anDp Danicic, S. 1995. Using program slicing to simplify testing. Softw. Test. Verif.
Reliability 5, 3 (Sept.), 143-162.

Harwman, M. anp Higrons, R. M. 2001. An overview of program slicing. Softw. Focus 2, 3, 85-92.

Harman, M., Hierons, R. M., Danicic, S., Howrovp, dJ., aND Fox, C. 2001. Pre/Post conditioned
slicing. In Proceedings of the IEEE International Conference on Software Maintenance (Nov.).
IEEE Computer Society Press, Los Alamitos, CA. 138-147.

HarwmaN, M., OKUNLAWON, M., SIVAGURUNATHAN, B., AND Danicic, S. 1997. Slice-Based meaurement
of coupling. In Proceedings of the 19th Workshop on Process Modelling and Empirical Studies of
Software Evolution (Boston, MA, May), R. Harrison, Ed.

Harrorp, M. J. anD C1, N.  1998. Reuse-Driven interprocedural slicing. In Proceedings of the 20th
International Conference on Software Engineering (Apr.). IEEE Computer Society Press, Los
Alamitos, CA. 74-83.

HeintzE, N. aND TaARDIEU, O. 2001. Ultra-Fast aliasing analysis using CLA: A million lines of C
code in a second. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, Jun. 20-22), C. Norris and J. J. B. Fenwick, Eds. ACM
SIGPLAN Not. 36, 5, 254-263.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



An Empirical Study of Static Program Slice Size . 31

Hierons, R. M., HArRmAN, M., aND Danicic, S. 1999. Using program slicing to assist in the detection
of equivalent mutants. Softw. Test. Verif. Reliability 9, 4, 233-262.

Hierons, R. M., Harman, M., Fox, C., OuarBya, L., anp Daoupi, M. 2002. Conditioned slicing
supports partition testing. Softw. Test. Verif Reliability 12, (Mar.), 23—28.

Horwrtz, S., Prins, J., AND Reps, T.  1989. Integrating non-interfering versions of programs. ACM
Trans. Program. Lang. Syst. 11, 3 (Jul.), 345-387.

Horwrtz, S., Reps, T., AND BinkLEY, D. W.  1988. Interprocedural slicing using dependence graphs.
In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (Atlanta, GA, Jun.). ACM SIGPLAN Not. 23, 7, 35—46.

JAYARAMAN, G., RANGANATH, V. P., aAND HaTcLIFF, J.  2005. Kaveri: Delivering the Indus Java program
to Eclipse. In Fundamental Approaches to Software Engineering. Lecture Notes in Computer
Science, vol. 3442. Springer Verlag. 269-273.

Jones, C. 1991. Applied Software Measurement: Assuring Productivity and Quality. McGraw-
Hill, New York.

Kamkar, M. 1993. Interprocedural dynamic slicing with applications to debugging and test-
ing. Ph.D. thesis, Department of Computer Science and Information Science, Linkoping Uni-
versity, Sweden. Available as Linkoping Studies in Science and Technology, Dissertations, no.
297.

KoreL, B. anD Laskr, J. 1988. Dynamic program slicing. Inf. Proc. Lett. 29, 3 (Oct.), 155-163.

KRINKE, J. 2002. Evaluating context-sensitive slicing and chopping. In Proceedings of the IEEE
International Conference on Software Maintenance. IEEE Computer Society Press, Los Alamitos,
CA. 22-31.

LakaoTiA, A. 1993. Rule-Based approach to computing module cohesion. In Proceedings of the
15th Conference on Software Engineering. 34—44.

Lanpoi, W. anp RypER, B. G. 1992. A safe approximate algorithm for interprocedural pointer alias-
ing. In SIGPLAN Conference on Programming Language Design and Implementation, SIGPLAN
Not. 27, 17.

Liang, D. anp HarroLD, M. J. 1999a. Efficient points-to analysis for whole-program analysis.
In Proceedings of the 7th European Software Engineering Conference, held jointly with the 7th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, O. Nierstrasz
and M. Lemoine, Eds. Lecture Notes in Computer Science, vol. 1687. Springer Verlag. 199—
215.

Liang, D. anp HarrorD, M. J. 1999b. Reuse-Driven interprocedural slicing in the presence of
pointers and recursion. In Proceedings of the IEEE International Conference on Software Main-
tenance. IEEE Computer Society Press, Los Alamitos, CA. 410—430.

Liao, S.-W., Diwan, A., BoscH, Jr., R. P., OHuLoUM, A., AND Lam, M. S. 1999. SUIF explorer: An
interactive and interprocedural parallelizer. In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, A. A. Chien and M. Snir, Eds. ACM SIGPLAN
Not. 34, 8, 37-48.

LonawortH, H. D., OrT, L. M., AND SMiTH, M. R. 1986. The relationship between program com-
plexity and slice complexity during debugging tasks. In Proceedings of the Computer Software
and Applications Conference. 383—-389.

LyiE, J. R., WaLLACE, D. R., GRaHAM, J. R., GALLAGHER, K. B., PooLE, J. P., AND BINkLEY, D. W. 1995.
Unravel: A CASE tool to assist evaluation of high integrity software, volume 1: Requirements
and design. Tech. Rep. NISTIR 5691, US Department of Commerce, Technology Administration,
National Institute of Standards and Technology, Computer Systems Laboratory, Gaithersburg,
MD 20899.

Lyig, J. R. anD WEISER, M., 1987. Automatic program bug location by program slicing. In Pro-
ceedings of the 2nd International Conference on Computers and Applications. IEEE Computer
Society Press, Los Alamitos, CA. 877-882.

Mevers, T. anD BinkiEY, D. W. 2004. Slice-Based cohesion metrics and software intervention.
In Proceedings of the 11th IEEE Working Conference on Reverse Engineering. IEEE Computer
Society Press, Los Alamitos, CA. 256-266.

Mock, M., AtkinsoN, D. C., CHAMBERS, C., AND EGcErs, S. J. 2002. Improving program slicing with
dynamic points-to data. In Proceedings of the 10th ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering, W. G. Griswold, Ed. ACM Press, New York. 71-80.

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



32 . D. Binkley et al.

ORso, A. SINHA, S., aAND HarroLD, M. J.  2001a. Effects of pointers on data dependences. In Proceed-
ings of the 9th IEEE International Workshop on Program Comprehension (May). IEEE Computer
Society Press, Los Alamitos, CA. 39-49.

ORso, A. SINHA, S., AND HARROLD, M. J. 2001b. Incremental slicing based on data-dependences
types. In Proceedings of the IEEE International Conference on Software Maintenance (Nov.).
IEEE Computer Society Press, Los Alamitos, CA. 158-167.

Ort, L. M. anD THUSS, J. J. 1993. Slice based metrics for estimating cohesion. In Proceedings of
the IEEE-CS International Metrics Symposium. IEEE Computer Society Press, Los Alamitos,
CA. 71-81.

Ort, L. M. anD THusS, J. J. 1989. The relationship between slices and module cohesion. In Pro-
ceedings of the 11th ACM Conference on Software Engineering (May). 198-204.

Reps, T. 1998. Program analysis via graph reachability. Inf. Softw. Technol. 40, 11-12, 701-726.

Reps., T., Horwitz, S., Sactv, M., AND Rosay, G.  1994. Speeding up slicing. In the ACM Conference on
Foundations of Software Engineering (Dec.). ACM SIGSOFT Softw. Eng. Not. 19, 5 (Dec.), 11-20.

Rug, E. 1995. Context-Insensitive alias analysis reconsidered. ACM SIGPLAN Not. 30, 6 (Jun.),
13-22.

SHaPIRO, M. AND HorwiTz, S. 1997. Fast and accurate flow-insensitive points-to analysis. In Con-
ference Record of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (Paris, Jan. 15-17). ACM Press, New York. 1-14.

SmvpsoN, D., VAaLeEnNTINE, S. H., MitcHiELL, R., Liy, L., anp Eriis, R. 1993. Recoup—Maintaing
Fortran. ACM Fortran Forum 12, 3 (Sept.), 26-32.

SINHA, S., HARROLD, M. J., AND ROTHERMEL, G. 1999. System-Dependence-Graph-Based slicing of
programs with arbitrary interprocedural control-flow. In Proceedings of the 21st International
Conference on Software Engineering (May). ACM Press, New York. 432—441.

STEENSGAARD, B.  1996. Points-To analysis in almost linear time. In Conference Record of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (St. Petersburg,
FL, Jan.). ACM Press, New York. 32—41.

Tip, F. 1995. A survey of program slicing techniques. J. Program. Lang. 3, 3 (Sept.), 121-189.

VENKATESH, G. A. 1995. Experimental results from dynamic slicing of C programs. ACM Trans.
Program. Lang. Syst. 17, 2 (Mar.), 197-216.

WEGENER, J., BARESEL, A., AND STHAMER, H. 2001. Evolutionary test envirmonment for automatic
structural testing. Inf Softw. Technol. 43, 14, 841-854.

WEIsErR, M. 1984. Program slicing. IEEE Trans. Sofw. Eng. 10, 4, 352-357.

WEIsEr, M. 1979. Program slices: Formal, psychological, and practical investigations of an
automatic program abstraction method. Ph.D. thesis, University of Michigan, Ann Arbor, MI.
WEISER, M. AND LyLE, J. R. 1985. Experiments on slicing-based debugging aids. In Empirical

Studies of Programmers, Soloway and Iyengar, Eds. Molex. 187-197.

WEYURER, E. J. 1977. Program schemas with semantic restrictions. Ph.D. thesis, Rutgers
University, New Brunswick, NJ, June.

WHEELER, D. A. 2005. SLOC Count User’s Guide. http://www.dwheeler.com/sloccount/sloccount.
html.

WiLson, R. P. anp Lam, M. S. 1995. Efficient context-sensitive pointer analysis for C programs.
ACM SIGPLAN Not. 30, 6 (Jun.), 1-12.

Yong, S. H., Horwrrz, S., aND REps, T. 1999. Pointer analysis for programs with structures and
casting. ACM SIGPLAN Not. 34, 5 (May), 91-103.

ZuANG, S., RyDER, B. G., aND Lanpi, W. 1996. Program decomposition for pointer aliasing: A
step toward practical analyses. In Proceedings of the 4th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (New York, Oct. 16-18). ACM Softw. Eng. Not. 21, 6,81-92.

ZHANG, X., GupTa, R., AND ZHANG, Y. 2003. Precise dynamic slicing algorithms. In Proceedings
of the 25th IEEE International Conference on Software Engineering. IEEE Computer Society
Press, Los Alamitos, CA. 319-329.

Received January 2005; revised April 2006; accepted June 2006

ACM Transactions on Software Engineering and Methodology, Vol. 16, No. 2, Article 8, Publication date: April 2007.



