PARSE - An Al Planning Assistant for Refactoring SEquences

Abstract

We investigate an open issue in refactoring, namely, the or-
dering of a sequence of refactorings (conflicts and depen-
dencies amongst the refactorings), and propose a novel so-
lution to the problem via the usage of a partial order plan-
ner from the field of Artificial Intelligence. We formulate
the problem as an Al planning problem and use Al planning
algorithms to come up with a suitable plan i.e. a suitable
ordering among the different refactorings chosen by the de-
veloper. The tool that we develop is called PARSE - An Al
Planning Assistant for Refactoring SEquences.

1 Introduction

At its heart, Software Refactoring [Fow99] simply refers to
the modification of the code, to improve its internal struc-
ture whilst preserving the external functionality. This re-
structuring essentially helps in the onerous task of software
maintenance. However, the actual task of refactoring is not
easy and in the absence of good tools can quickly become
tedious, error prone and time consuming. Since refactor-
ing largely remains an additional activity carried out by the
developer, he may not be willing to do it, unless it can be
done easily and the resulting code is correct. Thus tool as-
sisted refactoring techniques has seen fairly active research
in recent times. In this proposal we present an extant open
problem in this area and a novel solution to it.

Currently, we believe that the following are some of the
open problems in the area of tool assisted refactoring tech-
niques.

1. Correctness of refactored code: The code produced
due to refactoring by tools like Eclipse [IBMO05] is some-
times incorrect. The problem is particularly insidious
as the code produced is correct in a majority of the
cases, which may lull the developer into a false sense
of security. The problem occurs because the tools do
not perform sophisticated data flow analysis when do-
ing refactoring.

2. Ordering among a set of refactorings When con-
fronted with a set of refactorings which can be applied
to the code, the developer is currently not given any as-
sistance in deciding upon the ordering among them. It
could be that some refactorings are dependent on other
refactorings. Conversely, some refactorings may pre-
clude the application of other refactorings. This is the
open problem that we address in this paper.

3. Propagating refactoring changes to other software
artifacts: Code changes due to refactoring. However,
this change is not reflected in other software artifacts
like design specifications. Thus these documents are
rendered obsolete, hampering maintenance.

4. Refactoring test cases: After refactoring, the test cases
might have to be updated. Some test cases would no
longer be relevant, while additional test cases may need
to be added. Current tools do not handle this scenario.

5. Refactoring libraries: The repercussions of refactor-
ing of library code, especially the interface parts is not
handled well by the current tools. Currently, the library
developer must take a very conservative approach to
refactoring the interface related code, since the tools
do not inform which refactorings might actually break
the client code.

Thus refactoring provides a fertile area for research and
the research would be immensely beneficial to the software
development industry, allowing savings of millions of dol-
lars due to the decreased maintenance efforts.

1.1 Overview of the goals of our research

In this proposal, we will address one of the open issues stated
previously i.e. the ordering among a set of refactorings. Cur-
rently, the developer will have to manually determine the or-
der among a set of possible refactorings taking into account
conflicts among them and sequential dependencies. As with
any other manual process it can be cumbersome, prone to er-
rors and time consuming. Thus an intelligent tool that helps
in determining this order is the need of the hour and the aim
of our research is to develop such a tool. We will use Al

Planning for this and our tool is named, PARSE (Planning 2. A very long method - a method that does a lot of

Assistant for Refactoring SEquences). things and hence is long (say it has greater than 50
statements)

3. A very large class - a so called "God” class that rep-
resents too many things.

4. A function with a very long parameter list - This
indicates that the method is perhaps too complicated
and hence must be refactored.

5. Speculative Generality - an over-engineered design,
which has too much polymorphic behavior for future
use, that may never arise.

2 Background and state of the art

Software Refactoring [Fow99] is code modification, to im-
prove its internal structure whilst preserving the external func-
tionality. The primary aim in refactoring is not to fix bugs or
add new functionality, but to improve the code. When juxta-
posed with the aphorism, “If it ain’t broke, don’t fix it,”, one
may wonder at the need for refactoring at all. It is a well doc-
umented fact that software maintenance i.e. making correc-
tions to fix bugs and making changes to incorporate new fea- 2.1 Classification of refactorings
tures, is that phase of software development which consumes
the maximum resources, in terms of money and man hours.
Refactoring helps tremendously in software maintenance. It
can be viewed as a sophisticated cleaning up of code. The
main purpose of refactoring is to make the code easier to

We present a classification (catalog) of refactorings as de-
scribed in [Fow99], this will help in understanding the ex-
ample that is presented in the next section. Again, please
refer to [Fow99], for the complete set.

understand and modify. Understanding existing code and 1. ExtractMethod - Here a piece of code that can grouped

modifying it, is the leitmotif in software maintenance. together is extracted and made into a method of its
Opdyke [Opd92] provided the original definition of refac- own, thus promoting reusability.

toring behavior preservation. According to this, for the same 2. Pull Up Method - This typically occurs in an inher-

set of input values, the resulting set of output values should itance hierarchy due to copy-paste. Functions in the

be the same before and after the refactoring. sibling derived classes have the same code and hence
We can augment the behavior preservation to include the can be pulled up” to the base class.

following aspects as well: The performance of the program 3. Rename method - a method is named in an obscure

before and after the refactoring should remain the same i.e. it manner using abbreviations and acronyms, this can be

should take the same amount of execution time. The mem- “renamed” to something that clearly indicates its func-

ory requirements of the program must not increase drasti- tionality.

cally. 4. Replace magic number with symbolic constant - A
Refactoring is different from both performance optimiza- magic number like 12 is used instead of a more clear

tion and compiler optimizations. Performance optimization symbolic constant like NumberOfMonths.

tries to improve performance at any cost i.e. even at the 5. Form template method - Introduce the template de-

cost of making the source code more difficult to understand. sign pattern [GHIV95], by letting derived classes pro-

Compiler optimization occurs at the back-end i.e. interme- vide specific variants of an algorithm.

diate and machine code and is not concerned with the front
end i.e. source code.

Refactoring does not also mean a blind replacement of all 2.2 Benefits of refactoring
complicated constructs in a program with simpler constructs.

- - 3) The following describes the many benefits of refactoring [Fow99].
For example, replacing a binary search algorithm with the

simpler linear search is not refactoring. (The performance in 1. Software design improvement: A primary casualty

the worst case has degenerated). However, replacing a recur- of bug fixes and feature enhancements in software, is

sive version of binary search with the iterative version may its design. By refactoring, we can ensure that the de-

qualify as refactoring, if the developers are more comfort- sign does not decay.

able with non-recursive implementations. 2. Making software easier to understand: As has been
Refactoring opportunities in code are typically identified stated previously, this is the primary aim and benefit of

by “code smells”. We will provide a synopsis of the major refactoring.

“bad smells”. For more details please refer [Fow99]. The 3. Finding bugs: As we refactor code, we would be look-

major “smells” are: ing at it deeply to find refactoring opportunities. Dur-

ing this process we could also uncover dormant bugs

1. Duplicated Code - the same piece of code being re- in the code and fix them.

peated at different sections in the program. This can
occur due to the ubiquity of copy-paste.

2.3 State of the art

In this section, we focus on the research that has taken place
to address the refactoring challenges described previously.
We focus primarily on the research problem that is addressed
by us i.e. issues in a sequence of refactorings. We also
briefly describe other research in the field of refactoring.

Mens et al. [MTRO05, MTRO6] address the following
problem which is closely related to the problem discussed
in this paper. During refactoring, a developer may be con-
fronted with a number of refactoring options (these options
may be found manually by him or suggested by a tool). The
refactorings may have dependencies between them and it
could also be the case that a particular refactoring precludes
the application of another refactoring (conflict). Further a
particular refactoring may be feasible only after the applica-
tion of another refactoring (Sequential dependency). If the
number of refactoring options are large, then it may be dif-
ficult for the developer to choose among these options and
also to choose an optimal set of refactorings.

For this problem, they use critical pair analysis to detect
the conflicts among refactorings and sequential dependency
analysis of graph transformations. They represent the pro-
gram as a type graph and the refactorings upon it as graph
transformation rules. Refactoring pre-conditions are also in-
cluded. The main drawback of their method is as follows:
Critical pair analysis can be very time consuming. Sequen-
tial dependency analysis is not handled by their tool and
must be done manually.

The same authors in an earlier work [MEDJO5], provide
the formal theoretical foundation for representing refactor-
ings via graph transformation rules. They conclude that pro-
grams can be represented by graphs and in such a scenario,
refactorings are essentially graph transformation rules and
can be defined by graph rewriting rules.

In the following paragraphs, we present some other re-
search done in different areas of refactoring: Automatic iden-
tification of “bad smells” in code to detect candidates for
refactoring. Higo et al. [HKKIO04] use code clone analysis
to detect duplicated code fragments (clones), which as de-
scribed earlier are one of the first smells to look for while
refactoring. But their tool is restricted to clones and even
within that it does not identify all clones. Another interest-
ing work in this area is by Kataoka et al, [KEGNO1] who
use the concept of program invariants to identify candidates
for refactoring. In the absence of explicit invariants, their
tool DAIKON infers the invariants. They can identify smells
like unused parameters in a method which suggests the need
for RemoveParameter refactoring. A drawback is that they
use dynamic program analysis, and we know the traditional
shortcomings of dynamic program analysis i.e. it may not
be representative and is biased towards particular runs.

A different area of research deals with the identification
of refactorings after they are done. Given source code differ-

ences between any two versions of a program, there could be

anumber of changes due to bug fixes/feature addition/refactoring.

Which of these can be classified as actual refactorings? Weiss-
gerber and Diehl [WDO06], use signature based analysis and
clone detection (token based) to detect and rank refactor-
ings. (via code clone analysis). Demeyer et al. [DDNOO]
also address the issue by using a set of heuristics (4) based
on change metrics (The Chidamber and Kemerer [CK94],
Lorenz and Kidd [LK94]) to detect which of the changed
code can be classified as refactoring. But their excessive
reliance on metrics alone lead to a low success rate of iden-
tification of actual refactorings.

An issue in tool assisted automated refactoring is the cor-
rectness of the code produced after refactoring. Verbaere
et al. [VEdMO6] demonstrate some bugs in the refactored
code [EVO05]in the current IDEs like Microsoft Visual Stu-
dio [Mic05], Eclipse [IBMO05] and propose methods to over-
come it. They define a new scripting language JUNGL in
which refactorings can be expressed and utilize data flow
analysis and concepts from compiler optimization. Although
their method seems to overcome the bugs in refactored code
as compared with tools like Eclipse, it is very complex.

The problem of applying refactorings in libraries and evolv-
ing APIs has been addressed by Henkel and Diwan [HDOS5]
with their tool CatchUp! that captures the refactorings done
by a library developer. The client code developer then can
use the same tool to replay the refactorings and make re-
quired changes in his code to “catchup” with the evolved
library. The main drawback is that not every one may use
the same IDE to do the refactorings and so the synchroniza-
tion between library developer and library user becomes the
conflicting point. Further, developers may forget to turn on
the recordings when doing refactorings.

3 Challenges and goals

In this section we describe the open issue for which we pro-
pose a novel solution, in the next section. The open issue
is as follows: Consider a developer who has decided that he
wants to refactor his code. He would open the project in an
IDE like Eclipse [IBMO05]and try to detect some smells in
the code which make it amenable for refactoring. Detecting
which particular smell exists in code and hence which refac-
toring must be applied, is not our focus here. We assume
that either this is done manually by using human intuition or
by any one of the existing tools to help detect smells in code
[HKKIO4, KEGNOI1, SSLO1].

Once the developer has decided upon a set of refactorings
to apply to the code, the question that arises is: In what order
must he apply the different refactorings? Or, does the order
matter at all? i.e. applying the set of refactorings in any
order is the same. This is the crux of the problem that we
address in this paper. It turns out that the order does indeed

matter. More importantly, application of a certain refactor-
ing may preclude the application of another refactoring. This
is called conflict among refactorings. Further, a refactoring
may be possible only after the application of another refac-
toring before it (sequential dependency).

Thus it would be helpful to the developer if an automatic
ordering amongst the refactorings that he has chosen to in-
corporate, was provided. In the absence of this, he will have
to either find the suitable order himself, or apply it in a ran-
dom order. In the former case, it involves considerable ad-
ditional time to be spent to find the suitable order. In the
latter case, of applying the refactorings randomly, he may
miss a potentially more beneficial refactoring because of the
fact that it has been precluded due to an earlier refactoring.

3.1 Example

In this section, we describe a simple example to illustrate
the problem that we address i.e. refactoring sequence more
clearly. The figure 1 shows an inheritance hierarchy model-
ing an instructor at a typical American University. Specifi-
cally, we have an Instructor base class, with derived classes
for an AssistantProfessor, AssociateProfessor and Professor.
We are interested in the virtual function ComptSal, which
computes the salary. The unrefactored code is shown in fig-
ure 2.

There are several ”smells” in this piece of code which

makes it amenable to different refactorings. Firstly, the method

name does not clearly reflect its functionality and hence it
can be renamed to something more clear like ComputeSalary
via the RenameMethod refactoring. The piece of code within
this method that does the tax calculation can be extracted
into another helper method, ComputeTaxDeduction via the
ExtractMethod refactoring. Then we have magic numbers
denoting the tax rates and these can be turned into symbolic
constants via the Replace magic number with symbolic con-
stant refactoring. Finally, the method is almost the same
in all the three derived classes and hence can be moved up
into the base class, via the Pull Up Method refactoring. The
slightly specific portions related to the derived classes i.e.
the basic salary for different types of instructors can be han-
dled by introducing the Template design pattern [GHIV95].

Thus the applicable refactorings are: RenameMethod,

ReplaceMagicNumber With SymbolicConstant, ExtractMethod,

IntroduceTemplateMethod and PullUpMethod. Having de-
cided upon this set of refactorings, the next question the de-
veloper would have is the order in which the refactorings
must be applied.

Order 1: Suppose he chooses the following order for one
of the derived classes, say Professor::ComptSal

1. RenameMethod
2. ExtractMethod
3. ReplaceMagicNumber

Now, with this set of changes, he can no longer apply the
PullUpMethod from the derived classes, since the method
name and body would not be the same across all the derived
classes. Thus the RenameMethod and ExtractMethod pre-
cluded the application of PullUpMethod refactoring.

Order 2: Consider applying the refactorings in the fol-
lowing order:

. PullUpMethod

. RenameMethod

. ReplaceMagicNumber
. ExtractMethod

. Form TemplateMethod.

| O R S

This order ensures that there is no conflict between any ele-
ments amongst the set of refactorings and we can apply all
of them. The final refactored code is shown in figure 3.

Comparison of the different orders: It also turns out
that subjectively the resulting code due to order 2 is better
than the resulting code due to order 1. This is because, the
code for the salary computation and tax deduction is consol-
idated at one place, which makes the code easier to under-
stand and modify. Suppose the tax rates change (a typical
scenario) and we have to implement the ComputeSalary ac-
cording to the new tax rate, then the change needs to be done
only at a single place. Notice also that we have also intro-
duced the template design pattern [GHIJV95], for the basic
salary got by each type of an instructor. Thus the refactoring
is not merely cosmetic but has substantially cleaned up the
code and made it use well known design patterns, which is
always a good practice.

Response Time Any solution that solves this ordering
problem must have a fast response time since it should be re-
membered that currently, developers do not have a lot of time
to do refactoring and hence would like automated, quick and
accurate solutions

4 Proposed research

4.1 Planning

Since our solution to the problem entails the use of Al plan-
ning, we describe it briefly here. The interested reader can
refer to the [RN95] for more details. As we describe the con-
cept of planning, please notice how remarkably similar it is
to the problem of finding the ordering among a sequence of
refactorings and hence lends itself naturally as a solution to
the problem.

Planning:The task of coming up with a sequence of ac-
tions that will achieve a goal is called planning. Planning is
represented by states, actions and goals. A planning problem
consists of the following:

1. A description of the goal (in a formal language)

Instructor

Virtual ComptSal()

AssistantProfessor AssociateProfessor Professor

Virtual ComptSal()

Virtual ComptSal() Virtual ComptSal()

Figure 1: Class Hierarchy for the refactoring example.

virtual float Professor::ComptSal() <4— Refactor — Rename to ComputeSalary

// find the net pay by deducting the national tax, state tax
// from the basic pay of $120,000. The national tax rate is 30.25%, the state

// tax is 5.50%.
float netPay = 120000- ((0.3025*120000) - (.0550*120000));

return netPay;

}

virtual float AssociateProfessor::ComptSal()

// find the net pay by deducting the national tax, state tax
// from the basic pay of $100,000. The national tax rate is 30.25%, the state

// tax is 5.50%.
float netPay = 100000- ((0.3025*100000) - (.0550*100000)); «—— Refactor — Replace magic numbers

return netPay;

}
Refactor — Can be Pulled Up to base class, since it is

virtual float AssistantProfessor::ComptSal() 4— the same in all the sibling derived classes

// find the net pay by deducting the national tax, state tax

// from the basic pay of $80,000. The national tax rate is 30.25%, the state 4—‘

// tax 1s 5.50%.
float netPay = 80000- ((0.3025*80000) - (.0550*80000));

return netPay; Refactor — Based on the

} comments, ExtractMethod to
perform the TaxDeduction

Figure 2: Refactoring example - Before Refactoring

float Instructor::ComputeSalary()

// the GetBasicSalary returns different values
for different types of

// instructors like assistant professor,
professor. It is a protected virtual

// method, thus it is an instance of the
template design pattern.

float basicSalary = GetBasicSalary();
float taxDeduction =
ComputeTaxDeduction(basicSalary);

float netPay = basicSalary - taxDeduction;
return netPay;

}

float Instructor::
ComputeTaxDeduction(float basicSalary)
{

static const float NATIONAL TAX RATE
=0.3025;

static const float STATE TAX RATE =
0.0550;

float taxDeduction =
NATIONAL TAX RATE*basicSalary +
STATE_TAX RATE*basicSalary;

return taxDeduction;

}

virtual float Professor::GetBasicSalary()
{

static const float

PROFESSOR BASIC SALARY = 120000;
return PROFESSOR_BASIC_SALARY;

}

virtual float
AssociateProfessor::GetBasicSalary()

{

static const float

ASSOC PROFESSOR BASIC SALARY =
100000;

return

ASSOC PROFESSOR BASIC SALARY;

}

virtual float
AssistantProfessor::GetBasicSalary()

{

static const float

ASSISTANT PROFESSOR BASIC SALA
RY =80000;

return

ASSISTANT PROFESSOR BASIC SALA
RY;

}

Figure 3: Refactoring example - After Refactoring.

2. A description of the set of actions (operators) available
to achieve the goal, in a formal language;

3. A description of the starting state (also described in a
formal language)

An operator is described not only by its action, but also the
pre-conditions required by it and its effects i.e. the precon-
dition states what must hold in a state before the action can
be applied and the effect states the changes to the state as
a result of applying the action. When given the set of ini-
tial state, actions and goal, the planning algorithm will come
up with a sequence of actions such that beginning with the
initial state, the goal can be achieved using only the set of
available operators. The planning algorithm outputs a plan
i.e. a sequence of actions.

A partial order planner exploits any decomposition avail-
able in the problem and attempts to find a solution indepen-
dently to the sub problems. A combination of the indepen-
dent sub goal plans to achieve the overall goal is called a
linearization of the partial order plan. Partial order plans
have the following features:

1. A set of ordering constraints like A < B, which means
operator A must be executed before B (but not neces-
sarily immediately before).

2. A set of causal links of the form < A ¢ B >, where op-
erator A achieves a pre-condition c¢ for operator B to b
executed. The causal link also asserts that no operator
should execute in between that negates the effect that
operator A achieves for operator B.

Algorithms like GRAPHPLAN [BF95] and IPP [KNHD97]
exist which implement the partial order planning. We intend
to use them in our system.

4.2 Proposed Novel Approach

Having described the basics of planning, we now describe
our solution to the problem of finding an ordering among
a set of refactorings. If we treat the different refactorings
like Rename Method as operators, then we see that we can
formulate the entire thing as a planning problem. Informally,
the different parts of the problem are as follows:

o Initial State: The unrefactored program.

e Operators: The applicable refactorings like Rename
Method, Add Class

e Goal State: The refactored program.

To describe the operators we will use the notation used
by Roberts [Rob99] and specify the refactoring operators
with pre-conditions and effects. We will specify the pre-
conditions and effects for only a small catalog of refactor-
ings to illustrate the general idea. Further, strictly for use
with a real world planning algorithm, we will have to spec-
ify these using a formal language like First Order Logic, but

for ease of understanding, (and writing this paper) we will
denote it in a natural language, English.

¢ Rename Method (oldName, newName, class) : Re-
names the method in class from oldName to newName.

— Pre-condition: There should not be a method new-
Name in the class already. Method oldName should
belong to the class.!

— Effect: Method oldName no longer exists in class.
Method newName exists in class. All calls to old-
Name are changed to newName.

e Add Class (newClass) : Adds a new class newClass

— Pre-condition: There should not be a class new-
Class in the program already.?
— Effect: Class newClass added to the program.

e PullUp Method (methodName, derivedClass, par-
entClass) : Pulls up the method methodName in de-
rivedClass to a parent classparentClass.

— Pre-condition: There should not be a method method-
Name in the parentClass already. Method method-
Name should belong to the derivedClass. All classes
that are siblings of derivedClass i.e derived classes
at the same level, must have the method method-
Name

— Effect: Method methodName no longer exists in
derivedClass. It also does not exist in all classes
that are siblings of derivedClass. Method method-
Name exists in parentClass.

e Move Method (methodName, sourceClass, destina-
tionClass) : Moves the method methodName in source-
Class to destinationClass

— Pre-condition: There should not be a method method-
Name in the destinationClass already. Method
methodName should belong to the sourceClass.

— Effect: Method methodName no longer exists in
sourceClass. Method methodName exists in des-
tinationClass.

How do planning algorithms help? Here we describe
with our instructor example, how a planning algorithm can
detect a conflict and arrive at a suitable plan. Having for-
mulated the above set of refactoring operators; we have to
instantiate it for specific cases. In our example, we can in-
stantiate the Rename Method refactoring as RenameMethod
(ComptSal, ComputeSalary, Professor) and PullUpMethod
as PullUpMethod as PullUpMethod (ComptSal, AssociatePro-
fessor, Instructor). Suppose the RenameMethod is done be-
fore the PullUpMethod, then, its effect negates one of the

1We will ignore method overloading for the moment.
2With C++ namespaces, the same class name can exist in different namespaces, but
we will ignore this for simplicity.

pre-conditions for PullUpMethod namely, all the sibling de-
rived classes should have the same name is violated, since
the class Professor, would not have a method named Compt-
Sal at all. Thus in this instantiation, RenameMethod cannot
be done before PullUpMethod. A planning algorithm will be
able to detect such conflicts. It will also realize that in this
instantiation, Extract Method and Replace Magic Number
do not have any dependencies and hence can be ordered in
any way. Thus the planner will be able to produce a suitable
plan.

Tools such as Eclipse which allow refactoring, already
have an underlying representation for the program and use
this in the support that they provide for refactorings. We
would also use this programatically to instantiate a refac-
toring operator with the proper pre-conditions and effects.
Once this is done, this can be fed to a planning algorithm,
which would yield the plan. Please note that the developer is
only required to choose the different set of refactorings that
he wants to apply, the code over which this should be applied
and the input parameters to the refactoring operator like the
new method name for RenameMethod.

4.3 Formulation of the planning problem for refac-
toring sequences

Here we formulate the planning problem for the instructor
example. Note that we present a simplified version of the
operators and predicates.

o Initial State: NOT RenamedMethod(ComptSal) AND
NOT Pulled Up Method (ComptSal) AND NOT Re-
placed Magic Number AND NOT Extracted Method
AND NOT Introduced Template Method

e Goal State: The same as above, with all the NOTSs re-
moved.

e Operators: RenameMethod, PullUpMethod, Extract-

Method, ReplaceMagicNumber, Introduce Template Method

With these as the input, the partial order planner will
come up with a partial order like the one shown below:

1. PullUpMethod < FormTemplateMethod;
2. PullUpMethod < RenameMethod

One possible linearization of the plan is shown below:

1. PullUpMethod
2. ExtractMethod
3. ReplaceMagicNumber
4. FormTemplateMethod
5. RenameMethod

Evaluation Plans

We intend to do the following evaluation to test the efficacy
of our solution. Since planning has been traditionally expen-
sive in terms of memory and time requirements (P-SPACE

complete [RN95]), we will pay special attention to this. We
intend to perform both user studies and automated runs to
test our solution.

In the user study, we would assign developers (say 10 in
number) having varying degree of programming experience,
say 1-5 years, a reasonably sized programming project (LOC
> 5K) and the task of refactoring some portions of it (sim-
ilar to our instructor example). We will compare the effort
(time) it takes for the human subjects to come up with an
order among the sequence of refactorings and the time taken
by our system, using the planner. We will also compare the
actual order arrived at by the developers and our system, to
check for inconsistencies. This should give us a basic feel of
the utility of our system.

In the automated runs to test our system, we will write
scripts to automatically perform a set of refactorings (in a
random order) on a program. We will then feed the same
set of refactorings to our planning system and come up with
the plan. The experiment will continue, with an automated
application of the refactorings to the program, in the same
order as suggested by the planner. We will then apply the ob-
ject oriented metrics like Chidamber and Kemerer [CK94],
Lorenz and Kidd [LK94] on the random order refactored
program and the program refactored using the order speci-
fied by the planner. A comparison of the metrics in the two
cases, should again give an insight into the utility of the sys-
tem. Note that some subjectivity is involved in this, since
metrics is on the whole, a slightly controversial area. For ex-
ample, we cannot say that a program with 10 classes and 50
methods is necessarily better than a program with 5 classes
and 30 methods or vice versa. The metrics that we use will
be the ones suggested by NASA [NAS98] and will include
the following:

Cyclomatic complexity
Lines of Code

Comment percentage
Weighted methods per class
Response for a class

Lack of cohesion of methods
Coupling between objects
Depth of inheritance tree
Number of children

Further, we will use refactoring sequences of different
lengths like a set of 5, 10, 15 etc to test the usefulness of the
planning approach. In all the test cases, time and memory
usage will be monitored.

We plan to implement our idea as an Eclipse Plug-in,
PARSE (Planning Assistant for Refactoring Sequences). We
will also compare our tool with the AGG tool built by Mens
et al [MTRO5, MTRO6], since it too attempts to find con-
flicts among different refactorings using another approach
(critical pair analysis).

5 Summary of foreseen contributions

As described earlier, software maintenance is the most ex-
pensive phase of the software life cycle. Refactoring helps a
lot in alleviating the problem associated with maintenance.
For this, refactoring itself should be easy to apply, error free
and not very time consuming, else the developer would shy
away from doing the refactorings as he normally is under a
great time pressure. Discovering the ordering among a set of
applicable refactorings can be tedious, error prone and time
intensive. This is where our tool steps in and helps by au-
tomatically finding a suitable plan of action. The developer
now has to merely follow the suggested plan and apply the
refactorings.

References

[BF95] Avrim Blum and Merrick Furst. Fast plan-
ning through planning graph analysis. In Pro-
ceedings of the 14th International Joint Confer-
ence on Artificial Intelligence (IJCAI 95), pages

1636-1642, 1995.

S. R. Chidamber and C. F. Kemerer. A metrics
suite for object oriented design. IEEE Trans.
Softw. Eng., 20(6):476-493, 1994.

[CK94]

[DDNOO] Serge Demeyer, Stephane Ducasse, and Oscar
Nierstrasz. Finding refactorings via change
metrics. In OOPSLA °'00: Proceedings of
the 15th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and
applications, pages 166-177, New York, NY,

USA, 2000. ACM Press.

[EVO05] Ran Ettinger and Mathieu Verbaere. Refactor-
ing bugs in eclipse, intellij idea and visual stu-

dio., 2005.

[Fow99] M. Fowler. Refactoring: Improving the design

of existing code. Addison-Wesley, 1999.

[GHJV9S5] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-
Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[HDO5] Johannes Henkel and Amer Diwan. Catchup!:
capturing and replaying refactorings to support
api evolution. In ICSE ’05: Proceedings of the
27th international conference on Software engi-

neering, pages 274-283, 2005.

[HKKIO4] Yoshiki Higo, Toshihiro Kamiya,
Shinji Kusumoto, and Katsuro Inoue. Refac-

[IBMO5]
[KEGNO1]

[KNHD97]

[LK94]

[MEDJO5]

[Mic05]

[MTROS]

[MTRO6]

[NAS98]

[Opd92]

[RN95]

[Rob99]

[SSLO1]

toring support based on code clone analysis. In
PROFES, pages 220-233, 2004.

IBM. Eclipse ide, 2005. http://eclipse.org.

Yoshio Kataoka, Michael D. Ernst, William G.
Griswold, and David Notkin. Automated sup-

port for program refactoring using invariants. In
ICSM, pages 736743, 2001.

J. Koehler, B. Nebel, J. Hoffmann, and Y. Di-
mopoulos. Extending planning graphs to an
ADL subset. Technical Report report00088, 1,
1997.

Mark Lorenz and Jeff Kidd. Object-oriented
software metrics: a practical guide. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1994.

Tom Mens, Niels Van Eetvelde, Serge Demeyer,
and Dirk Janssens. Formalizing refactorings
with graph transformations. Journal on Soft-
ware Maintenance and Evolution: Research
and Practice, 2005.

Microsoft. Microsoft visual studio ide, 2005.
http://www.microsoft.com.

Tom Mens, Gabriele Taentzer, and Olga Runge.
Detecting structural refactoring conflicts us-
ing critical pair analysis. Electronic Notes
in Theoretical Computer Science, 127(3):113—
128, April 2005.

Tom Mens, Gabi Taentzer, and Olga Runge.
Analysis refactoring dependencies using graph
transformation. Software Systems Modeling
(SoSyM), 2006.

NASA. Applying and interpreting object ori-
ented metrics, 1998.

William F. Opdyke. Refactoring object-
oriented frameworks. PhD thesis, Champaign,
IL, USA, 1992.

Stuart J. Russell and Peter Norvig. Artificial in-
telligence: a modern approach. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1995.

Donald Bradley Roberts. Practical analysis for
refactoring. PhD thesis, 1999. Adviser-Ralph
Johnson.

Frank Simon, Frank Steinbruckner, and Claus
Lewerentz. Metrics based refactoring. In
CSMR, pages 30-38, 2001.

[VEdMO6] Mathieu Verbaere, Ran Ettinger, and Oege

[WDO06]

de Moor. Jungl: a scripting language for refac-
toring. In Dieter Rombach and Mary Lou Soffa,
editors, ICSE’06: Proceedings of the 28th Inter-
national Conference on Software Engineering,
pages 172-181, New York, NY, USA, 2006.
ACM Press.

Peter Weissgerber and Stephan Diehl. Identify-
ing refactorings from source-code changes. In
ASE ’06: Proceedings of the 21st IEEE Interna-
tional Conference on Automated Software Engi-
neering (ASE’06), pages 231-240, Washington,
DC, USA, 2006. IEEE Computer Society.

