Time Will Tell: Fault Localization Using Time Spectra

Cemal Yilmaz, Amit Paradkar, and Clay Williams
IBM T. J. Watson Research Center
. Hawthorne, NY 10532
{cyilmaz, paradkar, clayw}@us.ibm.com

ABSTRACT

We present an automatic fault localization technique which
leverages time spectra as abstractions for program execu-
tions. Time spectra have been traditionally used for perfor-
mance debugging. By contrast, we use them for functional
correctness debugging by identifying pieces of program code
that take a “suspicious” amount of time to execute. The
approach can be summarized as follows: Time spectra are
collected from passing and failing runs, observed behavior
models are created using the time spectra collected from
passing runs, and deviations from these models in failing
runs are identified and scored as potential causes of fail-
ures. Our empirical evaluations conducted on three real-life
projects suggest that the proposed approach can effectively
reduce the space of potential root causes for failures, which
can in turn improve the turn around time for fixes.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Debugging aids

General Terms

Measurement, Experimentation, Reliability

Keywords
Fault localization, Automated debugging

1. INTRODUCTION

Program debugging is a process of identifying and fixing
bugs. Identifying the root causes is the hardest, thus the
most expensive, component of debugging. Developers often
take a slice of the statements involved in a failure, hypoth-
esize a set of potential causes in an ad hoc manner, and it-
eratively verify and refine their hypotheses until root causes
are located. Obviously, this process can be quite tedious and
time-consuming.

Many approaches have been proposed in the past to fa-
cilitate fault localization. They all have the same ultimate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICSE’08, May 10-18, 2008, Leipzig, Germany.

Copyright 2008 ACM 978-1-60558-079-1/08/05 ...$5.00.

81

goal to narrow down the space of potential root causes for
developers, but a different way to achieve it.

Perhaps, the most eagerly studied type of approach is pro-
gram spectrum-based approaches. A program spectrum can
be considered as an abstraction of a program execution. Var-
ious forms of spectra can be defined. Statements executed,
branches covered, and call sequences observed in executions
are just few examples.

All program spectrum-based approaches operate in the
same way: Program spectra are collected from passing and
failing runs, models that capture the behavior of the pro-
gram as observed in passing runs are created, and then de-
viations from these models in failing runs are identified and
scored as potential causes of failures.

The fundamental assumption behind this approach is that
the “observed behavior” (as observed from passing runs) is
the same with respect to the abstracted feature as the “cor-
rect behavior” of the program (as documented in require-
ment specifications), or at least a safe subset of the correct
behavior. Therefore, any deviation from the observed be-
havior is considered as a deviation from the correct behav-
ior, even if it might not always be the case. Although a
highly debatable assumption, many studies suggest that it
may hold in practice [15, 14, 10, 4].

Our personal experience also supports this assumption.
We have often observed that comparing passing and failing
runs helps developers pinpoint the root causes of failures.
On the other hand, we also noticed that leveraging an ad-
equate type of program spectrum is the key to the success,
since it reduces the gap between the observed and the cor-
rect behavior models. To this end, we believe that the types
of program spectra currently in use today suffer from some
major limitations.

One common limitation is that the existing spectra focus
only on a very specific feature of program executions and
collect precise information about that feature. Although
the resulting abstractions are good at answering queries on
the monitored feature, they cannot answer queries on even
slightly different features. For example, statement coverage
information would tell which statements were executed in a
run, but cannot tell if two statements in a method were ever
executed together.

Another limitation is that existing spectra often do not
deal with sequences of events that happen in executions.
Even the ones that capture some form of sequence infor-
mation limit themselves to sequences of up to a certain
length [14] because of the combinatorial complexity involved
in analyzing sequences. Since a program execution is a se-

quence of state transformations, one could easily imagine
that effective modeling of sequences should be an important
part of any abstraction mechanism.

These limitations and many others are hard to address.
A program execution is a complex event. It consists of a
sequence of state transformations each of which comes to
existence as a result of complex interactions between many
factors. Therefore, it is genuinely hard to find the right level
of abstraction for program executions.

In general, it is possible to collect more detailed informa-
tion at runtime to come up with better abstractions. How-
ever, the overhead cost both in terms of the time overhead
required to collect the spectra and the space overhead re-
quired to store them often makes it impractical. Even if the
runtime cost is manageable, it is often unclear what to col-
lect and how to analyze such large amount of heterogenous
information to identify meaningful patterns and to create
observed behavior models.

In this paper we try something different. Rather than
dealing with these issues individually, we, in a sense, deal
with all of them at once by leveraging a simple program
spectrum, called a time spectrum.

Time spectra, e.g., traces of method execution times, have
been traditionally leveraged in performance debugging to
detect performance bottlenecks in the program code. Our
approach uses time spectra in a novel way, exploiting them
for functional correctness debugging by identifying pieces of
program code that take a “suspicious” amount of time to
execute. We call this approach Time Will Tell (TWT).

A time spectrum is relatively easy to collect (i.e., no com-
plex program analysis is required) and analyze. Yet it re-
flects everything that happens in an execution, including
sequences of events and complex interactions between vari-
ous factors. In a sense, time tells us about everything, yet
nothing in particular.

Our empirical evaluations of the TWT approach conducted
on three open source real-life projects suggest that time
spectra can be used to effectively reduce the space of po-
tential root causes for failures, which can in turn improve
the turn around time for fixes.

2. RELATED WORK

Agrawal et al. were one of the pioneers in the field to state
that the manifestation of failures is highly correlated with
differences in program spectra collected from passing and
failing runs [3]. They leverage statement coverage informa-
tion to compute the set difference between the statements
covered by passing and failing runs. The statements that ap-
pear in a failing run but not in any of the passing runs are
reported as potential sources of failures. Pan et al. provide
similar heuristics to localize faults by leveraging dynamic
program slices [13].

Jones et al. improve Agrawal’s work by allowing some
tolerance for faulty statements to be occasionally executed
by passing runs [10]. Their empirical studies suggest that
this tolerance often provides for more effective fault local-
ization. They assign a score to each statement executed in a
failing run, which reflects the likelihood that the statement
is faulty; the more a statement appears in failing runs and
the less it appears in passing runs, the more suspicious it
becomes.

Dallmeier et al.
defect indicator [4].

use method invocation sequences as a
They identify and score “suspicious”

82

sequences of method calls in failing runs in a similar manner
with Jones et al.

Reps et al. study the use of path spectrum in program
debugging with applications to the year 2K problems [15].
Their studies suggest that comparing path spectra provides
a heuristic for identifying paths in a program that are good
candidates for being date-dependent computations. Harrold
et al.’s empirical evaluations of several types of program
spectra support Reps et al.’s results by revealing that certain
types of spectra differences correlate with high frequency
with the exposure of regression faults [8].

Renieris et al. suggest that comparing a failing run only
to those passing runs that most resemble the failing run
can improve the accuracy of the approaches in localizing
faults, as opposed to comparing it to all or arbitrary passing
runs [14].

Many other types of fault localization approaches exist
besides the spectrum-based ones. These approaches can
be categorized into four broad categories: Model-based ap-
proaches [18, 17, 12], empirical analysis-based approaches [19],
static analysis-based approaches [6, 9], and dynamic analysis-
based approaches [11, 7].

The TWT approach is unique among the spectrum-based
approaches in its use of time to localize faults. In the next
section, we describe TWT in more details.

3. THE TIME WILL TELL APPROACH

Time spectra have been traditionally used in performance
debugging to identify hotspots in the program code, i.e.,
pieces of program code that account for the vast major-
ity of execution times. For this purpose, time serves as a
numerical value.

In TWT, our ultimate goal is to help developers reduce the
space of potential root causes for failures. To accomplish this
we use time spectra in many different ways. First, we use
time as an abstraction mechanism for program executions.
Second, rather than looking for hotspots, we identify pieces
of program code that take a suspicious amount of time to
execute. For example, in the TWT approach, it is irrelevant
if a method consistently takes long (or short) time to execute
across both passing and failing runs. On the other hand, if
the same method takes suspiciously longer or shorter in a
failing run compared to that in passing runs, we flag it.

The granularity of our analysis is at the level of a method.
We chose this granularity since methods provide well-defined
code and functionality boundaries. Consequently, a time
spectrum for us is a trace of method execution times col-
lected during an execution.

TWT takes as input a set of passing runs and a failing run.
At a high level, the TWT approach can be summarized as
follows: 1) time spectra are collected from the passing and
failing runs; 2) observed behavior models are created using
the time spectra collected from the passing runs; and 3)
deviations from these models in the failing run are identified
and scored as potential causes of the failure. The output of
the TWT approach is a ranked list of method invocations
observed in the failing run, sorted in descending order by
the level of their suspiciousness.

3.1 Time as an Abstraction Mechanism

We believe that the time metric has several attributes that
make it attractive as an abstraction mechanism to localize
functional bugs.

Method #24

path
<
?
|

pLo WM

r
1480 15.30

16.00 17.00 18.00 18.96

time in nanosec. (log scale)

(a) Clustering for method #24

path

Method #110

data —

LI nom
T T T
20.00 21.00

19.20 22.03

time in nanosec. (log scale)

(b) Clustering for method #110

Figure 1: Clustering of time measurements for method #24 and #110.

First, time reflects everything that happens during an exe-
cution, including complex runtime interactions between var-
ious factors (e.g., data flow, control flow, environment, etc.),
some of which could otherwise require complex and expen-
sive program analysis to analyze (if analysis is possible).

Second, time can be indicative of many things. For exam-
ple, the time needed to execute a method can provide clues
about the branches taken, methods invoked, and paths ex-
ercised during the execution of the method.

Last but not the least, since time is an aggregate mea-
sure, it seamlessly models sequences of events. For exam-
ple, a program execution can be considered as a sequence
of method invocations. A caller method invokes a callee
method to handle a piece of functionality and then uses the
result of the callee to fulfill its own requirements. There-
fore, it is desirable that the abstraction of the caller method
integrates the abstraction of the callee method. Time seam-
lessly supports such integrations; the time needed to execute
a caller method by definition includes the time needed to ex-
ecute its callee methods.

All programs in one form or another are eventually com-
piled into machine instructions and then executed. A time
cost is associated with executing each instruction. Conse-
quently, the time needed to execute simple sequential code
without any loops and branches is directly proportional to
the number and the type of instructions the code is compiled
into. Methods, depending on their input arguments and the
state of the program as well as the state of the environ-
ment, may exercise different paths, which may potentially
be compiled into different set of instructions. Therefore, in
theory, these differences should be reflected on the method
execution times.

3.1.1 A feasibility study

To evaluate the plausibility of this hypothesis in prac-
tice, we conducted a feasibility study where we used an
open source XML parser, called nanoXML. More informa-
tion about the subject application can be found in Section 4.

We instrumented the application and collected the time
spectra across 170 passing and 44 failing test cases. These
test cases came with the original nanoXML distribution. In

83

particular, we focused on the parseDTD method (method
#109), since its implementation was fairly easy to under-
stand. The purpose of this method is to parse the Docu-
ment Type Definition (DTD) portion of XML documents.
The DTD defines the legal building blocks of an XML docu-
ment. The functionality of method #109 was implemented
using two main methods: Method #24 which skips white
space characters in a DTD and method #110 which pro-
cesses DTD elements. These methods are called in a se-
quence until the entire DTD is parsed. Note that the actual
implementation of method #109 is somewhat more compli-
cated (e.g., it uses 6 methods not just 2). However, for
the sake of simplicity, we focus only on method #24 and
method #110. A total of 16 passing test cases exercised the
parseDTD method.

An initial question we had about the time measurements
we collected is whether they correlate with some features of
executions. If they don’t, then any analysis based on them
will obviously suffer.

Since time is an aggregate measure, i.e., it accounts for
every instruction executed from the start of a method to
the end, we chose to correlate the time to execute a method
with the path taken by the method.

We monitored the interprocedural path taken by method
#24 and #110. These methods were invoked a total of 187
and 156 times, respectively. All the invocations originated
from method #109. We then categorized similar paths into
groups. Our criterion for similarity ensures that 1) each
path belongs to exactly one group, 2) within a group, each
path has the same sequence of statements (the superset of
statements executed in loop iterations is computed an used
only once in a path), and 3) the differences in the number
of loop iterations within a group are at most three.

Figure 1 illustrates the clusters of similar paths we identi-
fied for each method. The horizontal axis denotes a method
execution time in nanoseconds (on a log scale). The vertical
axis denotes a cluster, except for the first row that depicts
all the data we had for the analysis. Each bar represents
a single invocation of a method. As the figure portrays,
we identified 8 clusters for method #24 and 9 clusters for
method #110.

(a) Time table.

body m24 mll0
262046 1627578 12781234
262882 1635777 12827700
200772 779428 10135366
267262 1699936 13145525
205427 10108827

789765

(b) Percentage table.

body m24 mll0
1.69 10.52 82.65
1.69 10.55 82.75
1.75 6.82 88.72
1.68 10.70 82.75
1.79 6.91 88.52

Table 1: Time and percentage table for method #109.

We then performed a similar type of clustering, only this
time we based our clustering solely on method execution
times; no path information was used. Our goal is to com-
pare the clusters obtained solely from execution-time infor-
mation to the ones obtained solely from path information
and evaluate how well these two different sets of clusters
correlate.

We leveraged the k-means [16] clustering algorithm to
cluster the method execution times. We then used the re-
sulting clusters (not shown here for space considerations)
to predict the path taken in each method invocation. This
was done by performing a classes-to-clusters analysis [16], a
well-known analysis technique for the purpose at hand. The
results were very encouraging. The clusters based solely
on method execution times were able to predict the path
taken in each method invocation with an accuracy of 85%
for method #24 and 94% for method #110. These results
suggest that the execution times of these methods could have
been a predicator of the paths taken by them and vice versa.

Another question we had about the time measurements we
collected was whether they identify some behavioral patterns
among methods; not just the behavior of a single method as
was the case in our previous analysis. This is important,
since deviations from such patterns can potentially signal
the presence of bugs.

Figure 2(a) plots the execution time of method #24 against
the execution time of method #110. Each point in the fig-
ure represents a single invocation of method #109. The time
measurements are aggregated and given in nanoseconds on
a log scale on both axes. For example, if method #24 is
called multiple times in an invocation of #109, the sum of
its execution times is used.

As the figure depicts there is a strong pattern between the
execution times of these two methods; when method #24
takes relatively longer to execute, method #109 takes rela-
tively longer. In fact, we found an almost perfect correlation
with a correlation coefficient of more than 0.98 between the
execution times of these methods. A correlation coefficient
ranges between 0 for a complete absence of correlation and
1 for a perfect correlation.

This makes perfect sense, since DTD elements are sep-
arated by white space characters. The more white space
characters in a DTD definition, the more DTD elements
there are to be parsed. Consequently, the more number of
times method #24 is called to skip white space characters
between the DTD elements, the more number of times the
method #110 is called to process the elements. As the fig-
ure depicts, the number of times each method is invoked is
reflected on the aggregate time measurements we collected,
which allowed us to capture the behavioral pattern.

Another thing to note about this figure is that there are

two obvious clusters in the data. An in-depth analysis re-
vealed that these clusters represent the similarities between
the DTD definitions used in the test cases.

We were pleased by the fact that a very small number of
data points (only 31) allowed us to capture some interest-
ing patterns. In TWT, the number of data points available
for analysis is dictated by the passing and failing runs that
we have no control over. Therefore, being able to capture
patterns on small amount of data is crucial.

Although the results of this feasibility study are by no
means conclusive, they are encouraging and were decisive in
our efforts to pursue the proposed approach.

3.1.2 Caveats

Our feasibility study also helped us identify some caveats
associated with using time measurements.

Imprecision in measurements. The resolution of the
time measurements is limited by the resolution of the soft-
ware/hardware clocks available today. A low resolution may
prevent us from detecting some important patterns.

Noise in measurements. The time to execute a piece
of code may differ from execution to execution because of
the noise imposed by the underlying platform. If not taken
into account, noise in measurements may lead to detecting
spurious patterns.

Dependency on software/hardware platforms. Time
measurements may vary from platform to platform. For ex-
ample, the same code may run faster on a more powerful
CPU than it does on a less powerful one. Factoring out
these dependencies would certainly improve the overall end-
user experience of the proposed approach.

The next section describes how we address these caveats
in creating observed behavior models.

3.2 Creating Observed Behavior Models

In TWT, the observed behavior models are created using
the time spectra collected from passing runs. The rationale
behind these models is to capture the statistical patterns
across executions where we know the program exposes the
correct functionality.

We create one observed behavior model for each method
encountered in passing runs. Execution times of method
invocations are collected, the measurements obtained from
different invocations of the same method are gathered in a
data set, and these data sets are used to create an observed
behavior model for each method. The model of the entire
program is then the collection of these individual models.

Handling imprecision in measurements. One way
we deal with the imprecision in time measurements is to use
a high resolution clock. In this work, we measure method ex-
ecution times at the level of nanoseconds (i.e., one billionth

Method #24’s vs. Method #110’s Execution Time

19.5
1

19.0
1

185
1

Method #24's execution time in nanosec. (log scale)

T T T T T T
23.0 232 234 23.6 23.8 24.0

Method #110's execution time nanosec. (log scale)

(a) Method #24 vs. Method #110

Countours
T o
g]
&
j=2]
S
~ow
g &7
o
e
©
S o
£ o
o N
£
5 2|
5 —
3
1]
£
2 2
N
3
°
o
= wn
o © -
= 7T T T T T T
23.0 23.2 234 23.6 23.8 24.0

Method #110's execution time nanosec. (log scale)

(b) A sample model for method #109

Figure 2: An example observed behavior model.

of a second), which is supported on almost all platforms
today.

Another way we deal with the imprecision is to use some
context information. In particular, we leverage caller-callee
information in creating the models. We itemize the execu-
tion time of a method to reflect the time spent in the body
of the method and the time spent in each callee method.
The time spent in a callee method is aggregated over the in-
vocations of the callee. If a method is called multiple times,
the sum of its execution times is used. Furthermore, we
compute the time spent in the body of a method as the exe-
cution time of the method minus the total time spent in the
callee methods.

Table 1(a) gives as an example a portion of the time mea-
surements collected for method #109 in a study. Each row
in this table represents a single invocation of method #109
in a passing run. The number of rows depicts the number
of times the method is called across the passing runs. Each
column represents the time spent in a callee or in the body.
For example, the first row depicts an invocation of method
#109 where it spent 262046 nanoseconds in its body, a to-
tal of 1627578 nanoseconds in method #24, and a total of
12781234 nanoseconds in method #110.

In the rest of the paper we refer to these tables as time
tables. A special value, -1, is used in these tables to indicate
the absence of the invocation of a callee method.

Each callee performs a portion of the caller’s functional-
ity. Therefore, the way we itemize the execution time of
a caller captures the fact that how much time the caller
spends in performing a particular functionality. This could
provide valuable information towards localizing bugs, since,
for example, the changes in ratios can signal deviations.

We have so far described how we prepare the data files we
use in creating observed behavior models. We now present
the way we create the models.

Handling noise in measurements. Two major factors
were effective in our decision on how to create the observed
behavior models. The models should be able to deal with
1) noise in measurements as discussed in Section 3.2 and 2)
clusters in data as discussed in Section 3.1.1.

85

Consequently, we opted to create observed behavior mod-
els using Gaussian Mixture Models (GMMs). Given a data
set, a GMM model first identifies the clusters in the data
and then models each cluster using a Gaussian distribution
(a.k.a. normal distribution). In other words, a GMM model
is a mixture of Gaussian distributions that fits a given data
set. GMM models are among the most statistically mature
methods. Furthermore, they are able to smooth over gaps
resulting from sparse data. This is a desirable property for
us, since we don’t have any control over the amount of data
we collect (in the sense that it all depends on the passing
and failing runs) and the data we collect may be sparse.

Figure 2(b) visualizes a GMM model created for method
#109 using the data set given in Figure 2(a). This type of
plot is called a density contour plot. A density contour plot is
a graphical technique for representing a 3-dimensional den-
sity surface by plotting constant density slices, called con-
tours, on a 2-dimensional format. Given a value of density,
lines are drawn for connecting the (z,y) coordinates where
that density stays the same.

As the figure depicts, the constructed GMM model cor-
rectly identifies the two clusters in the data, which are rep-
resented by the innermost ellipses. Consequently, the en-
tire data is modeled by a mixture of two bivariate Gaus-
sian distributions, one for each cluster. The centers of the
clusters represent the mean of the distributions whereas the
distance between contour lines provide clues about the vari-
ance and the skewness of the distributions. For example,
in Figure 2(a), the data points in the lower left cluster are
more scattered compared to those in the upper right cluster.
Therefore, the isodensity contour lines in the lower left por-
tion are farther away from each others compared to those in
the upper right portion. The numbers on the contour lines
denote the densities in log scale. As expected, the densi-
ties drop as we start moving away from the centers of the
clusters.

Note that the time table given in Table 1(a) provides a
portion of the data set used in Figure 2(a). In practice,
the GMM models are created using the entire time tables.
However, for visualization purposes, the GMM model given

in Figure 2(b) is created by using only two columns from
Table 1(a), namely column m24 and m110.

In TWT, we first prepare the time tables for methods
and then use them to create the GMM models, one for each
method. We refer to these models as time models. For us,
a time model such as the one given in Figure 2(b) captures
the observed behavior of a method.

Handling dependency on software/hardware plat-
forms. In an attempt to reduce the dependency of the ob-
served behavior models on platforms, we used time percent-
ages (as opposed to using actual time values) in creating the
models.

Table 1(b) illustrates an example percentage table which
was created from the time table given in Table 1(a). Each
row in a percentage table corresponds to a row in a time
table and is created by computing the percentages of time
for each column. For example, the first row in Table 1(b)
indicates that in this particular invocation 1.69% of the total
execution time is spent in the body, 10.52% in method #24,
and 82.65% in method #110. We refer to the GMM models
created from percentage tables as percentage models.

The rationale is that since time percentages are relative to
total execution times which are platform dependent, lever-
aging them could factor out the unwanted effect of plat-
forms. Although, in Section 4, we evaluate the performance
of percentage models alongside with time models in localiz-
ing faults on a single platform, we leave the evaluation across
heterogenous platforms to another study.

3.3 Detecting and Scoring Deviations

Observed behavior models are created using the time spec-
tra collected from the passing runs. In effect, they capture
the behavior of the program as observed in the passing runs.
In TWT, we report deviations from these models in failing
runs as potential causes for failures. This section describes
how we detect and score such deviations.

For a given failing run, we first create the time and per-
centage tables in the same manner as with the passing runs,
one table for each method. We then feed these tables to
the corresponding observed behavior models. For each in-
vocation record (i.e., each row) in these tables, the output
of a model is the density at the point represented by the
record. We treat these densities as a measure of deviation
from the normal behavior. Lower density readings signal de-
viations whereas higher readings are a sign of normality. We
then use the density reading for an invocation record as the
score of the suspiciousness of the invocation. For example,
the symbol *x’ given in Figure 2(b) represents an invocation
of method #109 in a failing run. From the perspective of
TWT, this invocation is a suspicious one, since the point is
located away from the centers of the clusters. This fact is
reflected in its low score, which is about -300 in log scale.

Once the scores are computed, they are sorted in ascend-
ing order and presented to the end-user as a diagnosis report.

4. EXPERIMENTS

We conducted a set of experiments to evaluate the TWT
approach. This section reports the results of these experi-
ments. We start with presenting our evaluation framework.

4.1 Evaluation Framework

The first challenge we faced in our experiments was evalu-
ating the quality of the diagnosis reports in localizing bugs.

86

A diagnosis report for a failing run is a ranked list of method
invocations encountered in the run, sorted by their level of
suspiciousness from the most suspicious one to the least.

One way of evaluating these diagnosis reports is to give
them to the developers of the system and observe how much
time it takes for them to locate the bug with and without
the report. Unfortunately, we didn’t have access to the de-
velopers of our subject applications. Instead, we chose to
automatically score each diagnosis report. We surveyed the
literature for a scoring scheme. However, we identified some
issues with the proposed schemes [10, 14].

The first issue we encountered is that the score given to a
diagnosis report by these schemes often reflects the percent-
age of the code entities, such as statements, branches, and
methods, that need to be examined before the bugs can be
located. However, the percentages are given relative to the
size of the entire program code [14]; not relative to the exe-
cution trace as it should be. Since each failing run exercises
often a small portion of the program code, such scores can
be misleading.

Another issue is that it is almost always forgotten [10]
that the diagnosis reports are meant to be processed by hu-
man beings which have very limited tolerance to false posi-
tives. For example, although a diagnosis report that ranks
the faulty statement as hundredth in ten thousand lines of
code may seem to be of very high quality in theory (i.e.,
it requires only 1% of the code to be examined), it might
not be the case in practice. This is mainly because of the
fact that this score does not give clues about the proxim-
ity of the first 99 reported statements to the actual faulty
statement; they could be scattered all around the code and
away from the faulty statement. Intolerance to false posi-
tives could prevent developers from starting with the first
reported statement and progressing down to the hundredth
reported statement.

Consequently, we developed our own scoring scheme. In
this scheme, we consider an execution as a sequence of method
invocations, which we call a call sequence. To address the
issue of intolerance to false positives, we consider only the
top ten ranked method invocations reported in the diagnosis
reports; the rest is ignored.

We assume that a breadth-first search is performed over
these top ranked invocations. In the first iteration, only the
reported invocations are considered, starting with the most
suspicious one working down to the least. At each step only
one invocation is examined and the search stops as soon as
the bugs are located, assuming that bugs are recognized on
sight. If the bugs are not hit in the first iteration, then a
second iteration starts by investigating the method invoca-
tions which in the call sequence are located right next (in
either direction) to the invocations examined in the previ-
ous iteration. These invocations are examined in the same
order as the previous iteration. The search continues iter-
atively until the bugs are found. The score for a diagnosis
report is then defined as the percentage of the method invo-
cations observed in the failing run that need to be examined
before the bugs can be located. Note that the percentages
computed in this scheme are relative to the dynamic call
sequence and not to the program code, which addresses the
first issue discussed above.

This scheme requires that the locations of the faults are
known, which was the case in our experiments. Once the
diagnosis reports are created for each failure, we use our

base faulty total passing failing
subject LOC classes methods versions versions tests tests tests
nanoXML 7646 24 574 4 25 2703 2299 404
XMLsecurity 16800 143 1378 3 12 1098 902 196
ant 80500 627 8399 6 20 12322 12231 91

Table 2: Subject applications used in the experiments.

scoring scheme to score them. The lower the score, the bet-
ter the diagnosis report is.

4.2 Creating Models

The next issue we faced in our experiments was how to
create the actual GMM models. For this purpose, we used
the MClust library of the R statistical package [2], which
fully automated the creation of the GMM models from the
time and percentage tables.

In the experiments, to improve the scalability of the ap-
proach, we actually took a fixed-size sample from each data
table before we fed them to MClust. Samples should be
taken with regard to the type of analysis that needs to be
performed on them. Since GMM models are concerned with
clusters and densities in data, we opted to take (in a sense)
cluster- and density-preserving samples. For each data ta-
ble, we automatically identified the clusters in the data using
the k-means clustering algorithm (a more scalable analysis
compared to MClust) and then took a weighted sample from
each cluster. The weight of a cluster was directly propor-
tional to the size of the cluster.

The size of our samples was around 1000 invocation records.

The strong patterns we observed in the data we collected and
the GMM’s ability to work with small amount of data (as we
haven seen in Section 3.1.1) were the two major factors in
choosing the number 1000. The time and percentage models
were then created using the sampled data.

In addition to the time and percentage models, we created
two more models, namely bare models and random models.
We now explain the intention behind creating these models
and how they are created, starting with the bare models.

Our observed behavior models leverage two types of in-
formation; execution time information and context informa-
tion, i.e., caller-callee information. In order to single out
the effect of using time spectra in localizing faults from the
effect of using context information, we created bare models.

Bare models were created using only the caller-callee in-
formation. This information was obtained by removing the
time measurements from the time tables. In other words,
each invocation record in a bare table reflects for each callee
method whether the method is called (indicated by 1) or not
(indicated by -1) in the invocation. Since the only difference
between the time/percentage models and the bare models is
the use of time, differences between the performance of these
models can safely be attributed to using time spectra. As
is the case with other types of observed behavior models we
create, bare models are in the form of a GMM model.

To demonstrate that the results we obtained are not by
chance, we created random diagnosis reports. A random
report for a failing run was obtained by randomly selecting n
method invocations from the run. To be fair in comparisons,
n is chosen in a way so that the number of suspicious method
invocations reported in the top ten rank is the same in the
random reports and in the reports obtained from the time
models. Note that multiple method invocations in a report

87

may share the same rank. We created 100 random reports
for each failing run, scored them, and used the average scores
in our analysis.

4.3 Subject Applications

We used three open source real-life applications written in
Java as our subject applications, namely nanoXML, XMLse-
curity, and ant. NanoXML is a lightweight XML parser for
Java. XMLsecurity is a component library implementing
XML signature and encryption standards. Ant is a build
tool, which is similar in terms of its functionality to the
UNIX’s make tool.

All the subject applications were taken from the Software-
artifact Infrastructure Repository (SIR) [5]. The purpose of
this repository is to provide a one-stop repository of open
source real-life programs for use in experimentation with
testing and program analysis techniques. SIR provided us
with several sequential versions of the subject applications
with seeded faults. To increase the external validity of re-
sults obtained on these faults, the faults were inserted by fol-
lowing a list of fault seeding guidelines [5]. To further ensure
that faults will correspond, to the extent possible, to faults
found in practice, fault seeding was performed by third-party
experienced developers who did not possess knowledge of
any specific experimental plan.

Table 2 provides further information about the subject
applications used in the experiments.

4.4 Experimental Setup

Each application in SIR comes with two flavors: a base
version and a faulty version. A base version represents the
original version of the application whereas a faulty version
is obtained by inserting a fault to a base version.

We first ran the test suites supplied by the base versions
across all the faulty versions created from them. The test
cases we used came with their own test oracles. Not all
the seeded faults were revealed by the test cases. To better
evaluate the TWT approach, we used only those faulty ver-
sions whose faults were revealed by at least one test case.
The rest of the faulty versions were ignored. Furthermore,
among the failing test cases only the ones that revealed a
fault were considered for evaluation. That is, we used only
those test cases that failed on a faulty version but passed on
the corresponding base version.

The columns 5-9 in Table 2 depict the number of base
and faulty versions, the total number of test cases, and the
total number of passing and failing tests for each subject
application used in the experiments.

We then implemented an instrumentation tool to collect
the time spectra, which is built on top of the Byte Code
Engineering Library (BCEL). Execution times were mea-
sured in nanoseconds using the System.nanoTime() method
and persisted to disk for offline analysis. The collected time
spectra are in the form of a call tree where each method
invocation is annotated with its execution time.

runtime passing failing Creating Models Diagnosing
subject overhead call tree call tree sampling | time percentage bare time percentage bare
nanoXML 0.66 2175.34 2167.29 0.50 3.10 3.40 3.10 60.79 60.82 60.71
XMLsecurity 0.54 1841.20 3451.24 0.43 2.21 1.71 1.86 74.18 74.18 74.13
ant 0.45 11887.73 10386.84 1.18 5.38 5.48 4.75 | 372.28 447.29 447.50

Table 3: Statistics about the experiments.

Our major concern in the instrumentation was to be as
unobtrusive as possible. For this purpose, we factored out
the runtime cost of instrumentation as much as possible. For
example, we adjusted the clock whenever the allocated data
buffers (used for storing spectra) are dumped to the disk.

Lastly, we implemented the TWT approach as a fully-
functional research prototype tool. Once the build files for
the subject applications were given, this tool automated the
entire process; no human intervention was required. For
each faulty version, the TWT tool instrumented the bina-
ries, ran the passing and failing tests, collected and parsed
the time spectra to produce the data tables, sampled the
data tables, created the observed behavior models, diag-
nosed each failing test, and then scored the diagnoses.

All the experiments were performed on an Intel Core Duo
machine running Windows XP OS with 2Gb of memory.

4.5 Evaluation

We evaluated the TWT approach using a total of 15432
passing and 691 failing test cases across the subject applica-
tions. The breakdown of these numbers for each application
is given in Table 2.

Figures 3-5 report the results we obtained. The plots given
in the first column depict the histograms of scores obtained
from the time models. In these plots, the horizontal axis
denotes a score interval and the vertical axis denotes the
number of diagnosis reports that fall into each score interval.
The plots given in the second column compare the effective-
ness of various types of models using Box-and-Whisker plots.
The horizontal axis denotes a type of model and the vertical
axis denotes a score. Each box in these plots illustrates the
distribution of scores obtained from a model. The lower and
upper end of a box represents the first and third quartiles
and the horizontal bar inside represents the median value.

As the histograms depict we obtained very encouraging
results. Out of 691 failing runs across the subject applica-
tions, 25% of the faults were located by examining up to
1% of the method invocations, 50.0% by examining up to
5%, and 63.7% by examining up to 10% of the method in-
vocations in failing runs. The breakdown for each subject
application can be computed from the histograms.

Furthermore, comparing these results to those of random
experiments revealed that they are not by chance. A non-
parametric Kruskal-Wallis test [2] identified statistically sig-
nificant differences between the time and random models
with a confidence interval of more than 99.99% in each case.

As is the case with all spectrum-based approaches, TWT
depends on having an adequate suite of passing runs in order
to reliably capture observed behaviors. An inadequate num-
ber of test cases may degrade the quality of the diagnoses.
We observed this phenomenon in the experiments conducted
on XMLsecurity. The average ratio of the number of passing
runs to the number of failing runs in a version of XMLsecu-
rity was around 4.6, a very small ratio compared to those of
the other subject applications. This low ratio reflected on

88

the quality of the diagnoses obtained; although 25% of the
scores were below 5 and around 56% were below 10, only a
small fraction of the scores was below 1. For nanoXML and
ant, the ratio was 8.4 and 123.9 and 31.7% and 42.9% of the
scores were below 1, respectively.

Another interesting observation is that sometimes the faulty
methods were invoked only in failing runs. Since no infor-
mation from passing runs was available for such methods,
we were not able to create their observed behavior models.
Therefore, we could not score their level of suspiciousness
in failing runs, which in turn adversely affected the qual-
ity of the diagnoses. The 6 faults whose diagnosis reports
got a score between 90 and 100 in Figure 3(a) were of this
kind, for example. Although such method invocations could
have been automatically assigned to the highest level of sus-
piciousness possible, we deliberately opted not to do so in
order to be able to reliably single out the effect of leveraging
time spectra in localizing faults.

Comparing time models to bare models revealed that us-
ing time spectra greatly improved the diagnosis of faults as
compared to not using them. For the nanoXML case, the
differences between the time and bare models were statisti-
cally significant (according to the Kruskal-Wallis test) with
a confidence interval of more than 99.99%. For the rest of the
subject applications, we observed pronounced practical dif-
ferences; time models (compared to bare models) provided
better diagnosis reports for 43% and 53% of the failures on
XMLsecurity and ant, respectively.

In almost all the cases where the time models performed
better than their bare counterparts, we observed that the
faults didn’t cause observable changes in the caller-callee
relations; the failing and passing runs exposed similar caller-
callee relations. However, the faults affected what methods
exercised in their body, which was captured by the time
models, but not by the bare models.

Comparing time models to percentage models on the other
hand revealed that the percentage models are almost always
as good as the time models. We created the percentage mod-
els as a means of factoring out the unwanted effects of un-
derlying platforms by normalizing the time measurements.
Although in these experiments we used a single platform,
our results suggest that if the normalization idea works in
practice, then the percentage models can safely be used to
localize faults across different platforms.

Table 3 presents some performance statistics about the
experiments. The columns of this table depict the subject
application used, the average runtime overhead of collecting
and persisting time spectrum for a run, the average number
of method invocations encountered in passing and failing
runs, the average time needed to sample data tables, the
average time needed to create observed behavior model for
a method, and the average time needed to diagnose a failure,
respectively. Note that model creation times are given per
method whereas the diagnosing times are given per failure.
Furthermore, all the time measurements are in seconds.

Time Model Comparing Different Models

128 100 -

128 o) o
120 = e
o
g -
80 | 8 j ,
100 — E ! '
H —— |
[-% K "
g€ 80 60 | ' .
§ 60 — % ' ;
5 40 1
H 1 ‘ ‘
2 404 :
27
20
20 1w B 19 17 a7 15
9
7
5 > 6 —
0 04
mT T T T 177 T T T T T T 1 T T T T
05 15 20 25 40 50 60 70 80 90 100 time percentage bare random
Score Model
(a) Histogram for the scores of diagnoses ob- (b) Comparing different models.

tained from the time model.

Figure 3: The results of experiments on nanoXMZL.

Time Model Comparing Different Models
60
7 M 70 4 ;
° |
0 |
50 - 60 o 5 '
e
. 2 ° g
5 40 501 °
g o °
o 8
é L, 40
S 30 S o
o n
5 30 o ' ! 1
£ |
E 204 | | :
z 20 ! . :
10 :
10 '
0 { 0 0o o o o o o
mT T T T 177 T T T T T T 1 T T T T
a 10 20 30 40 50 60 70 80 90 100 time percentage bare random
Score Model
(a) Histogram for the scores of diagnoses ob- (b) Comparing different models.

tained from the time model.

Figure 4: The results of experiments on XMLsecurity.

Time Model Comparing Different Models
40 - 39
70 o 8
o o
=] 8 g
60 o
=]
30 o © °
) 50 °
g = 3 5
['3 g o :
2 40 - o
g g ° S
2 20 S o
a n o
5 30 |
3 o
g § 8
H i ‘ |
w0 |1 0 - —_ . |
| | o
10 . i o
4 3 3 °
o 0o 0o o o E— °
mT T T T 177 T T T T T T 1 T T T T
a 10 20 30 40 50 60 70 80 90 100 time percentage bare random
Score Model
(a) Histogram for the scores of diagnoses ob- (b) Comparing different models.

tained from the time model.

Figure 5: The results of experiments on ant.

89

Although in our instrumentation tool we tried to be as
unobtrusive as possible by adjusting system clock to fac-
tor out the cost of instrumentation from measurements, we
didn’t pay much attention to the overall performance of the
tool. Therefore, in order to realistically assess the runtime
overhead of collecting time spectra, we decided to use a com-
mercial tool, called JProfiler [1]. With the right configura-
tion, this tool collected a proper superset of the information
needed by TWT. The runtime overheads given in Table 3
were obtained from JProfiler and expressed as a fraction rel-
ative to the execution time of the original program.

The overhead cost of collecting time spectra was reason-
able; around 55% of the original execution times on average.
Although the test cases used in our experiments had a short
lifespan (often around couple of seconds) and the overhead
ratios may vary for long-living test cases, we believe that
these results are encouraging. The cost of sampling and
creating observed behavior models per method was afford-
able; 0.70 and 3.44 seconds on average, respectively. Once
the models were created, the cost of diagnosing a single fail-
ing run was practical; around 60.77, 74.16, and 422.36 sec-
onds on average for nanoXML, XMLsecurity, and ant, re-
spectively. Note that the differences between the number
of method invocations observed in passing and failing runs
across the subject applications were reflected on the perfor-
mance. For example, diagnosing a failing run on ant took
longer, since failing runs on ant exercised more method in-
vocations on average.

4.6 Threats to Validity

All empirical studies suffer from threats to their internal
and external validity. For this work, we are primarily con-
cerned with threats to external validity since they limit our
ability to generalize our results to industrial practice.

One threat concerns the representativeness of the sub-
ject applications used in the experiments. Although they
are all real-life applications, they only represent three data
points. A related threat concerns the representativeness of
the seeded faults. Although these faults were taken from an
independent repository and they were seeded by experienced
developers, they are still hand-seeded faults. On a related
note, the faulty versions we used had a single fault only.

Another threat is that a majority of the test cases used
in the experiments designed for unit testing which is only
one type of testing. One characteristic of the unit test cases
is that they often have a short lifespan. Long running test
cases may introduce some scalability challenges especially
in terms of the amount of information that needs to be col-
lected from the executions. Handling such situation may
require replacing some of our offline analyses, such as sam-
pling, with their online counterparts.

While these issues pose no theoretical problems, there is
clearly a need to apply TWT to larger applications with real
faults in future work to understand how well it scales.

5. CONCLUDING REMARKS

In this paper we present an automatic fault localization
technique, called Time Will Tell (TWT). TWT leverages
time spectra as abstractions for program executions. Time
spectra have been traditionally used for performance debug-
ging. By contrast, here we use them for functional correct-
ness debugging by identifying pieces of program code that
take a “suspicious” amount of time to execute.

0

The proposed approach can be summarized as follows:
Time spectra are collected from passing and failing runs,
observed behavior models are created using the time spec-
tra collected from passing runs, and deviations from these
models in failing runs are identified and scored as potential
causes of failures.

We conducted several experiments on three open source
real-life applications to evaluate the TWT approach. De-
spite the external threats to validity discussed, we believe
that the results of our experiments support our basic hy-
potheses: 1) execution times can be indicative of many things
that happen in executions, e.g., path taken, branches cov-
ered, methods invoked etc., 2) by using time spectra im-
portant behavioral patterns in executions can be detected,
3) these patterns can effectively be captured in “observed
behavior models”, and 4) deviations from these models in
failing runs can give clues about the location of faults.

We believe that this line of research is novel and inter-
esting. As a next step, we are currently in the process of
running large scale comparative studies to evaluate various
well-known automatic fault localization techniques.

6. REFERENCES

[1] ej-technologies. http://www.ej-technologies.com.

[2] The Rstat Project. http://cran.r-project.org.

[3] H. Agrawal, J. Horgan, S. London, and W. Wong. Fault
localization using execution slices and dataflow tests. In ISSRE
’95, pages 143151, 1995.

[4] V. Dallmeier, C. Lindig, and A. Zeller. Lightweight defect
localization for java. In ECOOP’05, pages 528-550, 2005.

[5] H. Do, S. G. Elbaum, and G. Rothermel. Supporting controlled
experimentation with testing techniques: An infrastructure and
its potential impact. Empirical Software Engineering: An
International Journal, 10(4):405-435, 2005.

[6] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In OSDI’00, pages 1-16, 2000.

[7] S. Hangal and M. S. Lam. Tracking down software bugs using
automatic anomaly detection. In ICSE ’02, pages 291-301,
2002.

[8] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi. An
empirical investigation of the relationship between
fault-revealing test behavior and differences in program
spectra. STVR Journal of Software Testing, Verification, and
Reliability, (3):171-194, 2000.

[9] D. Hovemeyer and W. Pugh. Finding bugs is easy. SIGPLAN

Not., 39(12):92-106, 2004.

J. A. Jones, M. J. Harrold, and J. Stasko. Visualization of test

information to assist fault localization. In ICSE ’02, pages

467477, 2002.

B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug

isolation via remote program sampling. In PLDI ’03, pages

141-154, 2003.

C. Mateis, M. Stumptner, D. Wieland, and F. Wotawa.

Model-based debugging of java programs. In AADEBUG 00,

2000.

H. Pan and E. Spafford. Heuristics for automatic localization of

software faults. Technical Report SERC-TR-116-P, Purdue

University, 1992.

M. Renieris and S. Reiss. Fault localization with nearest

neighbor queries. In ASE 03, pages 30-39, 2003.

T. Reps, T. Ball, M. Das, and J. Larus. The use of program

profiling for software maintenance with applications to the year

2000 problem. Softw. Eng. Notes, 22(6):432-449, 1997.

P. N. Tan, M. Steinbach, and V. Kumar. Introduction to data

mining. Addison Wesley, 2006.

C. Yilmaz, M. B. Cohen, and A. Porter. Covering arrays for

efficient fault characterization in complex configuration spaces.

SIGSOFT Softw. Eng. Notes, 29(4):45-54, 2004.

C. Yilmaz and C. Williams. An automated model-based

debugging approach. In ASE ’07, pages 174-183, 2007.

A. Zeller. Isolating cause-effect chains from computer programs.

In SIGSOFT ’02/FSE-10, pages 1-10, 2002.

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

