
Automatically Generating Test Cases Using UML Structure
Diagrams

Name Withheld
Department of Computer Science

University of Delaware
Newark, DE, USA

Name Withheld
Department of Computer Science

University of Delaware
Newark, DE, USA

December 10, 2009

1 Abstract

We are proposing a new way to utilize UML diagrams
of programs to automatically generate test cases for
those programs. Previous work has investigated the
use of UML diagrams as a means of generating test
data in various ways. Our method combines a few
of the most effective of these methods to create a
broader algorithm. We feel that our method will al-
low software developers to generate test cases with-
out any additional effort because they are utilizing a
UML model that they have already had to create to
develop their software. We test the effectiveness of
our method by evaluating its performance on a vari-
ety of large Java projects and comparing its results
to those of the current state-of-the-art methods. We
plan to run our evaluation on a variety of open source
and industry software and a large banking software
project to prove that our method is more effective
than the separate methods that we are combining to
create our algorithm.

2 Introduction

Software testing is extremely costly, where a large
amount of time is spent in creating manual test cases.
To avoid the manual laborious task of software test-
ing, researchers have focused on automating software
testing to save cost and time. Every time a user ex-
ecutes a program, it gets tested. So testing is to be

done in a way so that the highest possible number
of errors can be reduced systematically. There have
been many attempts to develop an efficient and effec-
tive ways to automate software testing to save devel-
opers time significantly. We feel that the use of the
Unified Modeling Language to automatically gener-
ate test cases will allow for the best coverage and
requirement-aware test case to be generated while
saving developers valuable time.

UML is a standardized modeling language
used extensively in the field of software engineering.
The best feature of UML is that, it explains all the
functionalities of a system with the help of diagrams.
This diagrammatic representation is fairly easy to un-
derstand for developers while they are working on an
application as it includes even the minute details of
the application. The latest version of UML has 14 di-
agrams which are categorized based on two hierarchy
levels.[9]

• Behavior Diagram:
Behavior diagrams provide an explanation of the
system as a whole. They models the behavior of
system in the form of diagrams. Some of the
basic examples of behavior diagrams are Activ-
ity diagrams, State Machine Diagrams and Use
Case Diagrams.

• Structure Diagrams:
Structure Diagrams are entirely different form
the Behavior diagrams in a way that they do

1



not model the system as a whole, rather they
model what should be there inside the system
that is being modeled. Our proposal is based on
UML Structure Diagrams, for example: Class
Diagram and Object Diagram.

In this proposal we will be concentrating on two spe-
cific UML Structure Diagrams:

• Class Diagram:
Class Diagrams are UML structure diagrams
which explain the system by showing its classes
and relationship between them and attributes.
Class diagrams can be read through Java scripts
and by parsing through a document which ex-
plains all its entities, relationship in the form of
a grammar. Figure 1 shows an example Class
Diagram.

[Fig 1: Example of Class Diagram]

• Object Diagram:
An object diagram is another kind of UML struc-
ture diagram that focuses on features related to
an object like Object instances and its attributes
links between those instances. Similar to class
diagram an Object Diagram can be read using
java scripts and by parsing through the docu-
ment that lists all the features in the form of
a grammar. Figure 2 shows an example Object
Diagram.

[Fig 2: Example of Object Diagram]

The use of UML diagrams allows us to generate
test cases early during the software development pro-
cess. This functionality will allow us to identify the
bugs and problems in the overall design of the code
early. Hence, this approach will save more time. The
use of UML diagrams limit us to testing of software
written in Object Oriented languages, but a large
number of enterprise level programs are based on this
methodology today.

3 Background

The use of UML diagrams to automatically gener-
ate test cases began with the work of Chevalley and
Thkvenod-Fosse in 2001[3] when they used statistical
functional testing to generate test cases from UML
state diagrams using transition coverage as the test-
ing criterion. Their work looked forward to working
with java and acted as the starting point for further
research into the use of UML in automatic test case
generation.

Previous work from Samuel, Mall, and
Kanth[2] on the automatic generation of test cases
from UML communication diagrams investigates
transforming a UML sequence diagram into a tree
representation and then information is extracted
based on post-order traversal and selecting condi-
tional predicates. This method makes it possible to
generate cluster level test cases even before the code

2



is written. Their approach has been tested rigorously
based on branch and path coverage, full predicate
coverage and boundary criteria. Later research from
Karma, Kundu, and Mall[1] has proposed a solu-
tion that transforms a UML sequence diagram into a
graph called the sequence diagram graph (SDG) and
augments the SDG nodes with different information
necessary to compose test vectors and then trans-
verses this SGD to automatically create test cases.
Their method was tested on C++ examples and prop-
erly generated test cases with their algorithm that
has an n squared worst case running time.

Gnesi, Latella, and Massink[4] investigated
generating test cases by generating a semantic model
for a behavioral subset of UML state charts using an
algorithm based on Algebra and Lambda Calculus
that automatically generates test cases using inputs,
set of events and possible outputs of state charts.
Their algorithm generates a single test case by se-
lecting an event non-deterministically at each call.

A tool, the GenTCase tool, created by Nebut,
Fleurey, Traon, and Jezequel[7] works after finaliz-
ing a use-case diagram and then searching through
the use-case to extract information to aid in generat-
ing test cases. Functional and System requirements
are extracted using meta-data index search which is
matched through a database of existing keywords to
generate test cases.

Past work has also looked into generating test
Cases using activity diagrams from UML Mingsong,
Xizokang, and Xuandong[5] have worked on extract-
ing information from the activity diagram and gen-
erating test cases using information like selecting the
path coverage of an activity diagram, selecting the ex-
ecution trace and selecting the activity and transition
coverage. They implemented an algorithm to find
these correlations in an activity diagram by consid-
ering an activity diagram as a petri-net. Their later
work in the same field dealt with coverage-driven gen-
eration of test cases from activity diagrams where
data is extracted from activity diagram through pars-
ing and then provided to a fault generator and a for-
mal model providing test cases as output. This allows
for control flow from activity diagrams and data flow
from test criteria to be used to extract structure and
behavior of the specification [6].

Test Case generation using UML diagrams and
models was a success, and soon many new researchers
started developing more creative approaches. Most
recent work by Lamancha, Usaola, and Velthius[8]
has looked into using an automated testing frame-
work to manage variability in the UML testing pro-
file. They propose an extension to the UML testing
profile to manage vulnerability in testing software
and focus on the test case behavior represented by
sequence diagrams and defines an extension to UML
interactions for SPL. They also define a model to han-
dle the variability in SPL testing, reusing the meta-
model defined by the UML Testing Profile, currently
testing using QVT which is a model transformation
language.

However, all these research efforts prove that
automatically generation of test cases has been well
exploited in the case of behavioral UML diagrams.
Thus, we hereby try propose a new approach which
will not only focus on the system as a whole but will
also look at what is inside the model that keeps it
running. We will achieve this by exploring the testing
based on structural UML diagrams.

4 Challenges and Goals

4.1 Challenges

We face three major challenges when striving to au-
tomaticlay generate test cases for web applications
through the use of UML. Our first challenge is that we
still have a manual step of code instrumentation for
our approach. Although this will be a small set which
can be implemented by the developer given a set of
instructions, it might become cumbersome while us-
ing a large application for testing. We are currently
working to find a way to automate this process. Our
next challenge arises due to the fact that Java is a
complex language with a large amount of features.
While automatically generating test cases for class
diagrams we might face issues with abstract meth-
ods or classes or multiple inheritances. We need to
make sure that all these features can be accessed eas-
ily from our approach. Lastly we have the issue that
arises when a test case runs on a particular method

3



it makes sure to test the functionality of only that
method. Consider the method under test is calling
another method, for which a test case is not defined.
There is some work done before to handle such condi-
tions while automatically generating test cases. [10]

4.2 Goals

Our three major goals for our approach are an over-
all reduction in testing time, a maximization of code
coverage and and efficient implementation of our tool.
Our approach will be concentrated on reducing the
time required for creating and generating test cases,
hence saving tremendous resources of development
team. Code Coverage is a key factor in analyzing the
quality of test cases. We plan to measure the branch
coverage, statement Coverage and overall code cover-
age of our implementation. We also plan to integrate
our approach into a tool which will provide an easy
way for developers to implement our method on their
own projects. This tool will focus on generating test
cases and executing them in an efficient and devel-
oper friendly manner.

5 Proposed Research

Our approach is divided into six major sections in-
cluding generating test cases and reducing irrelevant
test cases. We plan to design and implement our ap-
proach for Java Applications as Java strictly follows
paradigms for Classes and Objects. This technique
will be implemented as two different algorithm which
will be embedded in a tool for automation. Figure 3
provides an overview of our proposed approach

[Fig 3: Proposed Approach]

5.1 Code Instrumentation

To capture the execution trace, we plan to instrument
the code under test. Program instrumentation is a
popular dynamic testing method. We plan to track
the number of times the instrumented code runs. It
will also provide us information used for reducing re-
dundant test cases. We are planning to use the same
approach as used by Mingsong et al[5] in Automatic
test case generation for UML Activity diagram. The
program under test will act as an input for this phase.
The instrumented code will make sure that all the
classes that are being accessed during execution get
added to a Class List. We will use this generated set
for creating test cases as explained in later phases.
Code instrumentation needs to be done manually by
the developers.

5.2 Test Cases for Object Diagrams

This step will be responsible for creating test cases as
per the Object Diagrams. We will be using the Class
List generated in previous step to achieve this. We
will extract the features of all the classes mentioned
in Class List by parsing through the required Java
file. These features will mainly be the method names,
their parameters and return types, return type for the
class etc. By extracting all these features we are basi-
cally accessing Object Diagrams. To confirm the cor-
rectness of extracted parameters users can match the

4



generated features with the given Object Diagram.
All these features are represented in Object Diagrams
as shown in Figure 2. We will then generate abun-
dant test cases based on the extracted information.
Class List can have certain class names more than
once. This may lead to more number of test cases on
the same class or method. We do not handle this is-
sue here as we will be reducing the number test cases
in further steps.

5.3 Test Cases for Class Diagrams

In this step we will concentrate on creating test cases
based on Class Diagram. The approach used will
be similar to the previous step. The only difference
here will be that instead of extracting features of the
class, we will be extracting the relationship of the
class with other classes. By extracting the relation-
ship between classes we will be having a mapping of
class diagram. A user will be given the flexibility to
compare the extracted information with given class
diagrams. We can then create abundant test cases
based on the related classes. Again as we will have
classes more than one time in Class List we will keep
generating test cases for them. These redundant test
cases will be reduced in later steps.

5.4 Measuring Execution Trace

After running the test cases generated above we get
the execution trace of the program under test. We ex-
tract this information with the help of instrumented
code. By execution trace we mean, we calculate the
number of time a method is called, a class gets in-
stantiated etc. Using execution trace we analyze the
control flow of the application. This information will
help us in reducing the abundant test cases to a test
suite with relevant test.

5.5 Reducing Redundant Test Cases

In this phase we will begin with the test cases
generated by UML Object diagrams and then with
Class diagrams. We will be having several test
cases created for a single object diagram and class
diagram. We will start with the test cases generated

by Object diagrams and compare them with the test
cases generated by class diagram. If we find that a
test case from the Object diagram contradicts the
test case of class diagram, we will alert the user that
there is an inconsistency in their UML diagram.
This conflict can lead to a problem with the theory
or structure that their software is based upon. We
will then union the set of test cases generated and
will remove any redundant test case generated by a
component, to make sure the tests will run in the
most efficient manner. This algorithm will handle
the multiple test cases generated for object and class
diagram.
Our algorithm:

1. Gather test cases from information
in class diagrams and place in test set A
2. Gather test cases from information in
object diagrams and place in test set B
3. Search for components of A that conflict
with components of B
4. If conflict = true, result=error
5. Search for components of B that conflict
with components of A
6. If conflict = true, result=error
7. If result !=error ,return test set = union
(set A, set B)

We will make sure while implementing this al-
gorithm that the statement coverage and complete
code coverage is not hindered.

5.6 Analysis of Behavior of Class Di-
agram

We will also provide a complete analysis on the be-
havior of Class diagrams. We can predict the effi-
ciency and nature of testing on Class Diagrams. We
analyze the different relationships in class diagrams
and measure the complexity of application based on
their class diagram. This behavior can be evalu-
ated based on inheritance relationships and class re-
lationships like association, aggregation, realization
etc. This approach will be implemented by analyzing
the code coverage and line coverage. We will evaluate

5



this based on how reachable is the application code in
case of high level dependencies between classes. We
can assure that there has not been any tremendous
work done on analyzing behavior of Class Diagram
using application testing.

5.7 Tool Implementation

As a final stage of our approach we plan to implement
this approach, as a real time tool. This tool will re-
duce the testing time to a large extent by performing
automated testing based on Class Diagrams and Ob-
ject Diagrams. Our tool will be used extensively for
Java applications and will perform testing on a re-
duced set of most relevant test cases. For the Java
platform the tool will be using the JUnit library for
testing in Java. This will be responsible for running
the tests on its own and providing users with the list
of all test cases implemented as a test suite in Java.

6 Evaluation Plan

We will evaluate our method by assessing the code
coverage achieved by the automatic test cases gen-
erated by our algorithm. Code coverage is the mea-
sure of amount of code covered by executing a test
suite. As we are testing individual classes, objects
and components, we plan to get a better coverage
than achieved by testing behavior models. We have
planned to perform the experiment on fifty Java
projects selected from both the open source commu-
nity and industry. These applications will have code
ranging from 500 lines to 100000 lines and will include
both projects commonly used in related studies and
new applications we have found.

We have also planned to run our automatic
test case generation tool on a live software appli-
cation developed in Java for an investment banking
firm. We have chosen a banking firm as they per-
form critical transaction all throughout. We plan to
compare our results by testing the open source ap-
plication with the other strategies implemented by
researchers working on behavior models. To test the
real time application we will collect data from the
firm developing the investment banking application

after they have completed the manual testing. We
will compare as how close to manual testing our tool
can reach.

The last portion of our evaluation will test our
method’s ability to find faults that we have seeded
in our set of test programs. We will seed a variety
of errors in our programs and record the total num-
ber of faults found correctly, false positive faults, and
faults missed. We will also evaluate four other state
of the art tools on these programs to determine if our
method has higher precision and recall values than
the other current state of the art methods.

We will also compare the results of our test
to the different components of UML diagrams used
alone to generate test cases to assure that the combi-
nation of these methods are statistically significant.
We will only compare the ability to find seeded faults
and the overall code coverage of these methods ver-
sus the ability to find seeded faults and the overall
code coverage of our method because we are fairly
sure that the our combined method will be slower
than any one singular method attempted previously.
We will require that our method does perform out
method in a reasonable amount of time, preferably
less than the sum of the time it would take to run
each of the component methods individually.

Our approach is entirely different from Auto-
matic Test Case Generation for UML activity dia-
gram as mentioned in [5]. We are performing our
analysis on Class and Object diagram whereas the
former uses UML activity diagram. Activity dia-
grams provide information about system as a whole,
and is a part of BlackBox Testing. Our approach
is entirely based on Classes and Objects and can be
considered as White Box testing. We will be using a
modified version of the Code Instrumentation tech-
nique to reduce the irrelevant test cases from an al-
gorithm first implemented by Mingsong et al.[5].

7 Foreseen Contributions

Our tool will allow users to more accurately test their
applications and improve the speed of their testing
to improve software roll out times and save develop-
ment companies considerable funds during their test-

6



ing phase. The use of our tool will be easy for users to
integrate into their software development because it
requires no extra work and relies completely on doc-
umentation and conventions that are already used in
Java development.

We are hoping that our implementation of our
algorithm will allow developers and testers to quickly
and effectively create test cases that are only testing
the specifications of the project instead of all possible
cases. These black box tests are more efficient in
time use than creating white box tests for the entire
project to be tested. In the future we plan to expand
this tool to work for multiple languages and add in
more elements of UML information as we find that
they add significance to the model through further
expansion and testing of our tool.

References

[1] Monalisa Sarma, Debasish Kundu, Rajib Mall,
Automatic Test Case Generation from UML Se-
quence Diagram. Advanced Computing and Com-
munications, International Conference on, pp.
60-67, 15th International Conference on Ad-
vanced Computing and Communications (AD-
COM 2007), 2007.

[2] Samuel, P., Mall, R., and Kanth, P. 2007.
Automatic test case generation from UML
communication diagrams. Inf. Softw. Tech-
nol. 49, 2 (Feb. 2007), 158-171. DOI=
http://dx.doi.org/10.1016/j.infsof.2006.04.001.

[3] Philippe Chevalley, Pascale Thvenod-Fosse, Au-
tomated Generation of Statistical Test Cases from
UML State Diagrams. Computer Software and
Applications Conference, Annual International,
pp. 205, 25th Annual International Computer
Software and Applications Conference (COMP-
SAC’01), 2001.

[4] Stefania Gnesi and Diego Latella and Mieke
Massink and Via Moruzzi and I Pisa. Formal
test-case generation for uml statecharts. Proc. 9th
IEEE Int. Conf. on Engineering of Complex Com-

puter Systems. 2004. pp.75-84. IEEE Computer
Society.

[5] Mingsong, C., Xiaokang, Q., and Xuandong, L.
2006. Automatic test case generation for UML
activity diagrams. In Proceedings of the 2006
international Workshop on Automation of Soft-
ware Test (Shanghai, China, May 23 - 23, 2006).
AST ’06. ACM, New York, NY, 2-8. DOI=
http://doi.acm.org/10.1145/1138929.1138931.

[6] Chen, M., Mishra, P., and Kalita, D. 2008.
Coverage-driven automatic test generation for
uml activity diagrams. In Proceedings of the 18th
ACM Great Lakes Symposium on VLSI (Orlando,
Florida, USA, May 04 - 06, 2008). GLSVLSI
’08. ACM, New York, NY, 139-142. DOI=
http://doi.acm.org/10.1145/1366110.1366145.

[7] Clementine Nebut, Franck Fleurey, Yves Le
Traon, Jean-Marc J?z?quel, Automatic Test Gen-
eration: A Use Case Driven Approach. IEEE
Transactions on Software Engineering, vol. 32, no.
3, pp. 140-155, March, 2006.

[8] Lamancha, B.P.; Usaola, M.P.; Velthius, M.P.,
Towards an automated testing framework to man-
age variability using the UML Testing Profile. Au-
tomation of Software Test, 2009. AST ’09. ICSE
Workshop on , vol., no., pp.10-17, 18-19 May
2009.

[9] http://en.wikipedia.org - Unified Modeling Lan-
guage, Diagram Overview

[10] Ciupa, Alex Pretschner, A. Leitner, Manuel
Oriol, B. Meyer On the Predictability of Random
Tests for Object-Oriented Software. Proceedings
of the 2008 International Conference on Software
Testing, Verification, and Validation ICST work-
shop on,. pp 72-81, 2008

7


