
Data Flow Testing of Service Oriented Work Flow Applications

December 9, 2009

Abstract

Service-oriented applications use XPath extensively
to integrate loosely-coupled workflow steps. A mis-
match among components (e.g., extracting the wrong
contents or failing to extract any content from a cor-
rect XML message) may cause an application to func-
tion incorrectly. XPath should be studied deeply to
improve the quality of the applications. In the de-
velopment of the web services, XPath play a crucial
role to capture the messages. Sometimes, XPath can
extract error messages, so if XPath can be combined
with mutation analysis, the error messages can be
avoided. The mutation analysis helps to develop ef-
fective tests or locate weaknesses in the test data used
for the program or in sections of the code. The time
taken to find the error messages and to remove them
is critical in the context of XPath. Data flow testing
will be done on the test cases generated by the XPath.
The effectiveness of the application can be measured
by using the fault detection rate. In this paper a
technique called the mutation analysis with the use
of finite state machine was used to find the mismatch
among the components. This approach can be imple-
mented for open source applications. The fault detec-
tion rate and the time taken to find the mismatches
occured are used to evaluate the approach. We will
evaluate this approach by performing the dataflow
testing on the open source applications until all the
errors in the XML messages are found.

1 Introduction:

To develop a service-oriented workflow application,
software engineers often employ a collection of hetero-

geneous but closely related technologies, such as WS-
BPEL. To integrate loosely-coupled workflow steps,
XML is used [1].

XML is fundamental to many service-oriented
workflow applications, and XPath is the means to
query on XML documents. XPath expressions play
a central role in both querying XML databases and
searching for XML data which are distributed over
the web. The extensive usage of XPath poses a de-
mand to study how to test these applications effec-
tively. Most failures in applications involve the exe-
cution of an incorrect definition [3]. Mismatches in
XML manipulations through XPath (such as to re-
late incoming and outgoing messages) may also re-
sult in failures. Using incompatible (in the sense of
semantics) extracted messages to conduct follow-up
workflow activities in an application may result in
integration errors.

We believe that the use of data-flow testing leads to
a richer test suite and helps to deal with these failures
in an enhanced way if a control flow graph is used. As
an example, by using Xpath expressions in the digital
subscriber line application, we can find the zip code of
a user. In data-flow testing, the first step is to model
the program as a control flow graph. This helps to
identify the control flow information in the program.
In step 2, the associations between the definitions and
uses of the variables that are needed to be covered in
a given coverage criterion is established. In step 3,
the test suite is created using a finite number of paths
from step 2.

The goal of this proposal is to analyze the XML
messages received, by doing so, we can know the con-
trol flow information and the error messages can be
easily captured. We do this by constructing a mu-

1



tation graph on which the dataflow testing is per-
formed.

2 Background:

A service- oriented application separates the func-
tions of an application into distinct units, or services,
which developers make accessible over a network in
order to allow the users to combine and reuse them in
the production of applications. These services com-
municate with each other by passing the data from
one service to another, or by coordinating an activity
between two or more services. Each service imple-
ments one action, such as filling out an online ap-
plication for an account, or to find the zipcode of a
user.Web services can implement a service-oriented
architecture. Web services make functional building-
blocks accessible over standard Internet protocols in-
dependent of platforms and programming languages.

WS-BPEL(Work space Business Process Execu-
tion Language) applications are a kind of service-
oriented application. They use XPath extensively
to integrate loosely-coupled workflow steps. Exist-
ing testing research does not adequately address the
interactions among XPath, XML schema, and XML
messages, and their relationships with BPEL.

Modelling a BPEL program as a control flow graph
involves two steps:

1. An approach to identify the data flow associ-
ations relevant to the conceptual variables in
XPath and ordinary variables in the BPEL pro-
gram.

2. Formulation of a set of test adequacy criteria to
measure the quality of test sets.

XPath is a language for navigating an XML doc-
ument and selecting a set of element nodes. XPath
expressions are used to query XML data, describe
key constraints, express transformations, and refer-
ence elements in remote documents. XPath process-
ing algorithms should be effective in time and space
efficiency. XML messages often read error messages.
So to avoid the error messages, mutation analysis is

used. The mutation analysis uses XPath only for the
error messages extracted.

To apply data flow analysis and testing to an XRG,
we should, therefore, respect the ordering of nodes;
otherwise one may construct illegitimate data flow
associations or miss legitimate ones. We do not know
whether the legitimate path was taken or not.

2.1 Related work:

Early work in the area was (necessarily) mostly con-
cerned with proposals for data models and query lan-
guages for semistructured data. After the introduc-
tion of XML and XPath much of the research con-
verged.

Modeling BPEL and web service components using
a state model is popular. Mongiello and Castelluc-
cia[8] translate a BPEL program into such a model
and apply model checking to verify temporal prop-
erties. Apart from using a state model to represent
a BPEL program, Foster[3] translated web services
into Promela for formal verification using their tool
WSAT. Different fragments of XPath are covered and
translate an XPath strictly according to the defini-
tion of XPath expressions while they translate an
XPath into a Promela procedural routine that uses
self-proposed variables and codes to simulate XPath
operations. Intuitively, a test suite covering the data
flow associations in a translated routine would test
the implementation rather than the declaration as
expressed in the WS-BPEL application.

Benedikt, Fan and Kuper[8]were the first to find
error messages for the service-oriented workflow ap-
plications, but they were able to find only for some
fragments of XPath. They did not use any tool to
find these erroroneous messages [8]. XPath 2.0 is an
expression language that allows the processing of val-
ues conforming to the data model, which provides a
tree representation of XML documents. The struc-
ture of an XPath is denoted by an XPath Rewriting
Graph.

An XPath Rewriting Graph (XRG) [1] forms an
explicit artifact to represent different paths concep-
tually defined in an XPath expression over a schema
Ω.

2



An XRG for an XPath Query is a 5-tuple <q, Ω,
Nx, Ex, Vx>.

The integration of heterogeneous sorts of tech-
niques such as program representation, dataflow anal-
ysis, and declarative semantics on diverse types of
artifact can be done. Tse and Chen[1] developed
a data structure known as XPath Rewriting Graph
(XRG) to capture how an XPath can be rewritten
from one form to another in a stepwise fashion, and
proposed an algorithm to construct XRGs. An XRG
captures the mathematical variables to support step-
wise rewriting of XPath.

Mei [1] has proposed an XPath Rewriting Graph to
represent an XPath with a model of XML documents.
Here, XRGs are revisited to facilitate the description
of the techniques. An XRG is built on XPath syn-
tactic constructs. Their technique treats the defini-
tions as left-to-right rewriting rules and, through a
series of rewriting, transforms an XPath into a nor-
mal form or a fixed point. Chan applied metamor-
phic relations to construct test cases for stateless web
services. Many existing techniques on data flow test-
ing are based on information obtained from program
code without considering artifacts like XPath.

2.2 Limitations:

The previous research techniques used for service-
oriented workflow applications did not focus on the
error messages found at the deeper level of the con-
trol flow graph. The limitations of the current testing
methods for service-oriented workflow applications
are:

1. Testing of software built on top of the service-
oriented architecture (SOA) is tedious[1].

2. There is no automated process for the tasks of
the web services[2].

3. No proper standard for specifying and executing
workflow specifications[8].

4. Evaluating an XPath query and the document
validation problem[4].

5. No tool to convert a XML document into a state-
transition model[5].

6. The faults can only be detected at a deeper level
of the symbolic execution tree. The path condi-
tions are complex[3].

7. Mismatches may occur in Xpath manipulation
and the entire application may fail[7].

3 Challenges and goals:

Stefan Bottcher [5] proposed that mismatches may
occur in manipulation, and the testing of the soft-
ware built on top of the service-oriented architec-
ture is tedious as the integration errors can occur.
Tse[1] used XPath technique to reduce the integra-
tion techniques, but not all the errors are discovered
and reduced by using only XPath.There is no auto-
mated process for the tasks of the service oriented
workflow applications . The manual testing of the
new applications is a difficult and error-prone task.
For the service-oriented applications XPath is ex-
tensively used to integrate loosely-coupled workflow
steps. XPath plays a key role in workflow Integration
and may extract wrong data from the XML messages
received, resulting in erroneous results in the inte-
grated process. These techniques are proposed by
Mei, chen and Tse [1].So, all the faults cannot be de-
tected as the faults can only be detected at a deeper
level of the testing. But can we reduce fault detection
rate by using an automated tool?

4 Proposed research:

4.1 Proposed novel approaches:

We can model the components of the service-oriented
workflow application using a state model. The work-
flows of the service-oriented workflow application are
translated into state model by checking the quality
of test cases generated. These test cases are gener-
ated for the XML messages received. A data struc-
ture known as XPath Rewriting Graph (XRG) can
be used to capture how an XPath can be rewritten
from one form to another in a stepwise fashion. The
mutation graph consists of all the XML messages re-
ceived as the nodes and dataflow testing is performed

3



for each message received.
The mutation analysis works in the following man-

ner:Until the effective quality of the test cases is
reached, the mutation analysis will be applied to each
wrong read XML message. So we can locate weak-
nesses in the test data used for the application. In
mutation analysis, if one of the test fails, then the
mutation analysis is applied again. From the state
model, a mutation graph can be developed which
jumps from one state to another after a wrong data
has been read from XML message. If correct data is
read from the XML message, a state model is created.
Then the dataflow testing will be performed.

This approach is different from others, as more er-
ror messages can be removed effectively as we are us-
ing a mutation graph. Also, the time taken to remove
the error messages will be less.

Apart from using a state model to verify the in-
teractions between the applications, we can treat the
application as a finite state machine, and faulty ver-
sions can be generated for each state of finite state
machine. These faulty versions can be checked by
using SPIN[3]. In the finite state machine, we treat
each error message extracted from XPath as a state
and we try to find the behavior of the error messages.
The behaviour of error mesages are recorded and if
the same error messages occur again , we do not con-
sider them. After an error message is recorded, we
seed faults into that state and apply the dataflow
testing for that state. Then we continue for all the
states until we achieve 100

If there are same error messages that repeat over
a period of time, finite state machine is useful as the
behavior is recorded. If there are large number of
error messsages, mutation analysis can be used.

So by using the state model along with the mu-
tation analysis we eliminate the error messages ex-
tracted. By following the above steps, we can achieve
more accurate testing, as more erroroneous XML
messages are discovered.

5 Evaluation Plans:

We can use open-source applications and an auto-
mated tool can be created that creates test suites and

performs the above approach. We generate different
faulty versions by seeding one fault into the applica-
tion before the test suite is created. The minimal,
mean and maximal coverage that have been achieved
by the test suites can be recorded and can be com-
pared with other methods.

RQ1: Effectiveness: The fault detection rate can
be taken as the effectiveness measure in the experi-
mentation, which is defined as the proportion of the
number of test suite that can expose the fault(s) in
a version to the size of the test suite. Also the time
taken to find the faults is considered.

RQ2: Precision: We can find more errors as we
test the XML messages received effectively. So we
can find more errors in much less time.

6 Foreseen contributions:

This work is very useful for web service applications.
These days, most of the data is shared through web
applications. So testing of these applications should
be done effectively. The fault detection rate with
respect to the time is used to measure the quality of
test sets. The main contribution of the paper is to
model XPath in a cost effective way. The approach
is promising as the first set of experiments are used
to evaluate the impact of XPath using open-source
applications. When a tool is created to automate
the approach, much less time is required to find the
erroroneous messages. In this proposal we have seen
an approach, using mutating analysis. The user can
choose any technique depending on the requirement.

References

[1] Data Flow Testing of Service Choreography, L.
Mei, W.K. Chan, and T.H. Tse at ACM SIG-
SOFT in 2009.

[2] Simulation, Verification and Automated Com-
position of Web Services, S. Narayanan and S.
A. Mcllraith at World Wide Web Conference in
2002.

4



[3] Model-Checking verification for reliable web ser-
vice, Howard Foster, Sebastian Uchitel, Jeff
Magee, Jeff Kramer at OOPSLA in 2003.

[4] The complexity of XPath query evaluation and
XML typing, Howard Foster, Sebastian Uchitel,
Jeff Magee, Jeff Kramer at JACM in 2005.

[5] Testing Xpath Queries using Model Checking,
Stefan Bottcher at World Wide Web Conference
in 2006.

[6] Semi-proving: an integrated method for pro-
gram proving, testing, and debugging, Y. Chen,
T.H. Tse, and Z.Q. Zhou at IEEE, Transactions
on Software Engineering in 2009

[7] Structural properties of XPath fragments,
Michael Benedikt, Wenfei Fan and Floris Geerts
at ACM in 2003.

[8] Modelling and verification of BPEL business
processes at Third International Workshop on
Model-Based Methodologies in 2006.

5


