
A Platform Independent Testing Tool for Automated
Testing of Web Applications

December 10, 2009

Abstract

Increasing complexity of web applications and
their dependency on numerous web technologies
has made the process of testing web applications
tedious, time-consuming and expensive. Many
approaches have been proposed to automate the
testing of web applications, where most of the ap-
proaches are confined to perform a specific type
of testing. This proposal proposes an automated
testing tool that detects the web technology used
to implement the interface. Later it automati-
cally selects an appropriate tool to test the web
application based on the technology used, and
the type of test to be performed, generates an
automated test script, and executes it on the
web application. Our approach is based on the
concepts of machine learning where the devel-
oped tool is capable of automatically recognizing
different technologies used by the web applica-
tion and making intelligent decisions based on
the given application. Unlike other existing ap-
proaches, this approach uses platform indepen-
dent test cases and transforms them into plat-
form specific tests suitable for the selected tool.
In this way our approach supports the dynamic
testing of any web application in a platform in-
dependent manner.

1 Introduction

Web applications play an important role in our
day-to-day activities such as online banking,
shopping and gaming. Also, many web applica-
tions are customized to cater to the needs of in-
dividual customers, which make use of new web
technologies that provide them with a rich user
experience, making the web applications handle
more sensitive data and generate content dynam-
ically. In fact, these sophisticated web applica-
tions contribute a fortune to the success of many
well known companies. For this reason, qual-
ity assurance techniques aimed at web applica-
tions are important as companies want to be re-
liable and live up to the expectations of their
customers.

A big problem is that the above mentioned
properties add complexity to the web applica-
tions, which makes the process of web testing
more challenging. Also, manual testing requires
a considerable amount of human work making
the testing process tedious and costly. Addition-
ally, many techniques that work effectively when
applied to simple web applications are not effec-
tive when applied to web applications that de-
pend on different web technologies and may ul-
timately result in inadequate testing of the func-
tionality of applications.

1



Recently, a considerable amount of work has
been done in this direction, where models have
been proposed to improve testing of web applica-
tions [4], and tools have been proposed to gen-
erate the test cases automatically for scripting
languages based on user input [1]. But these
tools require the tester to provide test scripts
that are specific to a testing tool. This lack of
support to a standard test script language poses
a problem as different scripts would be required
if the web technology used by the application is
updated. Also, to perform a particular type of
testing, different sets of tool-specific test scripts
would be needed to test web applications devel-
oped with different web technologies.

The goal of this proposal is to build a tool
that dynamically configures its test suite to au-
tomatically generate and execute platform de-
pendent test scripts based on the technologies
implemented by the web application to be tested.
The major contribution of this proposal is an al-
gorithm that:

determines the web technology used by the
web application that is under test

automatically selects a tool from the given
pool of tools

automatically generates test scripts specific
to the tool selected, and

evaluates the results against the provided
criteria

The tool implemented based on this algorithm
would be quite useful to the society as the entire
process of testing is completely automated and
one single tool performs different types of test-
ing on web applications developed on different
platform which helps in saving a lot of time and
effort in testing a web application.

2 Background

A web application is a software system that is
accessed via a web browser over a network such
as the Internet or intranet, which is composed
of many modules that implement the applica-
tions functionality such as logging in, sending a
request, processing a request etc. Every compo-
nent of a web application has an entry point for
the component called the root method which is
called when the component executes. Web ap-
plications are developed over a client-server ar-
chitecture where a client submits requests to the
server component. When the request is received,
the server invokes the root method, processes the
request and sends the desired result back to the
client. Common web applications include bank-
ing, online retail sales, webmail, etc.

Web applications gained popularity due to
their rich functionality, simplicity to update and
maintain the applications without distributing
and installing software on multiple clients, and
support for cross-platform compatibility. Client-
side scripting is often used to create an interac-
tive experience in the web applications. Tech-
nologies such as PHP, JSP, ASP, Ruby on Rails,
etc. are used to coordinate client-side script-
ing with server-side applications. Web applica-
tions can be structured into logical chunks called
tiers, where each tier has its own functionality.
Usually, web applications are structured as 3-
tiered applications as presentation, application
and storage. A web browser is the tier-one (pre-
sentation); the engine, using some dynamic web
content technology is tier-two (application); and
the database is tier-three (storage).

Similar to desktop applications, web applica-
tions also have security risks and challenges to be
countered. The functionality of the web applica-
tions is hampered due to various bugs or errors

2



present. Risks increase with the complexity of
the application. So, testing of web applications is
essential before they are used. Web application
testing involves testing the performance of the
applications, determining any errors present in
the applications, checking for any vulnerabilities
the application is suffering from, etc. Tradition-
ally, manual testing was used which was tedious
and time-consuming for complex applications.
We focus on automated testing of these appli-
cations, where a manual process already in place
that uses a formalized testing process is auto-
mated. Automating the testing process helps in
improving the effectiveness, efficiency, and cover-
age of web application testing. Automated test-
ing is advantageous over manual testing as it im-
proves test accuracy, and saves time and cost of
testing.

State of the Art.
The concept of automated testing of web ap-

plications was introduced in 2000 by Daniel and
Boustedt [2], where they used a tool called web
spider to automate the generation of test paths.
In 2001, Ricca et al. [9] gave an overview on
analysis and testing of web applications, where
an UML model of web application was proposed
to semi-automatically generate test cases. Sam-
path et al. [11] designed a framework to examine
various web testing tools available in terms of
scalability and effectiveness. Later in 2005, the
same authors implemented and evaluated a set
of automated replay techniques for user session-
based testing of web applications [10].

Artzi et al. [1] proposed a method to dynam-
ically generate tests to scripting languages and
created a tool called Apollo, which used an or-
acle to determine whether the output of web
applications is syntactically correct and auto-
matically sorted, and minimized the inputs that
expose failure. Wassermann et al. [15] pro-

posed the method of concolic testing to auto-
mate test input generation for web applications,
written in scripting languages such as PHP that
will achieve better code coverage. These papers
demonstrated the analysis of the methodologies
to dynamically generate test inputs for web ap-
plications written in scripting languages.

There are many approaches for interface iden-
tification. Halfond and Orso [4] used a fully au-
tomated static analysis technique for discovering
a web application interface, a set of input pa-
rameters and their potential values. They imple-
mented their technique for JavaScript. They ob-
tained better code coverage with test cases based
on the interface extracted using their technique,
as compared to the test cases based on the inter-
face extracted using a conventional web crawler.
More accurate interface identification can lead
to a significant improvement in test-input gener-
ation and, this technique is more accurate than
other techniques. The primary drawback of this
approach is that the approximations it makes of
an applications interfaces are very conservative.
Subsequent work on interface identification by
Halfond and Orso [6] addresses the limitations of
their previous approach [4] by using a specialized
form of symbolic execution. These techniques
demonstrate the importance of precise interface
identification to improve testing and analysis of
web applications.

Halfond and Orso [3] proposed automated
techniques for modeling web applications and
used these models to improve testing and analy-
sis of web applications, which are not just static
HTML pages. The technique focused on more
complex web applications that can dynamically
generate HTML content, interact with exter-
nal systems, and combine data from multiple
sources. Halfond and Orso [5] presented an
approach for automatically identifying parame-

3



ter mismatches in web applications, which deals
with communication between two components of
a web application. The flow of work in this field
from the early 2000s, till the most recent times
has been interesting, where research started with
the analysis of various techniques present for
testing of web applications, and the current re-
search has focused on the design and implemen-
tation of new automated tools for a specific type
of testing of the web applications.

Limitations Summarized.

Testing is a critical part of the software de-
velopment process. A lot of different automated
software testing tools have been proposed, but
most of these tools perform a specific kind of
testing and work with a specific language, for
example, unit testing of a Java application. The
automated tool Apollo proposed by Artzi [1]
can be implemented only for PHP applications,
hence, though it successfully tests the dynam-
ically generated content, it cannot be used for
applications using different languages. The ap-
proach proposed by Halfond [3] fails in identi-
fying a precise interface to improve testing and
analysis of web applications and also the approx-
imations it makes of an application’s interfaces
are very conservative. In the later work of Hal-
fond [3], he made use of the symbolic execution
method, which makes the testing process more
expensive. The approach specified by Di Lucca
[8] does not generate an automated test script,
rather the integrated platform used by him gen-
erates tests stubs and driver, which represents
the test cases for a tool. And certain tools, such
ReWeb and TestWeb, proposed by Ricca and
Tonella, perform static analysis of web applica-
tions, rather than dynamic.

3 Challenges and Goals

This section presents challenges presented in the
state of the art of the web application testing
fields.

3.1 Challenges

There are three main open issues in this area:
Building a platform independent tool:

Although there are a variety of tools to test
web applications, most of them are either plat-
form dependent or specific to a particular type of
testing. This makes it difficult for the tester to
choose a tool that is applicable to his web appli-
cation. Therefore, we see the need for a tool that
performs testing on the web application without
considering the platform of the application and
that performs multiple types of testing on a sin-
gle application.

Using tool independent test scripts:
Most of the testing tools require that the tester
provide a test script that is specific to the testing
tool, in order to perform testing. If we want to
test (for the same functionality) the applications
that use different technologies, then we have to
use a different tool for each type of application
and generate different test scripts that suit the
need of that particular tool used. Therefore it
is important to have a methodology to generate
test scripts that are generic to the type of test-
ing performed rather than generating test scripts
that are specific to the tool.

A self managed system: Although there
are several state of the art approaches that have
automated the process of testing, they require a
considerable amount of human interaction. The
most important open issue in the field of soft-
ware testing is to reduce the amount of human
interaction with the testing tool.

4



3.2 Goals

We have four goals to resolve the current issues
in this research

1. To build a generic, platform independent
tool for testing web applications

2. To build one single tool that can perform
different types of testing on an application

3. To use tool independent test scripts

4. To reduce the amount of interaction be-
tween the tester and the testing tool

4 Proposed Research

From our investigation into the open research
problems, we propose an automated, platform
independent tool that performs a specific type
of testing on the given web application. Our
tool uses the concept of Machine Learning. The
user is allowed to perform various types of testing
such as Functionality Testing, Usability testing,
Interface testing, Compatibility testing, Perfor-
mance testing and, Security testing based on the
requirements of his application.

Our approach examines the code of the web
application and determines the type of technol-
ogy used to implement the application using Ma-
chine Learning technique. The user is given an
opportunity to request the type of testing to be
performed on the web application. The detected
web technology and the type of testing requested
by the user are compared against the pool of au-
tomated testing tools, and an appropriate tool is
selected for testing the web application. Based
on the testing tool chosen, our tool generates
appropriate test scripts and executes them on
the chosen testing tool. The results obtained are
evaluated against the predefined criteria.

Workflow Diagram of the Approach Used

4.1 Tool initialization

The most important goal of this proposal is to
reduce human interaction with the testing tool.
But, minimum initializations to the tool are nec-
essary before using the tool on the web appli-
cation. Platform independent tests have to be
written which can later be transformed into test
scripts to be used by a specific tool. The criteria
for testing have to be specified, for example, code
coverage. The type of testing to be performed
on the application has to be specified, for exam-
ple, interface testing, load testing, stress testing,
compatibility testing etc.

4.2 Detecting the technology used

Our approach uses machine learning technique
to detect the technology used by the given web
application.

Machine Learning: Machine learning allows
the system to change behavior based on data,
where the system can automatically recognize

5



complex patterns and make intelligent decisions
based on data. Machine learning has different
types of algorithms such as supervised learning,
unsupervised learning, semi-supervised learning,
reinforcement learning, transduction, and learn-
ing to learn [13].

Machine learning in our approach: In our
approach, a general inductive process, also called
the textitlearner automatically builds a classifier
for a given category (type of technology used)
such as Java, PHP, Ruby on Rails etc. by ob-
serving the characteristics (such as specific tags
used by the technology used to develop the web
application, for example, an application using
tags such as <html> , </html> will be catego-
rized as HTML application) of a set of web ap-
plications that use different web technologies i.e.,
the textitlearner learns to intelligently classify a
new unseen web application under the appropri-
ate category based on its characteristics. This
type of algorithm is known as supervised learn-
ing where the learning process is supervised by
the knowledge of the categories and of the train-
ing instances that belong to them.

4.3 Test Script generation

Hernandez et al. [7] presented the abstract test
scripting language that is independent of the
testing tool used. Using the model-driven ap-
proach and the abstract test script language, tool
specific test script can be generated.

Many test scripts are provided by the devel-
oper, where each test script defines the proce-
dure to perform different types of testing such as
Usability testing, Interface Testing, Compatibil-
ity Testing, Security Testing etc. All these test
scripts are in abstract test script language which
will later be converted into specific test scripts
to suit the need of the chosen tool to perform

testing on the web application.

5 Evaluation Plan

In order to evaluate the proposed tool we can
consider web applications incorporated with dif-
ferent web technologies and perform various
types of testing on these applications and the
results of which help us deduce the effectiveness
of this tool. The main research questions that
has to be addressed in this evaluation phase is,

RQ1: Correctness: How effective is the tool in
correctly identifying the web technologies used
in the applications that are being tested?

RQ2: Reliability: How reliable are the test re-
sults produced by this tool, i.e., does the tool
produce any false positives and what is the ac-
curacy of these results?

To answer these questions, we will perform a
case study, by testing two complex web appli-
cations involving different technologies, such as
TenAday [14], a web application for conducting
online examination, which is built using PHP
and Scribd [12], a popular document sharing ap-
plication which is built using Ruby.

Once the tool is run on these applications,
it must rapidly configure itself to adapt to the
structure of the application and should be able
to effectively generate test scripts for a platform
specific testing tool. The primary function of
the tool is to detect and generate a report of the
technologies implemented by the web application
under test. Once this is identified, then we need
to determine whether an appropriate test model
is used in generating the appropriate platform
specific test scripts. By this, we can evaluate
how well we are able to implement supervised
learning algorithm in developing our tool.

Finally, by validating the obtained results that

6



are logged by the tool, we will be able to address
the reliability issues of the tool. We will then
use the testing tool which was selected by our
proposed tool from the pool, to test the web ap-
plication independently, after which we can mea-
sure the correctness of our tool by comparing the
results obtained from using these tools.

6 Summary of Foreseen Contri-
butions

By using the proposed methodologies, a software
tester can test web applications using different
web technologies with a single tool. Since our
tool performs different types of testing on a web
application, the tester need not have the knowl-
edge about different testing tools used for differ-
ent types of testing. Also, the job of the testers
is simplified further as they need not use differ-
ent test scripts to test different applications, us-
ing different technologies. The most important
contribution is all of these proposed methodolo-
gies are done automatically with minimal hu-
man intervention. This platform independent
tool would be a great contribution to the society
as the entire process of testing is completely au-
tomated and one single tool performs different
types of testing on web applications developed
on different platform which helps in saving a lot
of time and effort in testing a web application.

References

[1] S. Artzi, A. Kiezun, J. Dolby, F. Tip,
D. Dig, and A. Paradkar. Finding Bugs
in Dynamic Web Applications. In Proceed-
ings of the 2008 International Symposium
on Software Testing and Analysis, 2008.

[2] L Daniel and J Boustedt. Automated test-
ing of web application functionality. In Mas-
ters thesis, University of Uppsala, Uppsala,
Sweden, 2000.

[3] William G. J. Halfond. Web applica-
tion modeling for testing and analysis. In
Proceedings of the 2008 Foundations of
Software Engineering Doctoral Symposium,
2008.

[4] William G. J. Halfond and Alessandro
Orso. Improving Test Case Generation for
Web Applications Using Automated Inter-
face Discovery. In Proceedings of the Joint
ESEC/SIGSOFT Symposium on the Foun-
dations of Software Engineering, 2007.

[5] William G. J. Halfond and Alessandro Orso.
Automated identification of parameter mis-
matches in web applications. In Proceedings
of the 16th ACM SIGSOFT International
Symposium on Foundations of software en-
gineering, 2008.

[6] William G. J. Halfond and Alessandro Orso.
Precise interface identification to improve
testing and analysis of web applications. In
Proceedings of the eighteenth international
symposium on Software testing and analy-
sis, 2009.

[7] Yanelis Hernandez, Tariq M. King, Jairo
Pava, and Peter J. Clarke. A Meta-Model
to Support Regression Testing of Web Ap-
plications. In In SEKE, 2008.

[8] G. A. D. Lucca, A. R. Fasolino, F. Faralli,
and U. de Carlini. Testing of web applica-
tions. In ICSM, 2002.

7



[9] Filippo Ricca and Paolo Tonella. Analysis
and testing of Web applications. In Proceed-
ings of the 23rd International Conference on
Software Engineering, 2001.

[10] Sreedevi Sampath, Valentin Mihaylov,
Amie Souter, and Lori Pollock. A Scalable
Approach to User-Session based Testing of
Web Applications through Concept Analy-
sis. In Proceedings of the 19th IEEE inter-
national conference on Automated software
engineering, 2004.

[11] Sreedevi Sampath, Valentin Mihaylov,
Amie Souter, and Lori Pollock. Compos-
ing a Framework to Automate Testing of
Operational Web-Based Software. In ICSM
Proceedings of the 20th IEEE International
Conference on Software Maintenance, 2004.

[12] Scribd. using ruby on rails. In
http://www.scribd.com/.

[13] Fabrizio Sebastiani. Machine learning in au-
tomated text categorization. In ACM Com-
puting Surveys (CSUR), 2002.

[14] TenAday. PHP web application. In
http://www.tenaday.co.in/.

[15] Gary Wassermann, Dachuan Yu, Ajay
Chander, Dinakar Dhurjati, and Hiroshi In-
amura. Dynamic test input generation for
web applications. In Proceedings of the 2008
international symposium on Software test-
ing and analysis, 2008.

8


