
Automating tasks in GUI Test Case Generation

December 10, 2009

Abstract

In a software project lifecycle, the software
testing phase is expensive. By efficiently au-
tomating the testing process, we can significantly
decrease the overall cost of software development
and maintenance. Today, testing Graphical User
Interfaces (GUI) has become an essential part
in project validation. Consequently, the need for
automating GUI testing has gained importance
but due to the large number of states to be tested,
GUI test automation has become a major chal-
lenge. Most existing GUI test automation tools
work on automating the process of test case gen-
eration but there is little research on automat-
ing the process of developing tasks for GUI test
case generation. This proposal presents a novel
approach for automating the process of develop-
ing the GUI test tasks. Our approach categorizes
GUI controls into two sets based on whether they
are interlinked or independent in the application.
The independent controls can be tested individu-
ally while we create test tasks for the interlinked
controls by deriving different sets of Linearly In-
dependent paths that cover all the sequences of
controls in the GUI application. This would cre-
ate a set of sequences of controls that are valid
and not redundant. Overall, we believe that the
automation of creating tasks would provide an
adequate coverage of the GUI system as well as
support the process of Regression testing.

1. Introduction

Software testing is a phase in the software
process that is aimed at evaluating a soft-
ware item (system, subsystem, unit etc.)
and its features (functionality, performance
etc.) against a given set of system require-
ments. It is a vital phase because it checks
for errors and verifies if all the requirements
are fulfilled. Software testing is quite expen-
sive; in order to reduce the cost of testing,
automation is used.

A graphical user interface (GUI) is a con-
venient human-computer interface that has
become ubiquitous in today’s software. Al-
though a GUI makes software very user-
friendly, it creates hurdles in the software
development process. Especially, the GUI
testing process is very complex because of
the following reasons[1][4]:

• The GUI possesses an enormous num-
ber of states that may need to be
tested. The input space size is ex-
tremely large due to the number of
different permutations of inputs and
events which affect the GUI.

• There may exist extremely complex de-
pendencies in the GUI system.

• Another difficulty is faced when the

1



tester has to perform regression test-
ing because the GUI may change dras-
tically across versions of the applica-
tion.

By automating the GUI testing process, we
can attempt to solve most of the above is-
sues. In general, a software test automa-
tion process consists of selecting and gen-
erating test cases, building the test oracle,
executing and validating the results. In this
proposal, our main focus is on test task
selection and generation. Automation of
test case generation has already been pro-
posed by many researchers but selecting the
test cases is an unaddressed issue. Creat-
ing and maintaining test cases manually is
a very time consuming process. So, some
automation is required when testing GUIs.
Through this proposal, we propose an ap-
proach to automatically develop the tasks
for GUI test case generation.

2. Background

A graphical user interface (GUI) is a
human-computer interface that offers
graphical icons, and visual indicators,
instead of text-based interfaces, typed
command labels or text navigation in order
to completely represent the information
and actions available to a user. Using a
combination of technologies and devices, a
GUI presents a user interface for various
tasks like gathering and producing informa-
tion. It consists of a series of elements that
formed a visual language for representing
information stored in computers. The most
common combination of such elements is
the WIMP (”window, icon, menu, pointing
device”) model. To carry out commands

such as opening files, deleting files, moving
files, etc, a GUI uses these elements which
can be manipulated by a mouse and/or a
keyboard as well. Because of its intuitive
design the GUI Operating Systems are
a lot easier for end-users to learn and
use it. Consequently they have become
the dominant operating system used by
end-users today. A few examples of a GUI
Operating Systems: Microsoft Windows
95, Apple System 7, Apple Mac OS. A few
examples of a GUI interfaces are: GNOME,
KDE.

Test case generation A process of test-
ing a product that uses a graphical user in-
terface in order to ensure it meets its writ-
ten specifications is GUI software test-
ing. Generally it is done using a variety of
test cases but to generate a good set of test
cases, the test designer should make sure
that their set covers all the system func-
tionality and that the set fully exercises the
GUI itself. This task gets very difficult be-
cause of the problems due to domain size
and sequences in GUI applications. Regres-
sion testing is another major problem in
GUIs because drastic changes are made in
the GUI across different versions of its ap-
plication.

The domain size is a problem because a GUI
application consists of an enormous num-
ber of operations each of which has to be
tested. The problem with the sequencing
is due to the complex dependencies in the
GUI application. To explain in detail, some
operations of the application may be accom-
plished only by following some complex se-
quence of GUI events. For example, opening
a file has to be performed by first clicking

2



on the File Menu, then selecting the Open
operation, and then using a dialog box to
specify the file name, and then focusing the
application on the newly opened window.
So, as the number of possible operations in-
creases, the sequencing problem increases
exponentially. When manual test genera-
tion techniques are used, this problem be-
comes a serious issue.

Regression testing is another important
method of testing. It is the process of test-
ing changes in computer programs to make
sure that the older functionality still works
with the new changes. Performing regres-
sion testing on GUI is another major prob-
lem because GUIs may change drastically
across different versions of the application.
Due to this, a test designed to run on a pre-
defined path through the GUI may not be
able to do so if a button, menu item, or dia-
log box has changed location or appearance.

Many different techniques were proposed for
resolving the issues in GUI testing. Memon
[10] contributed in mentioning the pitfalls of
GUI testing techniques and provided guide-
lines for the goals that should be met while
testing a GUI. White and Almezen [1] pro-
posed a method that concentrated on user
sequences of GUI objects and selections
which collaborate, called complete interac-
tion sequences (CIS) that produce a de-
sired response for the user. For testing CIS,
they utilized a finite-state model to gener-
ate tests. They showed that considerable
reduction in tests could still detect the de-
fects in the GUI. Their approach was scal-
able but they could not prioritize testing
related to the CIS testing when the time
was a constraint. Also, in case of very com-

plex GUI system CIS configurations, they
could not find additional reduction transfor-
mations and components to further reduce
the required testing.

Another technique was presented by Sve-
toslav, Ganov, Killmar, Khurshid, and
Perry [2] who used symbolic execution to
obtain data inputs and enumerated event
sequences that were likely to maximize code
coverage of a GUI application. By sym-
bolically executing the code of GUI event
handlers, they generated data inputs that
maximized code coverage while minimizing
the number of tests needed to systematically
check the GUI. They proved that it pro-
vided significantly better performance com-
pared to random input generation, in terms
of statement and branch coverage. However,
it placed architectural limitations on system
designers. In order to present a promis-
ing approach for systematic testing of GUIs,
they proposed an idea of combining their
approach with other existing frameworks.

Another approach for test generation was
presented by Qian and Jiang [3]. They
presented an event interaction structure to
model a GUI and an algorithm to generate
GUI interactive test cases. Their method
proved that, under the condition of assur-
ing event-based coverage rate, the number
of effective GUI interactive test cases gener-
ated were about 10 percent of the number
of test cases generated by the permutation
and combination methods.

Automating GUI test generation is another
major area of study. As manual creation
of test cases and their maintenance, eval-
uation, and conformance to coverage crite-
ria is very time consuming, automation be-

3



came a focus. Memon, Pollack, and Soffa
[4] presented an automated test case gen-
eration that derived hierarchical GUI op-
erators, identified tasks and generated test
case. They showed that hierarchical GUI
performed 10 times better than a single level
one because of its abstraction. However, if
the structure or the tasks were poor, it did
not produce good results. Memon and Xie
[5][6] have done a lot of work on automated
testing of GUIs. They have collaborated
with Nagarajan [7] to work on automat-
ing the regression testing of GUIs. White,
Almezen, Sastry [8], and Soffa [9] have also
contributed to the study of regression test-
ing of GUIs.

Limitations

A lot of research has been done on testing of
GUIs but we can only find a few researchers
who have focused on GUI test case gener-
ation. Usually, a software test automation
process would include selecting and generat-
ing test cases, building the test oracle, exe-
cuting and validating the results. Our main
focus is on selection and generation of test
cases. Manual creation and maintenance of
test cases is an extremely time consuming
process. So, some automation is required
when testing GUIs. Most of the previous
researchers have described automating the
process of test case generation but there is
very little research on automating the pro-
cess of selection of test cases.

Memom. A, Pollack and Soffa [4][11] pre-
sented an automated technique of generat-
ing test cases in a GUI but their test case
generator was largely driven by the choice
of tasks that were manually chosen by the
test designer. Choosing tasks was nothing

but selecting the test cases that are to be
generated. So, a poorly chosen set of tasks
would result in a test suite that does not
provide sufficient coverage. An interesting
open problem here is automating the pro-
cess of choosing these tasks in order to en-
hance the GUI coverage. Another technique
presented by these researchers developed an
automated GUI test oracle [12] which au-
tomatically derives the expected state se-
quences and compares the actual and ex-
pected states after each action in the test
case. They could not automatically gener-
ate the preconditions and effects of the oper-
ators from a GUI’s specifications. There are
few other techniques that were proposed,
but then had limitations such as the ones
that placed architectural limitations on sys-
tem designers [2], and those that influenced
the maturity of GUI interactive test suite
[3].

3. Challenges and Goals

The key open issue that we are going to
work on is automation of the process of
choosing the tasks for GUI test case gen-
eration.

Generally, the test designers describe the
tasks or the scenarios by defining a set of ini-
tial and goal states for test case generation
but when these tasks are manually chosen
[4][11], there is a good chance that the set
of tasks chosen will result in a test suite that
does not provide sufficient coverage i.e. the
test suite may not be able to cover the en-
tire GUI input space and it may also have a
problem sustaining the complex interdepen-
dencies in the GUI system.

Our goal is to automate the process of se-

4



lection of the tasks in such a way that it
provides an adequate coverage of the GUI
application. We plan to generate a method
that would create tasks for test case gener-
ation that would effectively cover the entire
GUI input space as well as the complex in-
terdependencies in it. By this kind of au-
tomation we also hope to make the process
of Regression testing much easier and faster.

4. Proposed Approach

Our proposal presents a novel technique for
automating the task selection process in
GUI test case generation.

Graphical user interfaces consist of many
graphical objects like buttons, labels,
textboxes, or lists with which users can in-
teract. In this proposal, we use the word-
control as a standard term for any such
graphical object that a GUI application may
contain. Here, we intend to study the GUI
with respect to its controls and structure
and classify its controls based upon two as-
pects: whether they are interlinked with
another control(s) or if they exist indepen-
dently in the GUI. An example of the con-
trols classified as either the independent
controls or a set of interlinked controls is
given in Table 1.1.

Independent controls are easy to test as they
have no interdependencies with any other
objects in the GUI i.e. these controls would
not affect other controls. So, individual test
cases could be automatically generated on
each of these controls using any of the pre-
vious approaches [4] that were proposed.
Whereas testing the controls that are inter-
linked is not that simple. For generating
tasks that test such controls, we first intend

Independent Controls Set of Interlinked Controls
Title Set1 = {Link 1, Link 2}

Image1 Set 2 = {Link2, Text 1}
Image2 Set 3 = {Image3, Link2}

Table 1.1 We consider a GUI that is a web
page that has a Title which is an independent
control, 3 images (Image1, 2, 3 out of which
Image 3 is associated with Link 2), 2 links and
1 Text area (Links 1, and 2 such that Link 1
navigates to Link 2 and Link 2 is associated to
Text area: Text 1).

to find paths between each of the controls
that are interlinked and then find the overall
set of linearly independent paths that cover
all the interlinked controls in the GUI appli-
cation. Linearly Independent paths include
a unique segment that is not covered in the
other path. By considering such paths, we
would create a set of sequences of controls
that are valid and not redundant. Once we
are done with extracting all the linearly in-
dependent paths we can use each of them
as a separate sequence of tasks on which
the automatic test case generation [4][11]
could be performed. By such automation of
creating tasks we can confidently state that
the entire GUI space will be covered and
we could also be certain that none of the
interdependencies have been left uncovered.
Illustrations of the paths formed from the
interlinked controls in table 1.1 are demon-
strated in figures 1.1, 1.2, and 1.3. The set
of linearly independent paths that are de-
rived from these paths are shown in Table
1.2 and their illustrations are shown in fig-
ures 2.1 and 2.2. The technique we propose
is illustrated as an algorithm below.

5



Figure 1.1 Path 1 for Set1 = {Link 1, Link
2}

Figure 1.2 Path 2 for Set 2 = {Link2, Text
1}

Figure 1.3 Path 3 for Set 3 = {Image3,
Link 2}

Set of Linearly Independent Paths
L.I.Path 1 = {Link 1, Link 2, Text 1}
L.I.Path 2 = {Image3, Link2, Text 1}

Table 1.2 Linearly independent paths derived
from the paths of interlinked controls given in
Table 1.1. L.I.Path represents linearly indepen-
dent path.

Figure 2.1 Linearly independent (L.I.)
Path 1: includes controls in Set 1 , Set 2.

Figure 2.2 Linearly independent (L.I.)
Path 2: includes controls in Set 2 , Set 3.

5. Evaluation Plan

Our main research questions regarding this
work would be:

• Would the test cases generated for the
auto generated tasks be effective in
covering the GUI input space?

• Would the auto generated tasks be ef-
fective in covering the complex inter-
dependencies in the GUI system?

To address these questions we will perform
an evaluation that compares our approach
with an approach that manually creates
tasks. Both of these methods will be fol-
lowed by an automatic generation of test
cases, execution and validation of results.
The automatic test case generator will be
chosen from any of the previous research
work [4][11]. We will perform an experi-
ment on about 10 GUI applications which
consist of different kinds of applications like
Web, Java or .Net applications. We will also
choose different sizes of each type of an ap-
plication to make a thorough study of our
evaluation. To check the effectiveness of the
approach in covering the GUI input space
we will compare the results that show the
total number of controls covered in each of
the applications by each of the approaches.
Similarly, to check the effectiveness of the
approach in covering the complex dependen-
cies we will study and compare the results
that show a list of the sequences of controls

6



that have been covered for each of the ap-
plications by each of the approaches.

6. Summary of foreseen contributions

From the method we proposed in this pro-
posal, we anticipate the following contribu-
tions:

• We present a novel approach to auto-
mate the process of selecting the tasks
for GUI test case generation

• When developing the test cases, our
technique ensures that it has covered
the entire GUI input space.

• Our technique also ensures that all the
complex interdependencies have been
covered in the automatically developed
test suite.

• It also helps the process of regression
testing by having a mechanical process
of test case development that is fast
and easier for further repeated testing
of newer versions of the GUI applica-
tion.

• Our work helps the society by provid-
ing a fully GUI test automated frame-
work. This technique minimizes the
need for human involvement by au-
tomating a large portion of the soft-
ware testing process. By effectively
utilizing our approach, a lot of time
and energy can be saved.

References

[1] Generating test cases for GUI re-
sponsibilities using complete interac-
tion sequences by WHITE, L. AND

ALMEZEN, H. In Proceedings of the
International Symposium on Software
Reliability Engineering, IEEE Com-
puter Society Press, Los Alamitos, CA,
110121 in 2000.

[2] Test generation for graphical user in-
terfaces based on symbolic execution
by Svetoslav R. Ganov, Chip Killmar,
Sarfraz Khurshid, Dewayne E. Perry
in Proceedings of the 3rd international
workshop on Automation of software
test in May, 2008.

[3] An event interaction structure for GUI
test case generation by Siyon Qian and
Fan Jian Beijing, China in 2nd IEEE
International Conference on Computer
Science and Information Technology in
2009.

[4] Hierarchical GUI test case genera-
tion using automated planning by
MEMON, A. M., POLLACK, M. E.,
AND SOFFA, M. L. in IEEE Trans.
Softw. Eng. 27, 2 (Feb.), 144155 in
2001.

[5] Using a Pilot Study to Derive a GUI
Model for Automated Testing, by Xie,
Q., and Atif M. Memon, in ACM
Trans. on Softw. Eng. and Method in
2008.

[6] Designing and comparing automated
test for GUI-based software applica-
tions by Xie, Q., and Atif M. Memon,
in 2007.

[7] Automating regression testing for
evolving GUI software by MEMON,
A., NAGARAJAN, A., AND XIE, Q in
2003 International Conference on Soft-
ware Maintenance: The Architectural
Evolution of Systems.

7



[8] Firewall regression testing of gui se-
quences and their interactions by
WHITE, L., ALMEZEN, H., AND
SASTRY, S in Proceedings of the Inter-
national Conference on Software Main-
tenance in 2003.

[9] Regression testing of GUIs by Memon
and M. L. Soffa in Proceedings of
the 9th European software engineering
conference held jointly with 11th ACM
SIGSOFT international symposium on
Foundations of software engineering in
2003.

[10] GUI testing: Pitfalls and process by
Memon, A.M. In Proceedings of the
International Conference on Software
Maintenance 2003.

[11] Using a goal-driven approach to gener-
ate test cases for GUIs. In ICSE 1999,
by Memom, A.M., Pollack, M. E., and
Soffa, M. L.

[12] Automated Test Oracles for GUls by
Memom, A.M., Pollack, M. E., and
Soffa, M. L. In Proceedings of the 20th
ACM international Conference on Au-
tomated software engineering in 2000.

8


