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Maintenance consumes
70% of total life cycle
cost

Reading code

Readability:

Human Judgment of how
easy a text is to understand




ur Goal



R@adability in Natural Languages

ics for ordinary text.
aid Grade Level. R. F. Flesch.

@ Based on simple factors like average syllables
- per word, average sentence length, etc.

m Used with Text Editors like Microsoft word
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In this paper, we explore the conceptof code readability and investigate its
relation to software quality. With data collected from human annotators, we
derive associations between a simple set of local code features and human

notions of read E.hht)LLlSlD.CLth.QSE.‘[&BILLE&S.JﬂLE_CDﬂSIﬂJ_CLan automated
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automated readability
- metric?

d cost of Maintenance



ontributions

ability metric, based on local

'rvey of 120 human readability
tators

> A discussion of the features of metric and
its relation to notions of SW quality like
defect prediction and code changes



pproach

what extent the study group
ility.

et of features sufficient to
dability for the

ure the notion
ity of Annotators

s correlation between our readability
cs and external notions of software



Approach(Contd...)

r extension



nplexity metric = Readability
metric




200 level courses
> 30 from 400 level courses
o 10 were Graduate students
“Each annotator scores 100 snippets.
Mapping : Code sample->Finite score domain



nippet Selection

ot too short!)

1s: Low-level details of readability
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File Edit Yiew History Bookmarks Tools Help
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coring begins..

niper:
Less Readable More Readable
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Vertical bands means that

100 snippets

they ere judged similarly by

many annotators



orrelation

e large set of judgments into single model

by averaging

@ Average of 0.56 is considered “Moderate to
strong”
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PISTribUtion of average readability of scores across all
SNIPpPets
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Viodel
(seneration

We form the set of features
that can be statically
obtained from a snippet or
other block of code

Simple Features related to :
Structure, Density, logical
complexity,
documentation
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OCCUITences of any single character

occurrences of any single identifier



ew of Machine Learning
- methods

ributel,attribute2,.....>
of instances



Viodel eneration(Contd..)

age algorithms

_ g on Instances
ance here is a fe
urel, Feature?2,...

e vector

ifier is given a set of instances+ “correct

77

er
oct answer:

Less readable More Readable



seneration(contd..)

ning is completed. ..

1 is found out i.e
ble or less

WEKA machine learning toolbox

e at
http /fprdownloads. sourceforge.net/weka/weka-3-6-
Ijre.exe

m 10 -fold cross validation .



Viodel Performance

=[(#of “more readable” snippets as

otators)/ (#of “more readable”
ssified by model)]*100%

ion of snippets classified as
e model that were also
ed as “more readable” by the annotators.

asure=Combination of R,P.

ts the accuracy of a classifier with respect
to more readable snippets



ModelPerformance
(Gontdy)

-F-measure when each classifier trained
on set of snippets with randomly
generated score labels

=0.67

-F-measure when trained on human data
=(.8

-Pearson correlation=0.63 when we
compare output of Bayesian classifier to
the average human score model we
trained against.
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Mean Pearson Correlation
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avg identifier length Direction of correlation
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|n9 Readablllty with
Software Quality

nstructed an automated model of
mimics human judgments

1ether our model of
ability compares favorably with external
entional metrics of software quality.

1 correlation between readability and
ugs(a popular static bug-finding tool)
‘= Look for similar correlation with changes to

code between versions of several large open-
source projects



Project Name KLOC | Maturity
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Figure 8: Benchmark programs used in our exper-
6-mature iments. The “Maturity” column indicates a self-
/-Inactive reported SourceForge project status. *Used as a
snippet source.




Readab

ity Correlations

orrelate defects detected by
readability model at the

V¢

indBugs on the benchmarks.
ct all functions and partition into two.

already trained classifier on the set of
“tions



/y Correlations(Contd..)

orrelate future code churn to



Results

F measure for +
W FindBugs
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W Version Changes
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Software Lifecycle and
Readability
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Readability vs. Maturity
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‘e facts observed in the
study.

oth's influence on

| haracters have strong
influence on our readability metric

® Languages should add additional keywords in
order to have fewer new identifiers.



itations

a very small sample

were students .There were
lonals or any experienced
judgments



Related Work

dability metrics for Natural
sch-Kincaid Grade Level. R. F.

Programming languages. Predicting defect densities

 1n source code les with decision tree learners. P. Knab,
M. Pinzger, and A. Bernstein., 2006.



ture work

ether personalized model
e ,will be effective in

e Readability measurement tool in IDEs

metric using simple formula with
umber of features



Conclusion

effective Readability metric from
f annotators.

rsal model.

bility exhibits significant levels of
lation with more conventional metrics of
re quality like Defect Reports, Version
s, and Program maturity

= Factors influencing readability might help in
Program language design






