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Readability:
Human Judgment of how 

easy a text is to understand

Maintenance consumes 
70% of total life cycle 

cost 

Reading code 

Most time-consuming 
component of 
maintenance



Software 
Readability 

Model

External 
notions of 
Software 
Quality

Human 
annotators



Readability metrics  for ordinary text.

 The Flesch-Kincaid Grade Level. R. F. Flesch. 
1948.

 The Gunning-Fog Index. R. Gunning, 1952

 The SMOG Index. G. H. McLaughlin 1969.

 The Automated Readability Index. J. P. Kinciad,

1970.

 Based on simple factors like average syllables 
per word, average sentence length, etc.

 Used with Text Editors like Microsoft word





 Saves time and cost of  Maintenance

 More readable software

 Monitoring and maintaining readability

 Assist inspections.

 Contributes to the overall Software Quality

and Also,

Serve as  a requirement for acceptance!!



 A software readability metric, based on local 
features that

 correlates strongly with human judgments 

 correlates strongly with software quality

A survey of 120 human readability 
annotators

A discussion of the features of metric and 
its relation to notions of SW quality like 
defect prediction and code changes



 Investigate to what extent the study group 
agrees on readability.

 Determine  a small set of features sufficient to 
capture the notion of readability for the 
majority of Annotators

 Discuss correlation between  our readability 
metrics and external notions of software 
quality



 Possibilities for extension

 Conclusion.



•Accidental property 

•Arises from system 
requirements

•Based on Sizes of classes, 
methods ,Extent of 
Interactions

•Not much related to what 
makes the code 
understandable 

•Essential property

•Can be addressed easily.

•Based on  local, line-by-
line factors

•Judgments of human 
annotators not familiar with 
purpose of system.



 The Experiment:

Extract large number of readability judgments 
over short code selections ,the Snippets.

120 annotators (all are CS students)

o 17 from 100 level courses

o 53 from 200 level courses

o 30 from  400 level courses

o 10 were Graduate students

Each annotator scores 100 snippets.

Mapping : Code sample->Finite score domain



 Short (but not too short!)

 Logically coherent

 Include adjacent comments

 Not cross scope boundaries

Main focus: Low-level details of readability 



Field 
Declarations

assignments

breaks

continues

throws

returns

Snippet





 Tool: Snippet Sniper:

.

.

.

.

.

Snippet 1 1 2 3 4 5

Less Readable More Readable

Snippet 2

Snippet 100

1 2 3 4 5

1 2 3 4 5



Results

Each box: Judgment of a 
snippet

Darker colors: Lower 
readability scores

Lighter colors: Higher 
readability scores

Vertical bands means that 
they ere judged similarly by 
many annotators



 To evaluate whether we can extract a single 
coherent model from this data set.

 Correlation statistic used: Pearson product-
moment correlation coefficient

 Compares judgments of annotators two at a time.

 1–perfect correlation

 0-no correlation

 Combine large set of judgments into single model 
by averaging

 Average of 0.56 is considered “Moderate to 
strong”



Results



Distribution of average readability of scores across all 

snippets



Model 

Generation

We form the set of features 
that can be statically 
obtained from a snippet or 
other block of code

Simple Features related to : 
Structure, Density, logical 
complexity, 
documentation



 Instance=<attribute1,attribute2,…..>

 Dataset-Collection of instances

Training set Test set

ClassifierData set Model



 Machine language algorithms

 Classifier operating on Instances

 Instance here is a feature vector 
<Feature1,Feature2,…>

 Classifier is given a set of instances+ “correct 
answer”

 Correct answer:

<3.14 >3.14

Less readable More Readable



 After the training is completed…

 When a new instance is given(that has not been 
seen before)  the classifier is applied and the 
label is found out i.e, whether it is more 
readable or less

 Tool: WEKA machine learning toolbox

Available at 
http://prdownloads.sourceforge.net/weka/weka-3-6-
1jre.exe

 10 -fold cross validation .



 Recall( R )=[(#of “more readable” snippets as 
judged by annotators)/(#of “more readable” 
snippets as classified  by model)]*100%

 Precision( P )=Fraction of snippets classified as 
“more readable” by the model that were also 
judged as “more readable” by the annotators.

 f-measure=Combination of R,P.

Reflects the accuracy of a classifier with respect 
to more readable snippets



Model Performance 

(Contd..)

•F-measure when each classifier trained 
on set of snippets with randomly 
generated score labels

=0.67

•F-measure when trained on human data 
=0.8

•Pearson correlation=0.63 when we 
compare output of Bayesian classifier to 
the average human score model we 
trained against.

•Observation: This level of agreement is 
better than average human in our study 
produced







 So far, we constructed an automated model of 
readability that mimics human judgments

 Now, investigate whether our model of 
readability compares favorably with external 
conventional metrics of software quality.

 Find correlation between readability and 
FindBugs(a popular static bug-finding tool)

 Look for similar correlation with changes to 
code between versions of several large open-
source projects



Benchmarks for the 

experiments

•Open source java 
projects

•Maturity is self 
reported:

1-planning

2-pre-alpha

3-alpha

4-beta

5-production/stable

6-mature

7-inactive



 Experiment 1:Correlate defects detected by 
Findbugs with our readability model at the 
function level

1. Run FindBugs on the benchmarks.

2. Extract all functions and partition into two.

3. Run already trained classifier on the set of 
functions



 Experiment 2:Correlate future code churn to 
readability

1. Use the same set up as first experiment

2. Use readability to predict which functions will 
change in successive releases.

3. Instead of contains a bug“ we attempt to 
predict is going to change soon." 



Results

F measure for 
Experiment 1:

0.63

F measure for 
Experiment 2:

0.5







 Identifier length's influence on 
readability=NILL

 Descriptive identifiers are sometimes useful 
and sometimes not

 Comments have only 33% relative power to 
readability

 # of identifiers and characters have strong 
influence on our readability metric

 Languages should add additional keywords in 
order to have fewer new identifiers.



 100 snippets is a  very small sample

 All the annotators were students .There were 
no  software professionals or any experienced 
persons involved in the judgments



 Automated readability metrics for Natural 
languages .The Flesch-Kincaid Grade Level. R. F. 
Flesch. 1948

 PMD and Java coding standards to enforce some 
code standards. S. Ambler. Java coding standards., 
1997.

 Machine learning on source code repositories, 
defect prediction in Software engineering and 
Programming languages. Predicting defect densities 
in source code les with decision tree learners. P. Knab, 
M. Pinzger, and A. Bernstein., 2006.



 Investigate whether personalized model 
adapted over time ,will be effective in 
characterizing code reliability

 Consider size of compound statements

 Include Readability measurement tool in IDEs

 Express metric using simple formula with 
small number of features



 Producing an effective Readability metric from 
the judgments of annotators.

 May not be a universal model.

 The model considers relatively simple set of 
low-level code features

 Readability exhibits significant levels of 
correlation with more conventional metrics of 
software quality like Defect Reports, Version 
changes, and Program maturity

 Factors influencing readability might help in 
Program language design 




