
Raymond P.L. Buse and Westley R. Weimer

{buse,weimer}@cs.virginia.edu

Presenter: Rag Mayur Chevuri

Readability:
Human Judgment of how

easy a text is to understand

Maintenance consumes
70% of total life cycle

cost

Reading code

Most time-consuming
component of
maintenance

Software
Readability

Model

External
notions of
Software
Quality

Human
annotators

Readability metrics for ordinary text.

 The Flesch-Kincaid Grade Level. R. F. Flesch.
1948.

 The Gunning-Fog Index. R. Gunning, 1952

 The SMOG Index. G. H. McLaughlin 1969.

 The Automated Readability Index. J. P. Kinciad,

1970.

 Based on simple factors like average syllables
per word, average sentence length, etc.

 Used with Text Editors like Microsoft word

 Saves time and cost of Maintenance

 More readable software

 Monitoring and maintaining readability

 Assist inspections.

 Contributes to the overall Software Quality

and Also,

Serve as a requirement for acceptance!!

 A software readability metric, based on local
features that

 correlates strongly with human judgments

 correlates strongly with software quality

A survey of 120 human readability
annotators

A discussion of the features of metric and
its relation to notions of SW quality like
defect prediction and code changes

 Investigate to what extent the study group
agrees on readability.

 Determine a small set of features sufficient to
capture the notion of readability for the
majority of Annotators

 Discuss correlation between our readability
metrics and external notions of software
quality

 Possibilities for extension

 Conclusion.

•Accidental property

•Arises from system
requirements

•Based on Sizes of classes,
methods ,Extent of
Interactions

•Not much related to what
makes the code
understandable

•Essential property

•Can be addressed easily.

•Based on local, line-by-
line factors

•Judgments of human
annotators not familiar with
purpose of system.

 The Experiment:

Extract large number of readability judgments
over short code selections ,the Snippets.

120 annotators (all are CS students)

o 17 from 100 level courses

o 53 from 200 level courses

o 30 from 400 level courses

o 10 were Graduate students

Each annotator scores 100 snippets.

Mapping : Code sample->Finite score domain

 Short (but not too short!)

 Logically coherent

 Include adjacent comments

 Not cross scope boundaries

Main focus: Low-level details of readability

Field
Declarations

assignments

breaks

continues

throws

returns

Snippet

 Tool: Snippet Sniper:

.

.

.

.

.

Snippet 1 1 2 3 4 5

Less Readable More Readable

Snippet 2

Snippet 100

1 2 3 4 5

1 2 3 4 5

Results

Each box: Judgment of a
snippet

Darker colors: Lower
readability scores

Lighter colors: Higher
readability scores

Vertical bands means that
they ere judged similarly by
many annotators

 To evaluate whether we can extract a single
coherent model from this data set.

 Correlation statistic used: Pearson product-
moment correlation coefficient

 Compares judgments of annotators two at a time.

 1–perfect correlation

 0-no correlation

 Combine large set of judgments into single model
by averaging

 Average of 0.56 is considered “Moderate to
strong”

Results

Distribution of average readability of scores across all

snippets

Model

Generation

We form the set of features
that can be statically
obtained from a snippet or
other block of code

Simple Features related to :
Structure, Density, logical
complexity,
documentation

 Instance=<attribute1,attribute2,…..>

 Dataset-Collection of instances

Training set Test set

ClassifierData set Model

 Machine language algorithms

 Classifier operating on Instances

 Instance here is a feature vector
<Feature1,Feature2,…>

 Classifier is given a set of instances+ “correct
answer”

 Correct answer:

<3.14 >3.14

Less readable More Readable

 After the training is completed…

 When a new instance is given(that has not been
seen before) the classifier is applied and the
label is found out i.e, whether it is more
readable or less

 Tool: WEKA machine learning toolbox

Available at
http://prdownloads.sourceforge.net/weka/weka-3-6-
1jre.exe

 10 -fold cross validation .

 Recall(R)=[(#of “more readable” snippets as
judged by annotators)/(#of “more readable”
snippets as classified by model)]*100%

 Precision(P)=Fraction of snippets classified as
“more readable” by the model that were also
judged as “more readable” by the annotators.

 f-measure=Combination of R,P.

Reflects the accuracy of a classifier with respect
to more readable snippets

Model Performance

(Contd..)

•F-measure when each classifier trained
on set of snippets with randomly
generated score labels

=0.67

•F-measure when trained on human data
=0.8

•Pearson correlation=0.63 when we
compare output of Bayesian classifier to
the average human score model we
trained against.

•Observation: This level of agreement is
better than average human in our study
produced

 So far, we constructed an automated model of
readability that mimics human judgments

 Now, investigate whether our model of
readability compares favorably with external
conventional metrics of software quality.

 Find correlation between readability and
FindBugs(a popular static bug-finding tool)

 Look for similar correlation with changes to
code between versions of several large open-
source projects

Benchmarks for the

experiments

•Open source java
projects

•Maturity is self
reported:

1-planning

2-pre-alpha

3-alpha

4-beta

5-production/stable

6-mature

7-inactive

 Experiment 1:Correlate defects detected by
Findbugs with our readability model at the
function level

1. Run FindBugs on the benchmarks.

2. Extract all functions and partition into two.

3. Run already trained classifier on the set of
functions

 Experiment 2:Correlate future code churn to
readability

1. Use the same set up as first experiment

2. Use readability to predict which functions will
change in successive releases.

3. Instead of contains a bug“ we attempt to
predict is going to change soon."

Results

F measure for
Experiment 1:

0.63

F measure for
Experiment 2:

0.5

 Identifier length's influence on
readability=NILL

 Descriptive identifiers are sometimes useful
and sometimes not

 Comments have only 33% relative power to
readability

 # of identifiers and characters have strong
influence on our readability metric

 Languages should add additional keywords in
order to have fewer new identifiers.

 100 snippets is a very small sample

 All the annotators were students .There were
no software professionals or any experienced
persons involved in the judgments

 Automated readability metrics for Natural
languages .The Flesch-Kincaid Grade Level. R. F.
Flesch. 1948

 PMD and Java coding standards to enforce some
code standards. S. Ambler. Java coding standards.,
1997.

 Machine learning on source code repositories,
defect prediction in Software engineering and
Programming languages. Predicting defect densities
in source code les with decision tree learners. P. Knab,
M. Pinzger, and A. Bernstein., 2006.

 Investigate whether personalized model
adapted over time ,will be effective in
characterizing code reliability

 Consider size of compound statements

 Include Readability measurement tool in IDEs

 Express metric using simple formula with
small number of features

 Producing an effective Readability metric from
the judgments of annotators.

 May not be a universal model.

 The model considers relatively simple set of
low-level code features

 Readability exhibits significant levels of
correlation with more conventional metrics of
software quality like Defect Reports, Version
changes, and Program maturity

 Factors influencing readability might help in
Program language design

