Compiler Optimization Verification and Maintenance

Abstract

Due to the complexity of a compiler, it is difficult for com-
piler developers to prove the correctness of output of in-
termediate representations or profiling information manu-
ally after applying optimizations. Moreover, it is important
to choose good test cases to test the optimization code’s
changes, however, it is not simple to build separated test
cases to cover every possible optimizations. This proposal
proposes automatic techniques to prove the correctness of
an IR, the correctness of its annotations for correct pro-
filing information, and to generate test cases according to
the kinds of optimizations. Moreover, the test case size can
be reduced by using bug isolation techniques. We focus our
techniques on loop nest optimizations in the GNU C com-
piler with SPEC-CPU2006 benchmark test suites.

1. Introduction

Applying the proper compiler optimizations to improve
application’s performance is as important as writing good
code. For compiler users, the most important reason to use
compiler optimizations is to improve performance under
certain metrics. Thus, a compiler writer’s key concern is
to write efficient and reliable optimizations that produce a
more efficient program without producing incorrect results.
Particularly, compiler writers should insure that each phase
which has new optimizations that produce legal intermedi-
ate representations and it does not affect other phases or the
correctness of the output of compilation. However, a com-
piler is one of the most complex software frameworks, thus
it is neither easy nor simple to prove the correctness of the
compiler manually. Alongside the intermediate representa-
tions between two phases of the compiler, there are some
annotations which are visible to each phase, but invisible to
compiler writers. Moreover, it is not easy to choose proper
test cases reflecting the characteristics of each optimization
to help compiler developers to insure the correctness of their
changes effectively and accurately.

The major goal of this proposal is to build an optimiza-
tion development maintenance tool that helps compiler de-
velopers by:

1. checking whether each optimization phase produces a
legal intermediate representation. Thus it will not af-
fect to other phases and, it will produce the correct out-
put,

2. checking whether annotations between phases are cor-
rect and produce the correct profiling information for
developers, and

3. generating a small but effective test case from real ap-
plications to test optimization that developers have just
applied.

2. Background

This section explains the IR, the optimization phase, and
the bug isolation technique targeted by this proposal.

2.1. Intermediate Representation

An IR(Intermediate Representation) is an internal form
to represent the code being analyzed and translated by a
compiler [13]. In most cases, optimizing a program means
that we optimize and transform the IR of a code instead of
the source code itself. Thus, it is important to check the cor-
rectness of the IR during such optimizations. Different com-
pilers use different formats of IR such as graphical IR, lin-
ear IR, or hybrid IR using both graphical and textual infor-
mation.

The SSA(Static Single Assignment) form is one of the
hybrid IRs [13]. In this form, we can have only one single
definition for the each variable uses. This simplifies analy-
sis for the compiler and eventually it helps compiler writ-
ers to apply optimizations. Nowadays, several open source
compilers are using SSA form as an IR, such as, the SGI
compiler [3], the JikesRVM [2], the GCC compilers version
4.0 and above [1], and so on.

2.2. Loop Nest Optimization Phase

Loop Nest Optimization (LNO) performs transforma-
tions on a loop nest for optimizations [5]. This phase does
not build any control flow graph and optimizations are
driven by data dependency analysis. LNO includes loop un-
rolling, loop fusion, loop fision, loop interchange, and so on.



for (i=0; i<5; i++)
for (j=0; j<10; Jj++)
afil (3] = i+3;

for (§=0; j<10; j++)
for (i=0; i<5; i++)
Loop Interchange alil (3] = i+3;

Figure 1. Example of Loop Interchange

for (i=0; i<100; i++) for (i=0; i<100; i+=2)
{ {

stmtl; E—) stmel; stmt2;
stmt2; Loop unrolling stmtl; stmt2;
} with factor =2 }

Figure 2. Example of Loop Unrolling with Fac-
tor 2

For example, it is good to exchange the outer loop and the
inner loop like Figure 1 by using loop interchange for bet-
ter locality. Another example is to use unroll loops to make
loop bodies bigger to improve the performance like Figure
2. This proposal only focuses on this phase to prove the cor-
rectness of the output IR and annotations.

2.3. Automated Bug Finder

This technique is introduced in LLVM (Low Level Vir-
tual Machine) used to reduce test case size by throwing out
portions of a program which are checked to be correct. This
will locate the portions of the program that might cause the
crash and simplifies the debugging process[4]. In a similar
way, since we only focus on loop optimization in this pro-
posal, we find the proper loop body affected by such opti-
mizations and generate test cases.

3. Related Work

Figure 3 shows the diagram of the state of the art in com-
piler verification and validation. There are two approaches -
static and dynamic approaches. Static approaches do not in-
volve any runtime information. In the beginning of compiler
verification research, many people used static approaches,
only focused on specific features of the code and proved the
correctness manually. For example, McCarthy et al. [37] is
considered to be the first work in compiler verification and
they used static approaches that only focused on arithmetic
expression.

Dynamic approaches involve runtime information from
either the compiler or external tools. These approaches have
been developed by modifying a compiler infrastructure or
using translation validation.
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Figure 3. Diagram of the State of the Art in
Compiler Verification and Validation

Translation validation is one of methods that is used to
test the correctness of a compiler both in static and dynamic
methods, but more frequently in dynamic approaches. It
does not require any compiler modification. Without com-
piler instrumentation, independent tools are used to analyze
the compiler’s results and check the correctness of results.
There are two projects related to translation validation - the
verifix projects and the TVOC projects. The Verifix projects
have proposed techniques and formalisms for compiler re-
sult checkers, decomposition of compilers and notions of
semantical equivalence of source and target programs [10].
The TVOC projects are built on translation validation. It
proves the correctness of compiler components instead of
the entire compiler. The input of their tool is an intermedi-
ate representation in which several optimizations have been
applied and the output shows whether applied optimizations
are valid or not.

3.1. Static Approaches

Static approaches have been used to prove the safety,
correctness, and both. Xu et al. [49] determines statically
whether it is safe for untrusted machine code to be loaded
into a host system. Denney et al. [16] demonstrated a frame-
work to prove the safety property and the correctness of pro-
grams statically.

There are several approaches to prove correctness of pro-
grams statically using translation validation. Benton [8] in-
terpreted program properties as relations, rather than pred-
icates. They used static analyses for imperative programs
and they expressed and proved the correctness of optimiz-
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ing transformation using elementary logical and denotation
techniques. Cousot et al. [14] describe how they prove the
correctness by using source-to-source transformation with
abstract interpretation.

Some people used symbolic debugging information to
prove the correctness of a program statically. McNerney
[38] implements a specialized program equivalence prover
using abstract interpretation within functional blocks in-
stead of tree comparison to validate the register alloca-
tion of compiler. Hennessy [23] checked the correctness
of optimization by using symbolic debugging. Coutant et
al. [15] developed DOC, a prototype solution for Debug-
ging Optimized Code. DOC is a modified C compiler and
source level symbolic debugger. Brooks et al. [11] intro-
duced new compiler-debugger interfaces to provide visual
feedback and debugging of optimized code.

3.2. Dynamic Approaches

Most research for compiler validation and verification
are dynamic approaches. We can classify these into two
main approaches - one is using compiler instrumentation,
another is using translation validation without any compiler
modification.

3.2.1. Compiler Instrumentation: Rinard[46]’s work
is based on an instrumented compiler, producing out-
put from input and checking the correctness by using a
proof-checker. Another work from Rinard [47] is also
based on instrumented compilers. They introduce the for-
mal foundation and architectural design of a credible com-
piler. They present two logics, one for sub proofs of cor-
rectness and another for how the logics are sound. They
manually proved optimizations are correct.

3.2.2. Translation Validation:

e Correctness Proof: The most closely related ap-
proach to our proposed method is from Zimmermann
[52]. They summarize the results on the correct-
ness of the transformations in compiler back-ends
achieved in the Verifix projects. They focus on the cor-
rectness of intermediate representation transformation
rules and the correctness of the whole transforma-
tion stemming from the transformation rules. Their
proof strategies for term-rewrite rules work for lo-
cal optimizations perfectly. However, they need differ-
ent transformation rules such as local graph transfor-
mation rules for global optimizations such as code mo-
tion, or instruction scheduling. These parts need more
work to work more properly but this part is future re-
search. Another close approach to ours is Necula
[41]’s approach that used symbolic execution and in-
troduces translation validation based on symbolic

execution for the GNU C compiler. They manu-
ally compared the intermediate representation of
programs between each pass and prove the cor-
rectness of semantics. This work is done manually,
thus it has the limitation to apply to bigger applica-
tions. We also focus on the correctness of intermediate
representation, but our approach uses a different ap-
proach to prove the correctness. Instead of focusing
on rules, we focus on real instance of intermedi-
ate representation and prove the correctness of them
automatically. Our approach also proves the correct-
ness of annotations for the correct profiling informa-
tion which helps compiler developers in the debugging
process.

There are several approaches to prove com-
piler correctness by using semantic equivalence
[24][50], different approaches in translation valida-
tion [19][20][22], prove carrying code techniques
[40], mechanical verification [28][17], stage compi-
lation frameworks [43], and certificate proof or cer-
tifying compilation [21][33][10]. Some approaches
used formal proof of the correctness of specific com-
piler optimizations or issue specific compiler prob-
lems such as software pipelining optimizations[34],
resource usage improvements[7], and targeting to re-
active procedural programs[45].

Most approaches listed above involve runtime ex-
ecution. However, some research used only op-
timization analysis to prove the correctness of
compilers[27][31][36]. Some research used simula-
tion of compiler correctness proof [48][9][51].

Some approaches proved the correctness of a com-
piler manually [44][29].

Soundness Proof: There are several research projects
focusing on a soundness proof of compiler by using
stack-based control abstractions [18], implementing
soundness checkers for specific language[32], using
simulation[25], and using semantic equivalence checks
with temporal logic[26].

Safety Proof: Necula et al.[42] guarantee certain re-
quirements or properties of a compiler program, such
as type safety or the absence of stack overflows or
memory safety. Colby et al. [12] applied proof car-
rying code and a certifying compiler to Java for type
safety checking. Amme et al. [6] presented a mobile
code representation based on static single assignment
(SSA) to allow more optimizations, and check type
safety better than using Java byte code and virtual ma-
chine. Menon et al.[39] presented a verifiable interme-
diate representation to embed, propagate, and preserve
safety information in high performance compilers for
safe languages. For intermediate representations en-



coding safety information, they use the SSA interme-
diate representation.

4. Challenges and Goals

This section presents challenges presented in the state of
the art of the compiler validation fields.

4.1. Challenges

There are three main open issues in this area:

4.1.1. The correctness of IRs: It is important to check the
correctness of IRs since most optimizations will be applied
to them by modifying them before code generation. If we
do not insure their correctness, they can cause incorrect re-
sults, compilation crashes, runtime errors, and so on. More-
over, it is difficult to find which IR we did not correctly
generate and which caused all the problems. There are sev-
eral state of the art approaches to prove IR correctness, but
they are all done manually by using techniques such as sym-
bolic execution. Even though we do not use any additional
tool, in some compilers such as, the Open64 compiler, we
can use debug mode to find which phase caused the prob-
lem. However, this does not give the exact point of the phase
where we made the incorrect implementation.

4.1.2. The correctness of annotations: Besides IR cor-
rectness, we need to insure whether annotations from each
phase are correct. Annotations are important to generate the
correct profiling information, and this helps compiler de-
velopers in the debugging process. For example, for heuris-
tic decision in a compiler, compiler developers often use
branch probability information and this comes from anno-
tations after a specific optimization phase. The sum of all
branch probabilities from one basic block should be 1. If
we do not insure this and simply trust the profiling infor-
mation, compiler developers can make an incorrect deci-
sion from this incorrect profiling information. Thus, it is im-
portant to check whether annotations are correct or not, but
there are no approaches to prove annotations besides IR cor-
rectness.

4.1.3. Test case size: It takes time and effort to build the
practical test cases that represent the characteristics of op-
timizations we applied. If the test case size is too big, we
might have more chance to have portions of the program
to apply optimizations we want to test. However, the size
of IRs also increases and sometimes IRs have completely
different forms from original source code. Thus, it is hard
to find the exact portion of IRs corresponding to the por-
tion of programs. It is important to keep test size small
enough but have the key portion of programs to use for cer-
tain optimizations. There are several researches on this such

as test case minimizations or bug isolations [35][30]. How-
ever, they cannot be applied to this research directly. For ex-
ample, bug isolation is used to reduce test case size by find-
ing the portion of programs that cause crashes. If it does not
crash, the test case size minimization will fail. Optimiza-
tions do not cause any crash usually, but it will cause differ-
ent problems like performance degradation.

The common problem in each issue is that we do not
have any automated processes and it requires human inter-
vention.

4.2. Goals

We have three goals to resolve current issues in this re-
search.

1. We prove the correctness of IRs automatically, and
give more accurate information to compiler develop-
ers.

2. We prove the correctness of annotations from each
phase automatically, and insure the profiling informa-
tion for compiler developers is always reliable.

3. We generate small test cases but containing key char-
acteristics of optimizations we want to test automati-
cally.

5. Proposed Research

This section presents new proposed methodolo-
gies for this research. Each section describes the detail of
our methodologies, all performed automatically.

5.1. Test Case Minimization

We follow the same approach as an automated bug finder
techniques from LLVM [4]. They minimize programs un-
til they find the portion of programs that caused the crash.
We minimize programs until we find the portion of pro-
grams that needs to be optimized as shown in Figure 5. After
we recognize this portion, we generate complete small pro-
grams that can be run without any other parts in the original
programs.

5.2. IR Correctness Proof

We extract the key characteristics of the IR, thus we only
prove the correctness for parts that cover those key charac-
teristics. For example, when we test loop nest optimization,

1. We first extract portions of the IR corresponding to any
loop bodies in the original source code.

2. For non-loop bodies in IR, we check if it is changed
after applying optimization.
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3. For loop bodies, we check if optimizations are applied
correctly. For example, for unrolling factor, check if it
was unrolled in specified number correctly.

If we want to test copy propagation, we need to use more
information such as def-use chains. We will first extract por-
tions of the IR based on def-use chain analysis and see if this
portion needs to be optimized with copy propagation. Then
we follow the same procedure.

Figure 4 shows how this procedure works. We first de-
cide which properties of IR would present the key charac-
teristics and we check whether parts that were supposed to
change have been changed correctly. In the same way, we
check whether some parts that are not supposed to change
have changed and how it affects the IR correctness. To com-
pare this, we will use a reference compiler which has the
correct implementation of optimizations. With test cases we
build from Section 5.1, we generate IR from the reference
compiler and the modified compiler and generate source
code of them. In this way, we can compare source code
from each IR and check if test cases have been changed
correctly according to kinds of optimization. If we are test-
ing new optimization never implemented before, we need to
build hand-coded optimization results to prove IR correct-
ness.

5.3. Annotation Correctness Proof

We access to annotations after each phase and check if
they are correct. For example, in Figure 4, if we want to
check that branch probability information is correct, we cal-
culate if the sum of all possible branches from one basic

block is 1 or not. In the similar way, we check for all other
annotations from each phase and make sure their value is
correct or not.

6. Evaluation Plan

This section describes how we will evaluate our pro-
posed methodologies. From this evaluation, we want to an-
swer to those questions:

1. Can our methodology detect the incorrect implemen-
tation of compiler optimization accurately?

2. Can our methodology detect the incorrect annotations
from each IR?

3. Can our test case minimization techniques successfully
reduce test case sizes?

First, we choose optimizations we want to test by chang-
ing the current implementation in the GNU C compiler.
We change the current correct implementation into incor-
rect version. For example, if unrolling factor was n, we un-
roll less than n times and see if our proposed methodology
can recognize this. This process only generates fault seeds
for our evaluation.

Second, we generate test cases by using test case min-
imization techniques with profiling information from the
correct version of compiler. This process will evaluate our
test case minimization techniques.

Third, we measure whether our methodology can suc-
cessfully recognize the incorrect implementation from IR
and annotation correctness proof. This process will evalute
our IR and annotation correctness proof.



Fourth, we compare our methodology to the most closely
related approach from Necula [41]’s approach based on
symbolic execution. This process will evaluate how our
methodology can detect incorrect implementation effec-
tively.

7. Summary of Foreseen Contributions

By using proposed methodologies, compiler developers
can insure IRs after each phase are legal to pass to the next
phase. Moreover, they can find the exact point where they
made incorrect implementation. They can use profiling in-
formation without worrying about its correctness by insur-
ing the correctness of annotations from each phase. Also,
they can minimize test case sizes by using new techniques
based on bug isolation. The most important contribution is
all of these proposed methodologies are done automatically
with minimal human intervention.
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